• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python linalg.orth函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中scipy.linalg.orth函数的典型用法代码示例。如果您正苦于以下问题:Python orth函数的具体用法?Python orth怎么用?Python orth使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了orth函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: principal_angles

def principal_angles(A, B):
    '''Compute the principal angles between subspaces A and B.

    The algorithm for computing the principal angles is described in :
    A. V. Knyazev and M. E. Argentati,
    Principal Angles between Subspaces in an A-Based Scalar Product: 
    Algorithms and Perturbation Estimates. SIAM Journal on Scientific Computing, 
    23 (2002), no. 6, 2009-2041.
    http://epubs.siam.org/sam-bin/dbq/article/37733
    '''    
    # eps = np.finfo(np.float64).eps**.981
    # for i in range(A.shape[1]):
    #     normi = la.norm(A[:,i],np.inf)
    #     if normi > eps: A[:,i] = A[:,i]/normi
    # for i in range(B.shape[1]):
    #     normi = la.norm(B[:,i],np.inf)
    #     if normi > eps: B[:,i] = B[:,i]/normi
    QA = sl.orth(A)
    QB = sl.orth(B)
    _, s, Zs = svd(QA.T.dot(QB), full_matrices=False)
    s = np.minimum(s, ones_like(s))
    theta = np.maximum(np.arccos(s), np.zeros_like(s))
    V = QB.dot(Zs)
    idxSmall = s > np.sqrt(2.)/2.
    if np.any(idxSmall):
        RB = V[:,idxSmall]
        _, x, _ = svd(RB-QA.dot(QA.T.dot(RB)),full_matrices=False)
        thetaSmall = np.flipud(np.maximum(arcsin(np.minimum(x, ones_like(x))), zeros_like(x)))
        theta[idxSmall] = thetaSmall
    return theta
开发者ID:sylvchev,项目名称:mdla,代码行数:30,代码来源:dict_metrics.py


示例2: __init__

 def __init__(self, basef, 
              translate=True, 
              rotate=False, 
              conditioning=None, 
              asymmetry=None,
              oscillate=False, 
              penalize=None,
              ):
     FunctionEnvironment.__init__(self, basef.xdim, basef.xopt)
     self.desiredValue = basef.desiredValue            
     self.toBeMinimized = basef.toBeMinimized
     
     if translate:            
         self.xopt = (rand(self.xdim) - 0.5) * 9.8
         
     self._diags = eye(self.xdim)            
     self._R = eye(self.xdim)            
     self._Q = eye(self.xdim)            
     
     if conditioning is not None:
         self._diags = generateDiags(conditioning, self.xdim)
     if rotate:
         self._R = orth(rand(basef.xdim, basef.xdim))        
         if conditioning:
             self._Q = orth(rand(basef.xdim, basef.xdim))
                     
     tmp = lambda x: dot(self._Q, dot(self._diags, dot(self._R, x-self.xopt)))
     if asymmetry is not None:
         tmp2 = tmp
         tmp = lambda x: asymmetrify(tmp2(x), asymmetry)
     if oscillate:
         tmp3 = tmp
         tmp = lambda x: oscillatify(tmp3(x))
     
     self.f = lambda x: basef.f(tmp(x))
开发者ID:adreyer,项目名称:pybrain,代码行数:35,代码来源:transformations.py


示例3: subspace

def subspace(a, b, deg=True):
    """
    Angle between two subspaces specified by the columns of a and b
    Ported from MATLAB 'subspace' function

    Parameters
    ----------
    a : matrix
    b : matrix
    deg : bool
        return degree or radian

    Returns
    -------
    double
        angle
    """
    warnings.warn(
        "Deprecated. Use scipy.linalg.subspace_angles instead.", FutureWarning
    )
    oa = linalg.orth(a)
    ob = linalg.orth(b)
    if oa.shape[1] < ob.shape[1]:
        oa, ob = ob.copy(), oa.copy()
    ob -= oa @ (oa.T @ ob)
    rad = np.arcsin(min(1, linalg.norm(ob, ord=2)))
    return np.degrees(rad) if deg else rad
开发者ID:catniplab,项目名称:vLGP,代码行数:27,代码来源:math.py


示例4: __init__

 def __init__(self, *args, **kwargs):
     MultiModalFunction.__init__(self, *args, **kwargs)
     self._mu0 = 2.5
     self._s = 1 - 1 / (2 * sqrt(self.xdim + 20) - 8.2)
     self._mu1 = -sqrt((self._mu0 ** 2 - 1) / self._s)
     self._signs = sign(randn(self.xdim))
     self._R1 = orth(rand(self.xdim, self.xdim))
     self._R2 = orth(rand(self.xdim, self.xdim))
     self._diags = generateDiags(100, self.xdim)
开发者ID:Boblogic07,项目名称:pybrain,代码行数:9,代码来源:multimodal.py


示例5: fubini_study

def fubini_study(A, B):
    '''
    fubini_study(A, B) Compute the Fubini-Study distance
    Compute the Fubini-Study distance based on principal angles between A and B
    as d=\acos{ \prod_i \theta_i}
    '''
    if A.shape != B.shape:
        raise ValueError('Atoms have different dim (', A.shape, ' and ', B.shape,'). Error raised in fubini_study(A, B)')
    if np.allclose(A, B): return 0.
    return arccos(det(sl.orth(A).T.dot(sl.orth(B))))
开发者ID:sylvchev,项目名称:mdla,代码行数:10,代码来源:dict_metrics.py


示例6: chordal

def chordal(A, B):
    '''
    chordal(A, B) Compute the chordal distance
    Compute the chordal distance between A and B
    as d=\sqrt{K - ||\bar{A}^T\bar{B}||_F^2}
    where K is the rank of A and B, || . ||_F is the Frobenius norm,
    \bar{A} is the orthogonal basis associated with A and the same goes for B.
    '''
    if A.shape != B.shape:
        raise ValueError('Atoms have not the same dimension (', A.shape, ' and ', B.shape,'). Error raised in chordal(A, B)')
    
    if np.allclose(A, B): return 0.
    else: 
        d2 = A.shape[1] - norm(sl.orth(A).T.dot(sl.orth(B)), 'fro')**2
        if d2 < 0.: return sqrt(abs(d2))
        else: return sqrt(d2)
开发者ID:sylvchev,项目名称:mdla,代码行数:16,代码来源:dict_metrics.py


示例7: addblock_svd_update

def  addblock_svd_update( Uarg, Sarg, Varg, Aarg, force_orth = False):
  U = Varg
  V = Uarg
  S = np.eye(len(Sarg),len(Sarg))*Sarg
  A = Aarg.T
  
  current_rank = U.shape[1]
  m = np.dot(U.T,A)
  p = A - np.dot(U,m)
  P = lin.orth(p)
  Ra = np.dot(P.T,p)
  z = np.zeros(m.shape)
  K = np.vstack(( np.hstack((S,m)), np.hstack((z.T,Ra)) ))
  tUp,tSp,tVp = lin.svd(K);
  tUp = tUp[:,:current_rank]
  tSp = np.diag(tSp[:current_rank])
  tVp = tVp[:,:current_rank]
  Sp = tSp
  Up = np.dot(np.hstack((U,P)),tUp)
  Vp = np.dot(V,tVp[:current_rank,:])
  Vp = np.vstack((Vp, tVp[current_rank:tVp.shape[0], :]))
  
  if force_orth:
    UQ,UR = lin.qr(Up,mode='economic')
    VQ,VR = lin.qr(Vp,mode='economic')
    tUp,tSp,tVp = lin.svd( np.dot(np.dot(UR,Sp),VR.T));
    tSp = np.diag(tSp)
    Up = np.dot(UQ,tUp)
    Vp = np.dot(VQ,tVp)
    Sp = tSp;

  Up1 = Vp;
  Vp1 = Up;
    
  return Up1,Sp,Vp1
开发者ID:burakbayramli,项目名称:classnotes,代码行数:35,代码来源:isvd.py


示例8: fastica_defl

def fastica_defl(X, nIC=None, guess=None,
             nonlinfn = pow3nonlin,
             termtol = 5e-7, maxiters = 2e3):
    nPC, siglen = X.shape
    nIC = nIC or nPC-1
    guess = guess or randn(nPC,nIC)

    if _orth_loaded:
        guess = orth(guess)

    B = zeros(guess.shape, np.float64)

    errvec = []
    icc = 0
    while icc < nIC:
        w = randn(nPC,1) - 0.5
        w -= dot(dot(B, transp(B)), w)
        w /= norm(w)

        wprev = zeros(w.shape)
        for i in xrange(long(maxiters) +1):
            w -= dot(dot(B, transp(B)), w)
            w /= norm(w)
            #wprev = w.copy()
            if (norm(w-wprev) < termtol) or (norm(w + wprev) < termtol):
                B[:,icc]  = transp(w)
                icc += 1
                break
            wprev = w.copy()
    return B.real, errvec
开发者ID:abrazhe,项目名称:image-funcut,代码行数:30,代码来源:pica.py


示例9: bench_lobpcg_mikota

def bench_lobpcg_mikota():
    print()
    print('                 lobpcg benchmark using mikota pairs')
    print('==============================================================')
    print('      shape      | blocksize |    operation   |   time   ')
    print('                                              | (seconds)')
    print('--------------------------------------------------------------')
    fmt = ' %15s |   %3d     |     %6s     | %6.2f '

    m = 10
    for n in 128, 256, 512, 1024, 2048:
        shape = (n, n)
        A, B = _mikota_pair(n)
        desired_evs = np.square(np.arange(1, m+1))

        tt = time.clock()
        X = rand(n, m)
        X = orth(X)
        LorU, lower = cho_factor(A, lower=0, overwrite_a=0)
        M = LinearOperator(shape,
                matvec=partial(_precond, LorU, lower),
                matmat=partial(_precond, LorU, lower))
        eigs, vecs = lobpcg(A, X, B, M, tol=1e-4, maxiter=40)
        eigs = sorted(eigs)
        elapsed = time.clock() - tt
        assert_allclose(eigs, desired_evs)
        print(fmt % (shape, m, 'lobpcg', elapsed))

        tt = time.clock()
        w = eigh(A, B, eigvals_only=True, eigvals=(0, m-1))
        elapsed = time.clock() - tt
        assert_allclose(w, desired_evs)
        print(fmt % (shape, m, 'eigh', elapsed))
开发者ID:ymarfoq,项目名称:outilACVDesagregation,代码行数:33,代码来源:bench_lobpcg.py


示例10: _create_SDP

    def _create_SDP(self):
        """ Creates the SDP knockoff of X"""
 
        # Check for rank deficiency (will add later).
 
        # SVD and come up with perpendicular matrix
        U, d, V = nplin.svd(self.X,full_matrices=True) 
        d[d<0] = 0
        U_perp = U[:,self.p:(2*self.p)]
        if self.randomize:
            U_perp = np.dot(U_perp,splin.orth(npran.randn(self.p,self.p)))
 
        # Compute the Gram matrix and its (pseudo)inverse.
        G     = np.dot(V.T * d**2 ,V)
        G_inv = np.dot(V.T * d**-2,V)
 
        # Optimize the parameter s of Equation 1.3 using SDP.
        self.s = solve_sdp(G)
        self.s[s <= self.zerotol] = 0
 
        # Construct the knockoff according to Equation 1.4:
        C_U,C_d,C_V = nplin.svd(2*np.diag(s) - (self.s * G_inv.T).T * self.s)
        C_d[C_d < 0] = 0
        X_ko = self.X - np.dot(self.X,G_inv*s) + np.dot(U_perp*np.sqrt(C_d),C_V)
        self.X_lrg = np.concatenate((self.X,X_ko), axis=1)
开发者ID:ajmaurer,项目名称:Chicago-Course-Work,代码行数:25,代码来源:knockoffGLM.py


示例11: random_walk

def random_walk(G, initial_prob, subspace_dim=3, walk_steps=3):
    assert type(initial_prob) == np.ndarray, "Initial probability distribution is not a numpy array"

    # Transform the adjacent matrix to a laplacian matrix P
    P = adj_to_laplacian(G)

    prob_matrix = np.zeros((G.shape[0], subspace_dim))
    prob_matrix[:, 0] = initial_prob
    for i in range(1, subspace_dim):
        prob_matrix[:, i] = np.dot(prob_matrix[:, i - 1], P)

    orth_prob_matrix = splin.orth(prob_matrix)

    for i in range(walk_steps):
        temp = np.dot(orth_prob_matrix.T, P)
        orth_prob_matrix = splin.orth(temp.T)
    return orth_prob_matrix
开发者ID:BB90,项目名称:CommunityDetectionCodes,代码行数:17,代码来源:lemon.py


示例12: calc_subspace_proj_error

def calc_subspace_proj_error(U, U_hat, ortho=False):
    """Calculate the normalized projection error between two orthogonal subspaces.
    Keyword arguments:
    U: ground truth subspace
    U_hat: estimated subspace
    """
    if not ortho:
        U = splinalg.orth(U)
        U_hat = splinalg.orth(U_hat)

    I = np.identity(U.shape[0])
    top = np.linalg.norm((I - U_hat @ U_hat.T) @ U, ord="fro")
    bottom = np.linalg.norm(U, ord="fro")

    error = float(top) / float(bottom)

    return error
开发者ID:hasselg,项目名称:pysubtracking,代码行数:17,代码来源:error_tools.py


示例13: condex

def condex(n, k=4, theta=100):
    """
    CONDEX   `Counterexamples' to matrix condition number estimators.
         CONDEX(N, K, THETA) is a `counterexample' matrix to a condition
         estimator.  It has order N and scalar parameter THETA (default 100).
         If N is not equal to the `natural' size of the matrix then
         the matrix is padded out with an identity matrix to order N.
         The matrix, its natural size, and the estimator to which it applies
         are specified by K (default K = 4) as follows:
             K = 1:   4-by-4,     LINPACK (RCOND)
             K = 2:   3-by-3,     LINPACK (RCOND)
             K = 3:   arbitrary,  LINPACK (RCOND) (independent of THETA)
             K = 4:   N >= 4,     SONEST (Higham 1988)
         (Note that in practice the K = 4 matrix is not usually a
          counterexample because of the rounding errors in forming it.)

         References:
         A.K. Cline and R.K. Rew, A set of counter-examples to three
            condition number estimators, SIAM J. Sci. Stat. Comput.,
            4 (1983), pp. 602-611.
         N.J. Higham, FORTRAN codes for estimating the one-norm of a real or
            complex matrix, with applications to condition estimation
            (Algorithm 674), ACM Trans. Math. Soft., 14 (1988), pp. 381-396.
    """

    if k == 1:  # Cline and Rew (1983), Example B.

        a = np.array([[1, -1, -2 * theta, 0], [0, 1, theta, -theta], [0, 1, 1 + theta, -(theta + 1)], [0, 0, 0, theta]])

    elif k == 2:  # Cline and Rew (1983), Example C.

        a = np.array([[1, 1 - 2 / theta ** 2, -2], [0, 1 / theta, -1 / theta], [0, 0, 1]])

    elif k == 3:  # Cline and Rew (1983), Example D.

        a = rogues.triw(n, -1).T
        a[-1, -1] = -1

    elif k == 4:  # Higham (1988), p. 390.

        x = np.ones((n, 3))  # First col is e
        x[1:n, 1] = np.zeros(n - 1)  # Second col is e(1)

        # Third col is special vector b in SONEST
        x[:, 2] = ((-1) ** np.arange(n)) * (1 + np.arange(n) / (n - 1))

        # Q*Q' is now the orthogonal projector onto span(e(1),e,b)).
        q = sl.orth(x)
        p = np.eye(n) - np.asmatrix(q) * np.asmatrix(q.T)
        a = np.eye(n) + theta * p

    # Pad out with identity as necessary.
    m, m = a.shape
    if m < n:
        for i in range(n - 1, m, -1):
            a[i, i] = 1

    return a
开发者ID:fabianp,项目名称:rogues,代码行数:58,代码来源:condex.py


示例14: __init__

 def __init__(self, *args, **kwargs):
     MultiModalFunction.__init__(self, *args, **kwargs)
     self._opts = (rand((self.numPeaks, self.xdim)) - 0.5) * 9.8
     self._opts[0] = (rand(self.xdim) - 0.5) * 8
     alphas = [power(self.maxCond, 2 * i / float(self.numPeaks - 2)) for i in range(self.numPeaks - 1)]
     shuffle(alphas)
     self._covs = [generateDiags(alpha, self.xdim, shuffled=True) / power(alpha, 0.25) for alpha in [self.optCond] + alphas]
     self._R = orth(rand(self.xdim, self.xdim))
     self._ws = [10] + [1.1 + 8 * i / float(self.numPeaks - 2) for i in range(self.numPeaks - 1)]
开发者ID:adreyer,项目名称:pybrain,代码行数:9,代码来源:multimodal.py


示例15: fit

    def fit(self, data):
        """
        Fit independent components using an iterative fixed-point algorithm

        Parameters
        ----------
        data: RDD of (tuple, array) pairs, or RowMatrix
            Data to estimate independent components from

        Returns
        ----------
        self : returns an instance of self.
        """

        if type(data) is not RowMatrix:
            data = RowMatrix(data)

        # reduce dimensionality
        svd = SVD(k=self.k, method=self.svdmethod).calc(data)

        # whiten data
        whtmat = real(dot(inv(diag(svd.s/sqrt(data.nrows))), svd.v))
        unwhtmat = real(dot(transpose(svd.v), diag(svd.s/sqrt(data.nrows))))
        wht = data.times(whtmat.T)

        # do multiple independent component extraction
        if self.seed != 0:
            random.seed(self.seed)
        b = orth(random.randn(self.k, self.c))
        b_old = zeros((self.k, self.c))
        iter = 0
        minabscos = 0
        errvec = zeros(self.maxiter)

        while (iter < self.maxiter) & ((1 - minabscos) > self.tol):
            iter += 1
            # update rule for pow3 non-linearity (TODO: add others)
            b = wht.rows().map(lambda x: outer(x, dot(x, b) ** 3)).sum() / wht.nrows - 3 * b
            # make orthogonal
            b = dot(b, real(sqrtm(inv(dot(transpose(b), b)))))
            # evaluate error
            minabscos = min(abs(diag(dot(transpose(b), b_old))))
            # store results
            b_old = b
            errvec[iter-1] = (1 - minabscos)

        # get un-mixing matrix
        w = dot(transpose(b), whtmat)

        # get components
        sigs = data.times(w.T).rdd

        self.w = w
        self.sigs = sigs

        return self
开发者ID:mathisonian,项目名称:thunder,代码行数:56,代码来源:ica.py


示例16: rvs

 def rvs(self, n=1):
     """
     It ignores the dimension ``n``.
     """
     D = self.D
     d = self.d
     k = self.k
     W_sub = orth(randn(D - k, d - k))
     return np.vstack([np.hstack([W_sub, np.zeros((D - k, k))]),
                     np.hstack([np.zeros((k, d - k)), np.eye(k)])]).flatten()
开发者ID:PredictiveScienceLab,项目名称:py-aspgp,代码行数:10,代码来源:_stiefel_prior.py


示例17: init

def init(X, init, ncomp):
    N, K = X[0].shape[0], len(X)
    if init == 'random':
        A = orth(rand(N, ncomp))
    elif init == 'nvecs':
        S = zeros(N, N)
        for k in range(K):
            S = S + X[k] + X[k].T
        _, A = eigsh(S, ncomp)
    return A
开发者ID:52nlp,项目名称:scikit-tensor,代码行数:10,代码来源:indscal.py


示例18: __init__

 def __init__(self, basef, rotMat = None):
     """ by default the rotation matrix is random. """
     FunctionEnvironment.__init__(self, basef.xdim, basef.xopt)
     if rotMat == None:
         # make a random orthogonal rotation matrix
         self.M = orth(rand(basef.xdim, basef.xdim))
     else:
         self.M = rotMat
     if isinstance(basef, FunctionEnvironment):
         self.desiredValue = basef.desiredValue
     self.xopt = dot(inv(self.M), self.xopt)
     self.f = lambda x: basef.f(dot(x,self.M))
开发者ID:HKou,项目名称:pybrain,代码行数:12,代码来源:transformations.py


示例19: svd3

def svd3(data, k, meanSubtract=1):

    n = data.count()
    d = len(data.first())

    if meanSubtract == 1:
        data = data.map(lambda x: x - mean(x))

    def outerProd(x):
        return outer(x, x)

    def outerSum(iterator):
        yield sum(outer(x, x) for x in iterator)

    def outerSum2(iterator, other1, other2):
        yield sum(outer(x, dot(dot(x, other1), other2)) for x in iterator)

    C = random.rand(k, d)
    iterNum = 0
    iterMax = 10
    error = 100
    tol = 0.000001

    while (iterNum < iterMax) & (error > tol):
        Cold = C
        Cinv = dot(transpose(C), inv(dot(C, transpose(C))))
        preMult1 = data.context.broadcast(Cinv)
        # X = data.times(preMult1.value)
        # XX' = X.cov()
        XX = data.map(lambda x: outerProd(dot(x, preMult1.value))).reduce(lambda x, y: x + y)
        XXinv = inv(XX)
        preMult2 = data.context.broadcast(dot(Cinv, XXinv))
        # data1 = data.times(dot(Cinv, inv(XX'))
        # C = data.times(data1)
        C = data.map(lambda x: outer(x, dot(x, preMult2.value))).reduce(lambda x, y: x + y)
        C = transpose(C)

        error = sum(sum((C-Cold) ** 2))
        iterNum += 1

    C = transpose(orth(transpose(C)))
    # cov = data.times(transpose(C)).cov()
    cov = data.map(lambda x: dot(x, transpose(C))).mapPartitions(outerSum).reduce(
        lambda x, y: x + y) / n
    w, v = eig(cov)
    w = real(w)
    v = real(v)
    inds = argsort(w)[::-1]
    latent = w[inds[0:k]]
    comps = dot(transpose(v[:, inds[0:k]]), C)
    scores = data.map(lambda x: inner(x, comps))

    return comps, latent, scores
开发者ID:ChicoQ,项目名称:thunder,代码行数:53,代码来源:util.py


示例20: time_mikota

 def time_mikota(self, n, solver):
     m = 10
     if solver == 'lobpcg':
         X = rand(n, m)
         X = orth(X)
         LorU, lower = cho_factor(self.A, lower=0, overwrite_a=0)
         M = LinearOperator(self.shape,
                 matvec=partial(_precond, LorU, lower),
                 matmat=partial(_precond, LorU, lower))
         eigs, vecs = lobpcg(self.A, X, self.B, M, tol=1e-4, maxiter=40)
     else:
         w = eigh(self.A, self.B, eigvals_only=True, eigvals=(0, m-1))
开发者ID:sbellem,项目名称:scipy,代码行数:12,代码来源:sparse_linalg_lobpcg.py



注:本文中的scipy.linalg.orth函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python linalg.pascal函数代码示例发布时间:2022-05-27
下一篇:
Python linalg.norm函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap