• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python linalg.cholesky函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中scipy.linalg.cholesky函数的典型用法代码示例。如果您正苦于以下问题:Python cholesky函数的具体用法?Python cholesky怎么用?Python cholesky使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了cholesky函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: balreal

def balreal(sys):
    """Computes the balanced realization of sys and returns its eigenvalues.

    References:
        [1] http://www.mathworks.com/help/control/ref/balreal.html

        [2] Laub, A.J., M.T. Heath, C.C. Paige, and R.C. Ward, "Computation of
            System Balancing Transformations and Other Applications of
            Simultaneous Diagonalization Algorithms," *IEEE Trans. Automatic
            Control*, AC-32 (1987), pp. 115-122.
    """
    sys = LinearSystem(sys)  # cast first to memoize sys2ss
    if not sys.analog:
        raise NotImplementedError("balanced digital filters not supported")

    R = control_gram(sys)
    O = observe_gram(sys)

    LR = cholesky(R, lower=True)
    LO = cholesky(O, lower=True)

    U, S, V = svd(np.dot(LO.T, LR))

    T = np.dot(LR, V.T) * S ** (-1. / 2)
    Tinv = (S ** (-1. / 2))[:, None] * np.dot(U.T, LO.T)

    return similarity_transform(sys, T, Tinv), S
开发者ID:arvoelke,项目名称:nengolib,代码行数:27,代码来源:reduction.py


示例2: log_mvnpdf

def log_mvnpdf(X, means, covars, min_covar=1.e-7):
    """Log probability for full covariance matrices."""
    n_samples, n_dim = X.shape
    nmix = len(means)
    log_prob = np.empty((n_samples, nmix))
    for c, (mu, cv) in enumerate(zip(means, covars)):
        try:
            cv_chol = linalg.cholesky(cv, lower=True)
        except linalg.LinAlgError:
            # The model is most probably stuck in a component with too
            # few observations, we need to reinitialize this components
            try:
                cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim),
                                          lower=True)
            except linalg.LinAlgError:
                raise ValueError("'covars' must be symmetric, "
                                 "positive-definite")

        cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol)))
        cv_sol = linalg.solve_triangular(cv_chol, (X - mu).T, 
lower=True).T
        log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) +
                                 n_dim * np.log(2 * np.pi) + cv_log_det)

    return log_prob
开发者ID:m87,项目名称:pyEM,代码行数:25,代码来源:thirdparty.py


示例3: update

    def update(self, ncov):
        """updates the covariance matrix and recalculates internals

        :Parameters:
            ncov : ndarray
                symetric matrix, noise covariance
        """

        # checks
        if ncov.ndim != 2 or ncov.shape[0] != ncov.shape[1]:
            raise ValueError('noise covariance is not a symmetric, '
                             'pos. definite matrix')

        # inits
        self.input_dim = ncov.shape[0]
        self._ncov = ncov
        self._chol_ncov = None
        self._inv_chol_ncov = None

        # compute cholesky decomposition
        try:
            self._chol_ncov = sp_la.cholesky(self._ncov)
        except:
            self._ncov = coloured_loading(self._ncov, 50)
            self._chol_ncov = sp_la.cholesky(self._ncov)
            # invert
        self._inv_chol_ncov = sp_la.inv(self._chol_ncov)

        # set ready flag
        self._is_ready = True
开发者ID:christiando,项目名称:BOTMpy,代码行数:30,代码来源:prewhiten.py


示例4: __init__

 def __init__(self, mean, sigma):
     self.mean = mean
     self.sigma = sigma
     self.sigmainv = sigmainv
     self.cholsigma = linalg.cholesky(sigma)
     # the following makes it lower triangular with increasing time
     self.cholsigmainv = linalg.cholesky(sigmainv)[::-1, ::-1]
开发者ID:B-Rich,项目名称:statsmodels,代码行数:7,代码来源:linalg_covmat.py


示例5: LMLdebug

    def LMLdebug(self):
        """
        LML function for debug
        """
        assert self.N*self.P<5000, 'gp2kronSum:: N*P>=5000'

        y = SP.reshape(self.Y,(self.N*self.P), order='F') 
        V = SP.kron(SP.eye(self.P),self.F)

        XX = SP.dot(self.Xr,self.Xr.T)
        K  = SP.kron(self.Cr.K(),XX)
        K += SP.kron(self.Cn.K()+self.offset*SP.eye(self.P),SP.eye(self.N))

        # inverse of K
        cholK = LA.cholesky(K)
        Ki = LA.cho_solve((cholK,False),SP.eye(self.N*self.P))

        # Areml and inverse
        Areml = SP.dot(V.T,SP.dot(Ki,V))
        cholAreml = LA.cholesky(Areml)
        Areml_i = LA.cho_solve((cholAreml,False),SP.eye(self.K*self.P))

        # effect sizes and z
        b = SP.dot(Areml_i,SP.dot(V.T,SP.dot(Ki,y)))
        z = y-SP.dot(V,b)
        Kiz = SP.dot(Ki,z)

        # lml
        lml  = y.shape[0]*SP.log(2*SP.pi)
        lml += 2*SP.log(SP.diag(cholK)).sum()
        lml += 2*SP.log(SP.diag(cholAreml)).sum()
        lml += SP.dot(z,Kiz)
        lml *= 0.5

        return lml
开发者ID:PMBio,项目名称:mtSet,代码行数:35,代码来源:gp2kronSumLR.py


示例6: fitPairwiseModel

def fitPairwiseModel(Y,XX=None,S_XX=None,U_XX=None,verbose=False):
    N,P = Y.shape
    """ initilizes parameters """
    RV = fitSingleTraitModel(Y,XX=XX,S_XX=S_XX,U_XX=U_XX,verbose=verbose)
    Cg = covariance.freeform(2)
    Cn = covariance.freeform(2)
    gp = gp2kronSum(mean(Y[:,0:2]),Cg,Cn,XX=XX,S_XX=S_XX,U_XX=U_XX)
    conv2 = SP.ones((P,P),dtype=bool)
    rho_g = SP.ones((P,P))
    rho_n = SP.ones((P,P))
    for p1 in range(P):
        for p2 in range(p1):
            if verbose:
                print '.. fitting correlation (%d,%d)'%(p1,p2)
            gp.setY(Y[:,[p1,p2]])
            Cg_params0 = SP.array([SP.sqrt(RV['varST'][p1,0]),1e-6*SP.randn(),SP.sqrt(RV['varST'][p2,0])])
            Cn_params0 = SP.array([SP.sqrt(RV['varST'][p1,1]),1e-6*SP.randn(),SP.sqrt(RV['varST'][p2,1])])
            params0 = {'Cg':Cg_params0,'Cn':Cn_params0}
            conv2[p1,p2],info = OPT.opt_hyper(gp,params0,factr=1e3)
            rho_g[p1,p2] = Cg.K()[0,1]/SP.sqrt(Cg.K().diagonal().prod())
            rho_n[p1,p2] = Cn.K()[0,1]/SP.sqrt(Cn.K().diagonal().prod())
            conv2[p2,p1] = conv2[p1,p2]; rho_g[p2,p1] = rho_g[p1,p2]; rho_n[p2,p1] = rho_n[p1,p2]
    RV['Cg0'] = rho_g*SP.dot(SP.sqrt(RV['varST'][:,0:1]),SP.sqrt(RV['varST'][:,0:1].T))
    RV['Cn0'] = rho_n*SP.dot(SP.sqrt(RV['varST'][:,1:2]),SP.sqrt(RV['varST'][:,1:2].T))
    RV['conv2'] = conv2
    #3. regularizes covariance matrices
    offset_g = abs(SP.minimum(LA.eigh(RV['Cg0'])[0].min(),0))+1e-4
    offset_n = abs(SP.minimum(LA.eigh(RV['Cn0'])[0].min(),0))+1e-4
    RV['Cg0_reg'] = RV['Cg0']+offset_g*SP.eye(P)
    RV['Cn0_reg'] = RV['Cn0']+offset_n*SP.eye(P)
    RV['params0_Cg']=LA.cholesky(RV['Cg0_reg'])[SP.tril_indices(P)]
    RV['params0_Cn']=LA.cholesky(RV['Cn0_reg'])[SP.tril_indices(P)]
    return RV
开发者ID:PMBio,项目名称:mtSet,代码行数:33,代码来源:fit_utils.py


示例7: simulate_lu_decom

def simulate_lu_decom(sim_locations,sample_locations,vmodel):
    c11 = fill_cova(sample_locations,None,vmodel)
    c21 = fill_cova(sim_locations,sample_locations,vmodel)
    c22 = fill_cova(sim_locations,None,vmodel)

    u11 = cholesky(c11)
    l11 = u11.T
    u11_inv = inv(u11)

    l21 = c21 @ u11_inv
    u12 = l21.T

    l22 = cholesky([email protected],lower=True)

    return u11_inv.T,l21,l22



    l11,u11 = lu(c11,permute_l= True)

    l11_inv = inv(l11)
    a21t = l11_inv @ c21.T
    a21 = a21t.T
    b12 = a21t

    l22,u22 = lu([email protected],permute_l= True)

    return a21,l11_inv,l22
开发者ID:exepulveda,项目名称:geostatpy,代码行数:28,代码来源:lu_sim.py


示例8: genBrownianMotion

def genBrownianMotion (n, tMax=10.0):
    tSeq = np.arange (tMax/float(500),
                    tMax*(1+1/float(500)), tMax/float(500));
    sig = np.zeros ((500,500), dtype='float64');
    for i in range (500):
        sig[i,0:i] = tSeq[0:i];
        sig[i,i:] = tSeq[i];
    sigSqrt = LA.cholesky (sig, lower=True);
    for j in xrange(n/500):
        z = np.dot (sigSqrt, nr.randn (500));
        if j == 0:
            zTot = np.insert (z, 0, 0);
        else:
            z = z + zTot[-1]
            zTot = np.append(zTot, z)
    m = n % 500  - 1
    tSeq = np.arange (tMax/float(m),
                    tMax*(1+1/float(m)), tMax/float(m));
    sig = np.zeros ((m,m), dtype='float64');
    for i in range (m):
        sig[i,0:i] = tSeq[0:i];
        sig[i,i:] = tSeq[i];
    print(sig)
    sigSqrt = LA.cholesky (sig, lower=True);
    z = np.dot (sigSqrt, nr.randn (m));
    z = z + zTot[-1]
    zTot = np.append(zTot, z)
    return zTot
开发者ID:dendisuhubdy,项目名称:benzine_leak_detection,代码行数:28,代码来源:SPOD_functions_suhubdy.py


示例9: test_check_finite

 def test_check_finite(self):
     a = [[8, 2, 3], [2, 9, 3], [3, 3, 6]]
     c = cholesky(a, check_finite=False)
     assert_array_almost_equal(dot(transpose(c), c), a)
     c = transpose(c)
     a = dot(c, transpose(c))
     assert_array_almost_equal(cholesky(a, lower=1, check_finite=False), c)
开发者ID:GiladAmar,项目名称:scipy,代码行数:7,代码来源:test_decomp_cholesky.py


示例10: log_multivariate_normal_density

def log_multivariate_normal_density(X, means, covars, min_covar=1.e-7):
    """Log probability for full covariance matrices. """
    if hasattr(linalg, 'solve_triangular'):
        # only in scipy since 0.9
        solve_triangular = linalg.solve_triangular
    else:
        # slower, but works
        solve_triangular = linalg.solve
    n_samples, n_dim = X.shape
    nmix = len(means)
    log_prob = np.empty((n_samples, nmix))
    for c, (mu, cv) in enumerate(itertools.izip(means, covars)):
        try:
            cv_chol = linalg.cholesky(cv, lower=True)
        except linalg.LinAlgError:
            # The model is most probabily stuck in a component with too
            # few observations, we need to reinitialize this components
            cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim),
                                      lower=True)
        cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol)))
        cv_sol = solve_triangular(cv_chol, (X - mu).T, lower=True).T
        log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) + \
                                     n_dim * np.log(2 * np.pi) + cv_log_det)

    return log_prob
开发者ID:lesire,项目名称:pykalman,代码行数:25,代码来源:utils.py


示例11: choleskyjitter

def choleskyjitter(A, overwrite_a = False, check_finite = True):

    """Add jitter stochastically until a positive definite matrix occurs"""
    # Avoid preparing for jittering if we can already find the cholesky 
    # with no problem
    try:
        return la.cholesky(A, lower = True, overwrite_a = overwrite_a, 
                check_finite = check_finite)
    except Exception:
        pass

    # Prepare for jittering (all the magic numbers here are arbitary...)
    n = A.shape[0]
    maxscale = 1e10
    minscale = 1e-4
    scale = minscale

    # Keep jittering stochastically, increasing the jitter magnitude along 
    # the way, until it's all good
    while scale < maxscale:

        try:
            jitA = scale * np.diag(np.random.rand(n))
            L = la.cholesky(A + jitA, lower = True, overwrite_a = overwrite_a, 
                check_finite = check_finite)
            return L
        except la.LinAlgError:
            scale *= 1.01
            log.warning('Jitter added stochastically. Scale: %f!' % scale)

    raise la.LinAlgError("Max value of jitter reached")
开发者ID:KelvyHsu,项目名称:ocean-exploration,代码行数:31,代码来源:linalg.py


示例12: isposdef

def isposdef(X):
    "Return if matrix is positive definite. Relies on cholesky decomp"
    try:
        la.cholesky(X)  # will raise LinAlgError if not positive def
        return True
    except la.LinAlgError:
        return False
开发者ID:sayiho,项目名称:distcan,代码行数:7,代码来源:matrix.py


示例13: contour_2d

def contour_2d(mu, cov=None, prec=None, 
        n=100, radius=[1, np.sqrt(6)]):
    """
    Assuming a bivariate normal
    distribution, draw contours,
    given 'radius' information.

    Note:
    sqrt(6) covers roughly 95% of probability
    mass (in 2d), given the fact that the mahalanobis
    distribution is chi-squared distributed.
    """
    mu = mu.reshape(2,1) 
    t = np.linspace(0, 2*np.pi, n)
    circle = np.array([np.cos(t), np.sin(t)])
    if prec is None:
        L = la.cholesky(cov)
        ellipse = np.dot(L, circle)
    else:
        L = la.cholesky(prec)
        ellipse = la.solve_triangular(L, circle)
        # FIXME: not correct yet
    plots = {}
    for r in radius:
        plots[r] = (r*ellipse[0,:] + mu[0], r*ellipse[1,:] + mu[1])
    return plots
开发者ID:bayerj,项目名称:utils,代码行数:26,代码来源:mvn.py


示例14: _initialize

    def _initialize(self, X, resp):
        """Initialization of the Gaussian mixture parameters.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        resp : array-like, shape (n_samples, n_components)
        """
        n_samples, _ = X.shape

        weights, means, covariances = _estimate_gaussian_parameters(
            X, resp, self.reg_covar, self.covariance_type)
        weights /= n_samples

        self.weights_ = (weights if self.weights_init is None
                         else self.weights_init)
        self.means_ = means if self.means_init is None else self.means_init

        if self.precisions_init is None:
            self.covariances_ = covariances
            self.precisions_cholesky_ = _compute_precision_cholesky(
                covariances, self.covariance_type)
        elif self.covariance_type == 'full':
            self.precisions_cholesky_ = np.array(
                [linalg.cholesky(prec_init, lower=True)
                 for prec_init in self.precisions_init])
        elif self.covariance_type == 'tied':
            self.precisions_cholesky_ = linalg.cholesky(self.precisions_init,
                                                        lower=True)
        else:
            self.precisions_cholesky_ = self.precisions_init
开发者ID:dsquareindia,项目名称:scikit-learn,代码行数:32,代码来源:gaussian_mixture.py


示例15: jitchol_old

def jitchol_old(A, maxtries=5):
    """
    :param A: An almost pd square matrix

    :rval L: the Cholesky decomposition of A

    .. note:

      Adds jitter to K, to enforce positive-definiteness
      if stuff breaks, please check:
      np.allclose(sp.linalg.cholesky(XXT, lower = True), np.triu(sp.linalg.cho_factor(XXT)[0]).T)

    """
    try:
        return linalg.cholesky(A, lower=True)
    except linalg.LinAlgError:
        diagA = np.diag(A)
        if np.any(diagA < 0.):
            raise linalg.LinAlgError, "not pd: negative diagonal elements"
        jitter = diagA.mean() * 1e-6
        for i in range(1, maxtries + 1):
            print '\rWarning: adding jitter of {:.10e}                        '.format(jitter),
            try:
                return linalg.cholesky(A + np.eye(A.shape[0]).T * jitter, lower=True)
            except:
                jitter *= 10

        raise linalg.LinAlgError, "not positive definite, even with jitter."
开发者ID:Dalar,项目名称:GPy,代码行数:28,代码来源:linalg.py


示例16: geigen

def geigen(Amat, Bmat, Cmat):
    """
    generalized eigenvalue problem of the form

    max tr L'AM / sqrt(tr L'BL tr M'CM) w.r.t. L and M

    :param Amat numpy ndarray of shape (M,N)
    :param Bmat numpy ndarray of shape (M,N)
    :param Bmat numpy ndarray of shape (M,N)

    :rtype: numpy ndarray
    :return values: eigenvalues
    :return Lmat: left eigenvectors
    :return Mmat: right eigenvectors

    """
    if Bmat.shape[0] != Bmat.shape[1]:
        print("BMAT is not square.\n")
        sys.exit(1)

    if Cmat.shape[0] != Cmat.shape[1]:
        print("CMAT is not square.\n")
        sys.exit(1)

    p = Bmat.shape[0]
    q = Cmat.shape[0]

    s = min(p, q)
    tmp = fabs(Bmat - Bmat.transpose())
    tmp1 = fabs(Bmat)
    if tmp.max() / tmp1.max() > 1e-10:
        print("BMAT not symmetric..\n")
        sys.exit(1)

    tmp = fabs(Cmat - Cmat.transpose())
    tmp1 = fabs(Cmat)
    if tmp.max() / tmp1.max() > 1e-10:
        print("CMAT not symmetric..\n")
        sys.exit(1)

    Bmat = (Bmat + Bmat.transpose()) / 2.
    Cmat = (Cmat + Cmat.transpose()) / 2.
    Bfac = cholesky(Bmat)
    Cfac = cholesky(Cmat)
    Bfacinv = inv(Bfac)
    Bfacinvt = Bfacinv.transpose()
    Cfacinv = inv(Cfac)
    Dmat = Bfacinvt.dot(Amat).dot(Cfacinv)
    if p >= q:
        u, d, v = svd(Dmat)
        values = d
        Lmat = Bfacinv.dot(u)
        Mmat = Cfacinv.dot(v.transpose())
    else:
        u, d, v = svd(Dmat.transpose())
        values = d
        Lmat = Bfacinv.dot(u)
        Mmat = Cfacinv.dot(v.transpose())

    return values, Lmat, Mmat
开发者ID:glemaitre,项目名称:fdasrsf,代码行数:60,代码来源:utility_functions.py


示例17: get_sigma_points_mean_cov

def get_sigma_points_mean_cov(pts, weights):
    '''Find mean and covariance of a set of weighted sigma points pts
    
    Returns
    -------
        mean, cov
            np arrays (n,1) and (n,n) respectively
    '''

    n = pts.shape[0]
    
    n_pts = pts.shape[1]
    
    mean = np.sum(pts*weights, axis=1)[:,np.newaxis]
    cov = np.dot(weights*(pts-mean), (pts-mean).T)
    
    # Sometimes if kappa < 0, cov may become non positive semi-definite. If so, 
    # approximate 'covariance' matrix according to UKF paper Julier 1997
    try: # check positive semi-definiteness
        la.cholesky(cov)
    except la.LinAlgError:
        print 'Covariance matrix is not positive semi-definite, aproximating...'
        # take 'covariance' about propagated 0th sigma point instead of new mean
        X0 = pts[:,0,np.newaxis] # first sigma point
        cov = np.dot(weights*(pts-X0), (pts-X0).T) 
        # Check positive semi-definiteness again (should always be)
        la.cholesky(cov)# will throw LinAlgError if not
        
    return mean, cov
开发者ID:corjos,项目名称:autonomous-driving,代码行数:29,代码来源:hgmm.py


示例18: choleskyjitter

def choleskyjitter(A):
	
    try:
        return(la.cholesky(A, lower = True))
    except Exception:
        pass

    n = len(A)
    maxscale = 10*np.sum(A.diagonal())
    minscale = min(1/64, maxscale/1024)
    scale = minscale

    if VERBOSE:
    	print('\t', 'Jittering...')

    while scale < maxscale:

        try:
        	jitA = scale * np.diag(np.random.rand(n))
        	L = la.cholesky(A + jitA, lower = True)
        	return(L)
        except Exception as e:
        	scale += minscale

    raise ValueError("Jittering failed")
开发者ID:KelvyHsu,项目名称:ocean-exploration,代码行数:25,代码来源:GaussianProcessModel.py


示例19: compute

    def compute(self, x, yerr):
        """
        Compute and factorize the covariance matrix.

        :param x: ``(nsamples, ndim)``
            The independent coordinates of the data points.

        :param yerr: (optional) ``(nsamples,)`` or scalar
            The Gaussian uncertainties on the data points at coordinates
            ``x``. These values will be added in quadrature to the diagonal of
            the covariance matrix.

        """
        # Compute the kernel matrix.
        K = self.kernel.value(x)
        K[np.diag_indices_from(K)] += yerr ** 2

        # Factor the matrix and compute the log-determinant.
        # TODO CPD 25.01.15: added check on cholesky ala sklearn to account for
        # linalg error...
        # Also removed overwrite_a
        try:
            self._factor = (cholesky(K), False)
        except LinAlgError:
            self._factor = (cholesky(K + min_covar * np.eye(K.shape[0])), False)
        ##self._factor = (cholesky(K, overwrite_a=True, lower=False), False)
        self.log_determinant = 2 * np.sum(np.log(np.diag(self._factor[0])))
        self.computed = True
开发者ID:cpadavis,项目名称:LearnPSF,代码行数:28,代码来源:george.basic.mod.py


示例20: _update

    def _update(self):
        sn2 = self._likelihood.s2
        su2 = sn2 / 1e6

        # kernel wrt the inducing points.
        Kuu = self._kernel.get(self._U)
        p = self._U.shape[0]

        # cholesky for the information gain. note that we only need to compute
        # this once as it is independent from the data.
        self._L = sla.cholesky(Kuu + su2 * np.eye(p))

        # evaluate the kernel and residuals at the new points
        Kux = self._kernel.get(self._U, self._X)
        kxx = self._kernel.dget(self._X)
        r = self._y - self._mean

        # the cholesky of Q.
        V = sla.solve_triangular(self._L, Kux, trans=True)

        # rescale everything by the diagonal matrix ell.
        ell = np.sqrt(kxx + sn2 - np.sum(V**2, axis=0))
        Kux /= ell
        V /= ell
        r /= ell

        # NOTE: to update things incrementally all we need to do is store these
        # components. A just needs to be initialized at the identity and then
        # we just accumulate here.
        self._A = np.eye(p) + np.dot(V, V.T)
        self._a = np.dot(Kux, r)

        # update the posterior.
        self._R = np.dot(sla.cholesky(self._A), self._L)
        self._b = sla.solve_triangular(self._R, self._a, trans=True)
开发者ID:audurand,项目名称:pygp,代码行数:35,代码来源:fitc.py



注:本文中的scipy.linalg.cholesky函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python linalg.cholesky_banded函数代码示例发布时间:2022-05-27
下一篇:
Python linalg.cho_solve_banded函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap