• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python misc.lena函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中scipy.misc.lena函数的典型用法代码示例。如果您正苦于以下问题:Python lena函数的具体用法?Python lena怎么用?Python lena使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了lena函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: get_weight_lena

def get_weight_lena(sigma=50000.):
    """
    Calculates the weight matrix of a small patch of lena's image

    Parameters
    ----------
    sigma: int

    Returns
    -------
    """
    lena = misc.lena()

    lena = lena[:30:, :30]
    patches = []

    for i in range(lena.shape[0] - 7):
        for j in range(lena.shape[1] - 7):
            patches.append(lena[i:i + 6, j:j + 6].flatten())
    dist = np.exp(- euclidean_distances(patches, patches) ** 2 / sigma ** 2)
    thres = dist.copy()
    thres.sort(axis=1)
    thres = thres[:, ::-1][:, 6]

    dist[dist < thres] = 0
    return dist
开发者ID:NelleV,项目名称:COPRE,代码行数:26,代码来源:data.py


示例2: run

 def run(self, img=misc.lena(), increase=True):
     img = misc.imread('/Users/Daniel/Desktop/p0.jpg')
     img_blurred = self.__blur(img)
     img = self.__divide(img, img_blurred)
     if False:
         img = exposure.adjust_sigmoid(img)
     misc.imsave('/Users/Daniel/Desktop/p1.jpg', img)
开发者ID:idf,项目名称:scanify,代码行数:7,代码来源:core.py


示例3: main

def main():
    args = parse_args()
    syris.init(device_index=0)
    m = 20

    if args.input == 'grid':
        image = make_grid(args.n, m * q.m).thickness.get()
    elif args.input == 'lena':
        from scipy.misc import lena
        image = lena().astype(cfg.PRECISION.np_float)
        if args.n != image.shape[0]:
            image = gutil.get_host(ip.rescale(image, (args.n, args.n)))

    n = image.shape[0]
    crop_n = n - 2 * m - 2
    y, x = np.mgrid[-n / 2:n / 2, -n / 2:n / 2]
    # Compute a such that the disk diameter is exactly the period when distance from the middle is n
    # / 2
    a = m / (2 * (crop_n / 2.) ** 2)
    radii = (a * np.sqrt(x ** 2 + y ** 2) ** 2 + 1e-3).astype(cfg.PRECISION.np_float)
    x_param = radii
    y_param = radii

    result = ip.varconvolve_disk(image, (y_param, x_param)).get()
    result = ip.crop(result, (m - 1, m - 1, crop_n, crop_n)).get()
    radii = ip.crop(radii, (m - 1, m - 1, crop_n, crop_n)).get()
    image = ip.crop(image, (m - 1, m - 1, crop_n, crop_n)).get()

    if args.output:
        save_image(args.output, result)

    show(image, title='Original Image')
    show(2 * radii, title='Blurring Disk Diameters')
    show(result, title='Blurred Image')
    plt.show()
开发者ID:ufo-kit,项目名称:syris,代码行数:35,代码来源:varconvolution.py


示例4: setUp

    def setUp(self):
        im = lena()
        self.lena_offset = np.array((256, 256))
        s = hs.signals.Image(np.zeros((10, 100, 100)))
        self.scales = np.array((0.1, 0.3))
        self.offsets = np.array((-2, -3))
        izlp = []
        for ax, offset, scale in zip(
                s.axes_manager.signal_axes, self.offsets, self.scales):
            ax.scale = scale
            ax.offset = offset
            izlp.append(ax.value2index(0))
        self.izlp = izlp
        self.ishifts = np.array([(0, 0), (4, 2), (1, 3), (-2, 2), (5, -2),
                                 (2, 2), (5, 6), (-9, -9), (-9, -9), (-6, -9)])
        self.new_offsets = self.offsets - self.ishifts.min(0) * self.scales
        zlp_pos = self.ishifts + self.izlp
        for i in xrange(10):
            slices = self.lena_offset - zlp_pos[i, ...]
            s.data[i, ...] = im[slices[0]:slices[0] + 100,
                                slices[1]:slices[1] + 100]
        self.spectrum = s

        # How image should be after successfull alignment
        smin = self.ishifts.min(0)
        smax = self.ishifts.max(0)
        offsets = self.lena_offset + self.offsets / self.scales - smin
        size = np.array((100, 100)) - (smax - smin)
        self.aligned = im[offsets[0]:offsets[0] + size[0],
                          offsets[1]:offsets[1] + size[1]]
开发者ID:jerevon,项目名称:hyperspy,代码行数:30,代码来源:test_2D_tools.py


示例5: _plot_default

    def _plot_default(self):
        # Create a GridContainer to hold all of our plots: 2 rows, 4 columns:
        container = GridContainer(fill_padding=True,
                                  bgcolor="lightgray", use_backbuffer=True,
                                  shape=(2, 4))

        arrangements = [('top left', 'h'),
                        ('top right', 'h'),
                        ('top left', 'v'),
                        ('top right', 'v'),
                        ('bottom left', 'h'),
                        ('bottom right', 'h'),
                        ('bottom left', 'v'),
                        ('bottom right', 'v')]
        orientation_name = {'h': 'horizontal', 'v': 'vertical'}

        pd = ArrayPlotData(image=lena())
        # Plot some bessel functions and add the plots to our container
        for origin, orientation in arrangements:
            plot = Plot(pd, default_origin=origin, orientation=orientation)
            plot.img_plot('image')

            # Attach some tools to the plot
            plot.tools.append(PanTool(plot))
            zoom = ZoomTool(plot, tool_mode="box", always_on=False)
            plot.overlays.append(zoom)

            title = '{0}, {1}'
            plot.title = title.format(orientation_name[orientation],
                                      origin.replace(' ', '-'))

            # Add to the grid container
            container.add(plot)

        return container
开发者ID:binaryannamolly,项目名称:chaco,代码行数:35,代码来源:image_plot_origin_and_orientation.py


示例6: IST

def IST():
    from scipy.misc import lena
    #from numpy.random import random
    seed(42)

    x = lena()

    xx = x + np.random.random(x.shape) * 255 / 10
    xx, ys = ISTreal(xx, p=1.0)
    xx = idwt2_full(xx)


    a = np.random.random(x.shape) * 255 / 10
    error = abs(xx - x)

    print mean(a)
    print mean(error)

    imshow(error)
    show()

    subplot(121)
    imshow(ys, cmap='gray')
    subplot(122)
    imshow(xx, cmap='gray')
    savefig('stackexchange.png', dpi=300)
    show()
开发者ID:stsievert,项目名称:side-projects,代码行数:27,代码来源:IST.py


示例7: initTexture

    def initTexture(self):
        """
        init the texture - this has to happen after an OpenGL context
        has been created
        """

        # make the OpenGL context associated with this canvas the current one
        #self.SetCurrent()

        data = np.uint8(np.flipud(lena()))
        w,h = data.shape
        # generate a texture id, make it current
        self.texture = gl.glGenTextures(1)
        gl.glBindTexture(gl.GL_TEXTURE_2D,self.texture)

        # texture mode and parameters controlling wrapping and scaling
        gl.glTexEnvf( gl.GL_TEXTURE_ENV, gl.GL_TEXTURE_ENV_MODE, gl.GL_MODULATE )
        gl.glTexParameterf( gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_S, gl.GL_REPEAT )
        gl.glTexParameterf( gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_T, gl.GL_REPEAT )
        gl.glTexParameterf( gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MAG_FILTER, gl.GL_LINEAR )
        gl.glTexParameterf( gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MIN_FILTER, gl.GL_LINEAR )


        # map the image data to the texture. note that if the input
        # type is GL_FLOAT, the values must be in the range [0..1]
        gl.glTexImage2D(gl.GL_TEXTURE_2D,0,gl.GL_RGB,w,h,0,
            gl.GL_LUMINANCE,gl.GL_UNSIGNED_BYTE,data)
开发者ID:InfiniteSearchSpace,项目名称:GameOfLife,代码行数:27,代码来源:texTest.py


示例8: test_cercle

def test_cercle():
    im = lena()
    roi = roi_quad(im.shape,250,250,400)
    im = np.multiply(roi,im)
    
    plt.imshow(im)
    plt.show()
开发者ID:TheDudesGhost,项目名称:Tracking,代码行数:7,代码来源:quad.py


示例9: get_image

def get_image():
    # Build Image
    try:
        filename = sys.argv[1]
        image = ndimage.imread(filename, flatten=True).astype(np.float32)
    except IndexError:
        image = misc.lena().astype(np.float32)
    return image
开发者ID:AngelBerihuete,项目名称:numbapro-examples,代码行数:8,代码来源:convolve.py


示例10: pytest_generate_tests

def pytest_generate_tests(metafunc):
    """
    Generates a set of test for the registration methods.
    """

    image = misc.lena()
    image = nd.zoom(image, 0.50)

    if metafunc.function is test_shift:

        for displacement in np.arange(-10.,10.):

            p = np.array([displacement, displacement])

            template = warp(
                image,
                p,
                model.Shift,
                sampler.Spline
                )

            metafunc.addcall(
                id='dx={}, dy={}'.format(
                    p[0],
                    p[1]
                    ),
                funcargs=dict(
                    image=image,
                    template=template,
                    p=p
                    )
                )

    if metafunc.function is test_affine:

        # test the displacement component
        for displacement in np.arange(-10.,10.):

            p = np.array([0., 0., 0., 0., displacement, displacement])

            template = warp(
                image,
                p,
                model.Affine,
                sampler.Spline
                )

            metafunc.addcall(
                    id='dx={}, dy={}'.format(
                        p[4],
                        p[5]
                        ),
                    funcargs=dict(
                        image=image,
                        template=template,
                        p=p
                        )
                    )
开发者ID:pradal,项目名称:python-register,代码行数:58,代码来源:test_register.py


示例11: main

def main():
    img = lena()

    frames, desc = imagesift.get_sift_keypoints(img)

    out = imagesift.draw_sift_frames(img, frames)

    cv2.imshow('sift image', out)
    cv2.waitKey(0)
开发者ID:TakaomiHasegawa,项目名称:jsk_recognition,代码行数:9,代码来源:sift_keypoints.py


示例12: setUp

    def setUp( self ):
        import numpy as np
        self.np = np
        from scipy.misc import lena
        self.lena = lena()

        self.raw = np.zeros((1,512,512,1,1))
        self.raw[0,:,:,0,0] = self.lena
        self.source = ArraySource( self.raw )
开发者ID:lcroitor,项目名称:volumeeditor,代码行数:9,代码来源:datasources.py


示例13: __init__

 def __init__(self):
     iris         = datasets.load_iris()
     self._x_iris = iris.data
     self._y_iris = iris.target
     try:
        self._lena = sp.lena()
     except AttributeError:
        from scipy import misc
        self._lena = misc.lena()
开发者ID:haisland0909,项目名称:python_practice,代码行数:9,代码来源:unsupervisedlearningsample.py


示例14: main

def main():
    print "Loading Lena image..."
    # img_size = 50, 50
    # orig_img = misc.lena()[160:160+img_size[0], 160:160+img_size[1]]

    orig_img = misc.lena()

    print "Image dtype: %s" % orig_img.dtype
    print "Image size: %6d" % orig_img.size
    print "Image shape: %3dx%3d" % (orig_img.shape[0], orig_img.shape[1])
    print "Max value %3d at pixel %6d" % (orig_img.max(), orig_img.argmax())
    print "Min value %3d at pixel %6d" % (orig_img.min(), orig_img.argmin())
    print "Variance: %1.5f" % orig_img.var()
    print "Standard deviation: %1.5f" % orig_img.std()

    misc.imsave("orig.png", orig_img)

    # Generate additive white Gaussian noise (AWGN)
    print "Generating noisy image..."

    if len(sys.argv) == 2:
        # Use sigma specified by the user
        user_sigma = float(sys.argv[1])
        noise = get_noise(noise_size=orig_img.size, noise_sigma=user_sigma)
    else:
        # Use default sigma
        noise = get_noise(noise_size=orig_img.size)

    nois_img = get_noisy_img(orig_img, noise)
    misc.imsave("noisy.png", nois_img)

    # Normalize image, that is, translate values in image so its
    # distribution is comparable to a normal N(0, 1) (mean = 0.0,
    # standard deviation = 1.0). This way, parameters of the denoising
    # algorithm, like h and sigma, are independent of the values and
    # distribution of the image.
    print "Normalizing noisy image..."
    nois_img_mean = nois_img.mean()
    nois_img_std  = nois_img.std()

    normal_nois_img = nois_img - nois_img_mean
    if nois_img_std > 0.01: # Divide by std. dev. if it is not zero
        normal_nois_img /= nois_img_std

    # Test saving and loading a noisy image.
    print "Saving as TMP format..."
    save_to_tmp("noisy.tmp", normal_nois_img)

    print "Load from TMP format..."
    loaded_img = load_from_tmp("noisy.tmp")[0]

    # Check if saved and loaded image are quite similar (some small error
    # could be expected)
    if numpy.allclose(normal_nois_img, loaded_img):
        print "Saved and loaded images are equal"
    else:
        print "Saved and loaded images are NOT equal"
开发者ID:Garthof,项目名称:scriptlets,代码行数:57,代码来源:tmpformat.py


示例15: plot_lena_overlay

def plot_lena_overlay():
    plt.figure()
    logo = ScipyLogo((300, 300), 180)
    logo.plot_snake_curve()
    logo.plot_circle()
    img = lena()
    #mask = logo.get_mask(img.shape, 'upper left')
    #img[mask] = 255
    plt.imshow(img)
开发者ID:drnlm,项目名称:scikits.image,代码行数:9,代码来源:scipy_logo.py


示例16: gen_lena

def gen_lena():
    """
    Generate a (512, 512, 2) matrix where first layer is
    lena image. And the second layer is an array of 0s
    """
    from scipy.misc import lena 
    lena = np.atleast_3d(lena()).astype(np.float32)
    zeros = np.zeros_like(lena)
    feats = np.dstack([lena, zeros])
    return feats
开发者ID:0x0all,项目名称:algorithms,代码行数:10,代码来源:benchmarks.py


示例17: test_downsample

def test_downsample():
    """
    Tests register data down-sampling.
    """
    image = register.RegisterData(misc.lena())
    for factor in [1, 2, 4, 6, 8 ,10]:
        subSampled = image.downsample(factor)
        assert subSampled.data.shape[0] == image.data.shape[0] / factor
        assert subSampled.data.shape[1] == image.data.shape[1] / factor
        assert subSampled.coords.spacing == factor
开发者ID:pradal,项目名称:python-register,代码行数:10,代码来源:test_register_data.py


示例18: task5

def task5():
    img_mat = np.asarray(normalize_intensity(lena()))
    outputs = dict()
    for param in (0.1, 0.3, 0.8):
        outputs[param] = salt_and_pepper_noise(img_mat, param)
        file_name = 'noisy_{}.png'.format(str(param).replace('.', '_'))
        imsave(os.path.join(OUTPUT_DIR, file_name), outputs[param])

    pl.imshow(outputs[0.1], cmap=cm.Greys_r)
    pl.show()
开发者ID:mathiasose,项目名称:TDT4195,代码行数:10,代码来源:tasks.py


示例19: main

def main():
    print "Loading Lena image..."
    orig_img = misc.lena()[160:160+10, 160:160+10]

    print "Image dtype: %s" % orig_img.dtype
    print "Image size: %6d" % orig_img.size
    print "Image shape: %3dx%3d" % (orig_img.shape[0], orig_img.shape[1])
    print "Max value %3d at pixel %6d" % (orig_img.max(), orig_img.argmax())
    print "Min value %3d at pixel %6d" % (orig_img.min(), orig_img.argmin())
    print "Variance: %1.5f" % orig_img.var()
    print "Standard deviation: %1.5f" % orig_img.std()

    misc.imsave("orig.png", orig_img)

    print "Generating noisy image..."
    print "Noise standard deviation: %1.5f" % noise_sigma

    # Generate additive white Gaussian noise (AWGN) with specifed sigma
    normal_noise = np.random.normal(scale=noise_sigma, size=orig_img.size)
    normal_noise = normal_noise.reshape(orig_img.shape)

    nois_img = orig_img + normal_noise

    misc.imsave("noisy.png", nois_img)

    # Normalize image, that is, translate values in image so its distribution
    # is comparable to a normal N(0, 1) (mean = 0.0, standard deviation = 1.0).
    # This way, parameters of the denoising algorithm, like h and sigma, are
    # independent of the values and distribution of the image.
    print "Normalizing noisy image..."
    nois_img_mean = nois_img.mean()
    nois_img_std  = nois_img.std()

    normal_nois_img = np.empty(nois_img.shape, dtype=np.float32)

    for x in xrange(normal_nois_img.shape[0]):
        for y in xrange(normal_nois_img.shape[1]):
            normal_nois_val = nois_img[x, y] - nois_img_mean
            if nois_img_std != 0.000001: normal_nois_val /= nois_img_std
            normal_nois_img[x, y] = normal_nois_val

    print "Denoising image..."
    normal_rest_img = denoise2D(normal_nois_img, True)

    print "Denormalizing noisy image..."
    rest_img = np.empty(nois_img.shape, dtype=orig_img.dtype)

    for x in xrange(rest_img.shape[0]):
        for y in xrange(rest_img.shape[1]):
            rest_val = normal_rest_img[x, y] * nois_img_std
            rest_val += nois_img_mean
            rest_img[x, y] = rest_val

    print "Storing denoised image..."
    misc.imsave("denoised.png", rest_img)
开发者ID:Garthof,项目名称:scriptlets,代码行数:55,代码来源:naivenml.py


示例20: test_test_lena_npy_array

    def test_test_lena_npy_array():

        arr_in = lena()[::32, ::32].astype(DTYPE)

        idx = [[4, 2], [4, 2]]

        gt = np.array([1280.99987793, 992.0], dtype=DTYPE)

        arr_out = lpool(arr_in, plugin=plugin, plugin_kwargs=plugin_kwargs)
        gv = arr_out[idx]
        assert_allclose_round(gv, gt, rtol=RTOL, atol=ATOL)
开发者ID:npinto,项目名称:sthor,代码行数:11,代码来源:test_lpool.py



注:本文中的scipy.misc.lena函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python misc.logsumexp函数代码示例发布时间:2022-05-27
下一篇:
Python misc.imsave函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap