• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python ndimage.zoom函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中scipy.ndimage.zoom函数的典型用法代码示例。如果您正苦于以下问题:Python zoom函数的具体用法?Python zoom怎么用?Python zoom使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了zoom函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: Inversion

def Inversion(Qsca,Qabs,wavelength,diameter,nMin=1,nMax=3,kMin=0.001,kMax=1,scatteringPrecision=0.010,absorptionPrecision=0.010,spaceSize=120,interp=2):
  
  nRange = np.linspace(nMin,nMax,spaceSize)
  kRange = np.logspace(np.log10(kMin),np.log10(kMax),spaceSize)
  scaSpace = np.zeros((spaceSize,spaceSize))
  absSpace = np.zeros((spaceSize,spaceSize))

  for ni,n in enumerate(nRange):
    for ki,k in enumerate(kRange):
      _derp = fastMieQ(n+(1j*k),wavelength,diameter)
      scaSpace[ni][ki] = _derp[0]
      absSpace[ni][ki] = _derp[1]
  if interp is not None:
    nRange = zoom(nRange,interp)
    kRange = zoom(kRange,interp)
    scaSpace = zoom(scaSpace,interp)
    absSpace = zoom(absSpace,interp)
    
  scaSolutions = np.where(np.logical_and(Qsca*(1-scatteringPrecision)<scaSpace, scaSpace<Qsca*(1+scatteringPrecision)))
  absSolutions = np.where(np.logical_and(Qabs*(1-absorptionPrecision)<absSpace, absSpace<Qabs*(1+absorptionPrecision)))

  validScattering = nRange[scaSolutions[0]]+1j*kRange[scaSolutions[1]]
  validAbsorption = nRange[absSolutions[0]]+1j*kRange[absSolutions[1]]
  
  solution = np.intersect1d(validScattering,validAbsorption)
#  errors = [error()]

  return solution
开发者ID:dalerxli,项目名称:PyMieScatt,代码行数:28,代码来源:Inverse.py


示例2: imageUp

def imageUp(img, order=1):
    """Upsample input image by a factor of 2.

    Parameters
    ----------
    img : ndarray
        Image array. It can be a 2D or 3D array. If it is a 3D array,
        the smoothing is applied independently to each channel.

    order : integer, optional
        Interpolation order. Defaults to 1

    Returns :
    imgUp : ndarray
        Upsampled image of size (2*H, 2*W, D) where (H, W, D) is the
        width, height and depth of the input image
    """
    
    if img.ndim == 2:
        imgZoomed = np.zeros([2*img.shape[0], 2*img.shape[1]], dtype=img.dtype)
        nd.zoom(img, 2.0, output=imgZoomed, order=order, mode='reflect')
        return imgZoomed

    else:

        zoomList = list()
        for d in range(img.shape[2]):

            imgZoomed = np.zeros([2*img.shape[0], 2*img.shape[1]], dtype=img.dtype)
            nd.zoom(img[...,d], 2.0, output=imgZoomed, order=order, mode='reflect')

            zoomList.append(imgZoomed)

        # recombine channels and return
        return np.concatenate([p[...,np.newaxis] for p in zoomList], axis=2)
开发者ID:caomw,项目名称:optical-flow-filter,代码行数:35,代码来源:misc.py


示例3: Inversion_SD

def Inversion_SD(Bsca,Babs,wavelength,dp,ndp,nMin=1,nMax=3,kMin=0,kMax=1,scatteringPrecision=0.001,absorptionPrecision=0.001,spaceSize=40,interp=2):
  dp = coerceDType(dp)
  ndp = coerceDType(ndp)

  nRange = np.linspace(nMin,nMax,spaceSize)
  kRange = np.linspace(kMin,kMax,spaceSize)
  scaSpace = np.zeros((spaceSize,spaceSize))
  absSpace = np.zeros((spaceSize,spaceSize))

  for ni,n in enumerate(nRange):
    for ki,k in enumerate(kRange):
      _derp = fastMie_SD(n+(1j*k),wavelength,dp,ndp)
      scaSpace[ni][ki] = _derp[0]
      absSpace[ni][ki] = _derp[1]
  if interp is not None:
    nRange = zoom(nRange,interp)
    kRange = zoom(kRange,interp)
    scaSpace = zoom(scaSpace,interp)
    absSpace = zoom(absSpace,interp)

  scaSolutions = np.where(np.logical_and(Bsca*(1-scatteringPrecision)<scaSpace, scaSpace<Bsca*(1+scatteringPrecision)))
  absSolutions = np.where(np.logical_and(Babs*(1-absorptionPrecision)<absSpace, absSpace<Babs*(1+absorptionPrecision)))

  validScattering = nRange[scaSolutions[0]]+1j*kRange[scaSolutions[1]]
  validAbsorption = nRange[absSolutions[0]]+1j*kRange[absSolutions[1]]

  return np.intersect1d(validScattering,validAbsorption)
开发者ID:dalerxli,项目名称:PyMieScatt,代码行数:27,代码来源:Inverse.py


示例4: deepdream

def deepdream(net, base_img, iter_n=10, octave_n=4, octave_scale=1.4, end='inception_4c/output', clip=True, **step_params):
    # prepare base images for all octaves
    octaves = [preprocess(net, base_img)]
    for i in range(octave_n - 1):
        octaves.append(
            nd.zoom(octaves[-1], (1, 1.0 / octave_scale, 1.0 / octave_scale), order=1))

    src = net.blobs['data']
    # allocate image for network-produced details
    detail = np.zeros_like(octaves[-1])
    for octave, octave_base in enumerate(octaves[::-1]):
        h, w = octave_base.shape[-2:]
        if octave > 0:
            # upscale details from the previous octave
            h1, w1 = detail.shape[-2:]
            detail = nd.zoom(detail, (1, 1.0 * h / h1, 1.0 * w / w1), order=1)

        src.reshape(1, 3, h, w)  # resize the network's input image size
        src.data[0] = octave_base + detail
        print("octave %d %s" % (octave, end))
        for i in range(iter_n):
            make_step(net, end=end, clip=clip, **step_params)
            sys.stdout.write("%d " % i)
            sys.stdout.flush()
        print("")

        # extract details produced on the current octave
        detail = src.data[0] - octave_base
    # returning the resulting image
    return deprocess(net, src.data[0])
开发者ID:macpod,项目名称:DeepDreamVideo,代码行数:30,代码来源:2_dreaming_time.py


示例5: deepdream

def deepdream(
    net, base_img, iter_n=10, octave_n=4, octave_scale=1.4, end="inception_4c/output", clip=True, **step_params
):
    # prepare base images for all octaves
    octaves = [preprocess(net, base_img)]
    for i in xrange(octave_n - 1):
        octaves.append(nd.zoom(octaves[-1], (1, 1.0 / octave_scale, 1.0 / octave_scale), order=1))

    src = net.blobs["data"]
    detail = np.zeros_like(octaves[-1])  # allocate image for network-produced details
    for octave, octave_base in enumerate(octaves[::-1]):
        h, w = octave_base.shape[-2:]
        if octave > 0:
            # upscale details from the previous octave
            h1, w1 = detail.shape[-2:]
            detail = nd.zoom(detail, (1, 1.0 * h / h1, 1.0 * w / w1), order=1)

        src.reshape(1, 3, h, w)  # resize the network's input image size
        src.data[0] = octave_base + detail
        for i in xrange(iter_n):
            make_step(net, end=end, clip=clip, **step_params)

            # visualization
            vis = deprocess(net, src.data[0])
            if not clip:  # adjust image contrast if clipping is disabled
                vis = vis * (255.0 / np.percentile(vis, 99.98))
            showarray(vis)
            print octave, i, end, vis.shape
            clear_output(wait=True)

        # extract details produced on the current octave
        detail = src.data[0] - octave_base
    # returning the resulting image
    return deprocess(net, src.data[0])
开发者ID:IsakFalk,项目名称:deepdream,代码行数:34,代码来源:deepdream.py


示例6: compareData

def compareData(x1, y1, x2, y2, **kwargs):
    """
    """
    # First compare that there x-axis are same. else report warning.
    x1 = np.array(x1)
    x2 = np.array(x2)
    y1 = np.array(y1)
    y2 = np.array(y2)
    print("[INFO] Plotting")
    p1, = pylab.plot(x1, y1)
    p2, = pylab.plot(x2, y2)
    pylab.legend([p1, p2], ["MOOSE", "NEURON"])

    outfile = kwargs.get('outfile', None)
    if not outfile:
        pylab.show()
    else:
        mu.info("Saving figure to %s" % outfile)
        pylab.savefig(outfile)
    
    if len(y1) > len(y2): y1 = ndimage.zoom(y1, len(y1)/len(y2))
    else: y2 = ndimage.zoom(y2, len(y2)/len(y1))
    diff = y1 - y2
    linDiff = diff.sum()
    rms = np.zeros(len(diff))
    for i, d in enumerate(diff):
        rms[i] = d**2.0
    rms = rms.sum() ** 0.5
    print(" |- RMS diff is: {}".format(rms))
开发者ID:dilawar,项目名称:rallpacks,代码行数:29,代码来源:compare.py


示例7: overlay_velocities

    def overlay_velocities(self, ax):
        """Given an axes instance, overlay a quiver plot
        of Uf_ and Wf_.

        Uses interpolation (scipy.ndimage.zoom) to reduce
        number of quivers to readable number.

        Will only work sensibly if the thing plotted in ax
        has same shape as Uf_
        """
        zoom_factor = (0.5, 0.05)
        # TODO: proper x, z
        Z, X = np.indices(self.uf_.shape)

        # TODO: are the velocities going at the middle of their grid?
        # NB. these are not averages. ndi.zoom makes a spline and
        # then interpolates a value from this
        # TODO: gaussian filter first?
        # both are valid approaches
        Xr = ndi.zoom(X, zoom_factor)
        Zr = ndi.zoom(Z, zoom_factor)
        Uf_r = ndi.zoom(self.uf_, zoom_factor)
        Wf_r = ndi.zoom(self.wf_, zoom_factor)

        ax.quiver(Xr, Zr, Uf_r, Wf_r, scale=100)
开发者ID:XNShen,项目名称:lab_turbulence,代码行数:25,代码来源:plot.py


示例8: __init__

    def __init__(self, polmap, I0, ne, flip_ne=False):
        self.fn=polmap.fn[:8]
        I0=plt.imread(I0)
        self.I0s=np.sum(I0,2)
        I1=np.loadtxt(ne, delimiter=',')
        I1=I1-np.nan_to_num(I1).min()
        self.I1=np.nan_to_num(I1)
        self.pm=polmap
        #scale and flip to data
        B0=self.pm.B0
        scale=B0.shape[0]/self.I0s.shape[0]

        I0z=zoom(self.I0s, scale)
        crop=(I0z.shape[1]-B0.shape[1])//2
        if B0.shape[1]%2==0:
            I0zc=I0z[:,crop:-crop]
        elif B0.shape[1]%2==1:
            I0zc=I0z[:,crop:-crop-1]
        self.I0zcn=np.flipud(I0zc/I0zc.max())
        I1z=zoom(self.I1, scale)
        if B0.shape[1]%2==0:
            I1zc=I1z[:,crop:-crop]
        elif B0.shape[1]%2==1:
            I1zc=I1z[:,crop:-crop-1]
        self.I1zc=np.flipud(I1zc)
        if flip_ne is True:
            self.I1zc=np.flipud(self.I1zc)
            
        self.cmap='seismic'
开发者ID:jdhare,项目名称:magpie-analysis,代码行数:29,代码来源:magpie_data.py


示例9: deepdream

def deepdream(net, base_imarray, iter_n=50, octave_n=4, octave_scale=1.4, end='inception_4c/output', clip=True, **step_params):

	octaves = [preprocess(net, base_imarray)]

	for i in xrange(octave_n-1):
		octaves.append(nd.zoom(octaves[-1], (1, 1.0/octave_scale,1.0/octave_scale), order=1))

	src = net.blobs['data']
	detail = np.zeros_like(octaves[-1])

	for octave, octave_base in enumerate(octaves[::-1]):
		h, w = octave_base.shape[-2:]
		if octave > 0:
			h1, w1 = detail.shape[-2:]
			detail = nd.zoom(detail, (1, 1.0*h/h1,1.0*w/w1), order=1)

		src.reshape(1,3,h,w)
		src.data[0] = octave_base+detail

		for i in xrange(iter_n):
			make_step(net, end=end, clip=clip, **step_params)
			vis = deprocess(net, src.data[0])

			if not clip:
				vis = vis*(255.0/np.percentile(vis, 99.98))

			showarray(vis)

			print octave, i, end, vis.shape

			clear_output(wait=True)

		detail = src.data[0]-octave_base

	return deprocess(net, src.data[0])
开发者ID:aptxna,项目名称:my_deep_dream,代码行数:35,代码来源:deepdream.py


示例10: dream

def dream(model,
          base_img,
          octave_n=6,
          octave_scale=1.4,
          control=None,
          distance=objective_L2):
    octaves = [base_img]
    for i in range(octave_n - 1):
        octaves.append(
            nd.zoom(
                octaves[-1], (1, 1, 1.0 / octave_scale, 1.0 / octave_scale),
                order=1))

    detail = np.zeros_like(octaves[-1])
    for octave, octave_base in enumerate(octaves[::-1]):
        h, w = octave_base.shape[-2:]
        if octave > 0:
            h1, w1 = detail.shape[-2:]
            detail = nd.zoom(
                detail, (1, 1, 1.0 * h / h1, 1.0 * w / w1), order=1)

        input_oct = octave_base + detail
        print(input_oct.shape)
        out = make_step(input_oct, model, control, distance=distance)
        detail = out - octave_base
开发者ID:Raven013,项目名称:code-of-learn-deep-learning-with-pytorch,代码行数:25,代码来源:deepdream.py


示例11: deepdream

def deepdream(net, base_img, iter_n=10, octave_n=4, octave_scale=1.4, 
              end='inception_5b/pool_proj', jitter = 32,step_size=1.5):
    # prepare base images for all octaves
    octaves = [preprocess(net, base_img)]
    for i in xrange(octave_n-1):
        octaves.append(nd.zoom(octaves[-1], (1, 1.0/octave_scale,1.0/octave_scale), order=1))
    
    src = net.blobs['data']
    detail = np.zeros_like(octaves[-1]) # allocate image for network-produced details
    for octave, octave_base in enumerate(octaves[::-1]):
        h, w = octave_base.shape[-2:]
        if octave > 0:
            # upscale details from the previous octave
            h1, w1 = detail.shape[-2:]
            detail = nd.zoom(detail, (1, 1.0*h/h1,1.0*w/w1), order=1)

        src.reshape(1,3,h,w) # resize the network's input image size
        src.data[0] = octave_base+detail
        for i in xrange(iter_n):
            make_step(net, end=end,step_size=step_size,jitter=jitter)

        # extract details produced on the current octave
        detail = src.data[0]-octave_base
    # returning the resulting image
    return deprocess(net, src.data[0])
开发者ID:pavitrakumar78,项目名称:DeepDreamsGIF,代码行数:25,代码来源:try-layers.py


示例12: deepdream_stepped

def deepdream_stepped(net, base_img, iter_n=10, octave_n=4, octave_scale=1.4, end='inception_3b/5x5_reduce', start_sigma=2.5, end_sigma=.1, start_jitter=48., end_jitter=4., start_step_size=3.0, end_step_size=1.5, clip=True, **step_params):
	# prepare base images for all octaves
	octaves = [preprocess(net, base_img)]
	for i in xrange(octave_n-1):
		octaves.append(nd.zoom(octaves[-1], (1, 1.0/octave_scale,1.0/octave_scale), order=1))
	src = net.blobs['data']
	detail = np.zeros_like(octaves[-1]) # allocate image for network-produced details
	for octave, octave_base in enumerate(octaves[::-1]):
		h, w = octave_base.shape[-2:]
		if octave > 0:	# upscale details from the previous octave
			h1, w1 = detail.shape[-2:]
			detail = nd.zoom(detail, (1, 1.0*h/h1,1.0*w/w1), order=1)
		src.reshape(1,3,h,w) # resize the network's input image size
		src.data[0] = octave_base+detail

		for i in xrange(iter_n):	
			sigma = start_sigma + ((end_sigma - start_sigma) * i) / iter_n
			jitter = start_jitter + ((end_jitter - start_jitter) * i) / iter_n
			step_size = start_step_size + ((end_step_size - start_step_size) * i) / iter_n
            
			make_step(net, end=end, clip=clip, jitter=jitter, step_size=step_size, **step_params)
			#src.data[0] = blur(src.data[0], sigma)
		
		# extract details produced on the current octave
		detail = src.data[0]-octave_base
	#returning the resulting image
	return deprocess(net, src.data[0])
开发者ID:genekogan,项目名称:deepdream,代码行数:27,代码来源:deepdream.py


示例13: deepdream

    def deepdream(self, base_img, iter_n=10, octave_n=4, octave_scale=1.4, 
                              end='inception_4c/output'):

        # prepare base images for all octaves
        octaves = [preprocess(self.net, base_img)]
        for i in xrange(octave_n-1):
            octaves.append(nd.zoom(octaves[-1], (1, 1.0/octave_scale,1.0/octave_scale), order=1))
        
        source = self.net.blobs['data']  # original image
        detail = np.zeros_like(octaves[-1]) # allocate image for network-produced details

        for octave, octave_base in enumerate(octaves[::-1]):
            h, w = octave_base.shape[-2:]  # octave size
            if octave > 0:
                # upscale details from previous octave
                h1, w1 = detail.shape[-2:]
                detail = nd.zoom(detail, (1, 1.0*h/h1, 1.0*w/w1), order=1)

            source.reshape(1, 3, h, w) # resize the network's input image size
            source.data[0] = octave_base + detail

            for i in xrange(iter_n):
                self.make_step(end=end)
                
            # extract details produced on the current octave
            detail = source.data[0] - octave_base

        return deprocess(self.net, source.data[0])  # return final image
开发者ID:JoBergs,项目名称:psycam,代码行数:28,代码来源:psycam.py


示例14: deepdream

def deepdream(net, base_img, end, iter_n=10, octave_n=4, octave_scale=1.4, clip=True, **step_params):
    # prepare base images for all octaves
    octaves = [preprocess(net, base_img)]
    for i in xrange(octave_n-1):
        octaves.append(nd.zoom(octaves[-1], (1, 1.0/octave_scale,1.0/octave_scale), order=1))

    src = net.blobs['data']
    detail = np.zeros_like(octaves[-1]) # allocate image for network-produced details
    for octave, octave_base in enumerate(octaves[::-1]):
        h, w = octave_base.shape[-2:]
        if octave > 0:
            # upscale details from the previous octave
            h1, w1 = detail.shape[-2:]
            detail = nd.zoom(detail, (1, 1.0*h/h1,1.0*w/w1), order=1)

        src.reshape(1,3,h,w) # resize the network's input image size
        src.data[0] = octave_base+detail
        for i in xrange(iter_n):
            make_step(net, end, clip=clip, **step_params)

            # display step
            #vis = deprocess(net, src.data[0])
            #if not clip: # adjust image contrast if clipping is disabled
            #    vis = vis*(255.0/np.percentile(vis, 99.98))
            #ename = '-'.join(end.split('/'))
            #saveimage(vis, '{}-{}-{}'.format(octave, i))
            #print octave, i, end, vis.shape

        # extract details produced on the current octave
        detail = src.data[0]-octave_base
    # returning the resulting image
    return deprocess(net, src.data[0])
开发者ID:ZombiiKush,项目名称:DeepDream,代码行数:32,代码来源:deepdream.py


示例15: upsample_pyramid

    def upsample_pyramid(self, pyramid):

        target_shape = self.residual_hipass.shape

        result = []
        for level in pyramid:
            new_level = []
            for band in level:
                band_shape = band.shape
                if len(target_shape) > len(band_shape):
                    band_shape = (band_shape[0], band_shape[1], 1)

                zf = array(target_shape) / array(band_shape)

                band.shape = band_shape

                tmp = ones(target_shape)
                if any(zf != 1):
                    ndi.zoom(band, zf, tmp, order=1)
                    upsamped = tmp
                else:
                    upsamped = band

                new_level.append(upsamped)
            result.append(new_level)

        return result
开发者ID:davidcox,项目名称:steerable_pyramids,代码行数:27,代码来源:steerable_pyramid.py


示例16: show_downsize

def show_downsize():
	for im in gen_images(n=-1, crop=True):
		t_im = im['T1c']
		gt = im['gt']
		
		t_im = np.asarray(t_im, dtype='float32')
		gt = np.asarray(gt, dtype='float32')
		
		d_im = zoom(t_im, 0.5, order=3)
		d_gt = zoom(gt, 0.5, order=0)
		print 'New shape: ', d_im.shape
		
		slices1 = np.arange(0, d_im.shape[0], d_im.shape[0]/20)
		slices2 = np.arange(0, t_im.shape[0], t_im.shape[0]/20)
		
		for s1, s2 in zip(slices1, slices2):
			d_im_slice = d_im[s1]
			d_gt_slice = d_gt[s1]
			
			im_slice = t_im[s2]
			gt_slice = gt[s2]
			
			title0= 'Original'
			title1= 'Downsized'
			vis_ims(im0=im_slice, gt0=gt_slice, im1=d_im_slice, 
				gt1=d_gt_slice, title0=title0, title1=title1)
开发者ID:jhzhou1111,项目名称:CNNbasedMedicalSegmentation,代码行数:26,代码来源:show_images.py


示例17: deepdream

def deepdream(base_img, iter_n=5, octave_n=4, octave_scale=1.4, **step_params):
    # prepare base images for all octaves
    octaves = [preprocess(base_img)]
    for i in xrange(octave_n - 1):
        octaves.append(nd.zoom(octaves[-1], (1, 1.0 / octave_scale, 1.0 / octave_scale), order=1))

    detail = np.zeros_like(octaves[-1])  # allocate image for network-produced details
    for octave, octave_base in enumerate(octaves[::-1]):
        h, w = octave_base.shape[-2:]
        if octave > 0:
            h1, w1 = detail.shape[-2:]
            detail = nd.zoom(detail, (1, 1.0 * h / h1, 1.0 * w / w1), order=1)

        x = np.array((1, 3, h, w))  # resize the network's input image size
        x = octave_base + detail
        for i in xrange(iter_n):
            print h, w
            make_step(x.reshape(1, 3, h, w))
            # visualization
            vis = deprocess(x)
            # showarray(vis)
            # print octave, i, end, vis.shape
        # extract details produced on the current octave
        detail = x - octave_base
    # returning the resulting image
    return deprocess(x)
开发者ID:bordesf,项目名称:IFT6266,代码行数:26,代码来源:deepDream.py


示例18: plot_all_params

def plot_all_params(filen='obj_props', out_filen='ppv_grid', log_Z=False):
    """
    Read in the pickled tree parameter dictionary and plot the containing
    parameters.

    Parameters
    ----------
    filen : str
        File name of pickled reduced property dictionary.
    out_filen : str
        Basename of plots, the key of the object dictionary is appended to the
        filename.
    log_Z : bool
        Create plots with logarithmic Z axis
    """
    cmap = cm.RdYlBu_r
    obj_dict = pickle.load(open(filen + '.pickle', 'rb'))
    X = obj_dict['velo']
    Y = obj_dict['angle']
    X = ndimage.zoom(X, 3)
    Y = ndimage.zoom(Y, 3)
    W = ndimage.zoom(obj_dict['conflict_frac'], 3)
    obj_dict['reward'] = np.log10(obj_dict['new_kdar_assoc']) / obj_dict['conflict_frac']
    params = [(k, v) for k, v in obj_dict.iteritems()
              if k not in ['velo', 'angle']]
    clevels = [0.06, 0.12, 0.20, 0.30, 0.5]
    for key, Z in params:
        print ':: ', key
        fig, ax = plt.subplots(figsize=(4, 4.5))
        cax = fig.add_axes([0.15, 0.88, 0.8, 0.03])
        plt.subplots_adjust(top=0.85, left=0.15, right=0.95, bottom=0.125)
        if log_Z:
            Z = np.log10(Z)
            key += '_(log)'
        Z = ndimage.zoom(Z, 3)
        pc = ax.pcolor(X, Y, Z, cmap=cmap, vmin=Z.min(), vmax=Z.max())
        cb = plt.colorbar(pc, ax=ax, cax=cax, orientation='horizontal',
                          ticklocation='top')
        ax.plot([4], [0.065], 'ko', ms=10, markerfacecolor='none', markeredgewidth=2)
        # Contours for conflict frac
        cn = ax.contour(X, Y, W, levels=clevels,
                        colors='k', linewidth=2)
        plt.setp(cn.collections,
                 path_effects=[PathEffects.withStroke(linewidth=2,
                 foreground='w')])
        cl = ax.clabel(cn, fmt='%1.2f', inline=1, fontsize=10,
                       use_clabeltext=True)
        plt.setp(cl, path_effects=[PathEffects.withStroke(linewidth=2,
                 foreground='w')])
        # Labels
        ax.set_xlabel(r'$v \ \ [{\rm km \ s^{-1}}]$')
        ax.set_ylabel(r'$\theta \ \ [^{\circ}]$')
        # Limits
        ax.set_xlim([X.min(), X.max()])
        ax.set_ylim([Y.min(), Y.max()])
        # Save
        plt.savefig(out_filen + '_' + key + '.pdf')
        plt.savefig(out_filen + '_' + key + '.png', dpi=300)
        plt.close()
开发者ID:autocorr,项目名称:besl,代码行数:59,代码来源:ppv_group_plots.py


示例19: scaleImage

def scaleImage(path_img, dilated_img, depth, color_depth, scale=1):
                  
        final_vessel = ndimage.zoom(dilated_img, scale, order=0) 
        final_path = skeletonize_Image(255*ndimage.zoom(path_img, scale, order=0))/255# use nearest neighbour
        final_depth = final_path*ndimage.zoom(depth, scale, order=0)
        final_color_depth = ndimage.zoom(color_depth, scale, order=0)

        return final_path,final_vessel,final_depth, final_color_depth
开发者ID:JasmineLei,项目名称:Blood-Vessel-Flow-Visualisation,代码行数:8,代码来源:buildBG.py


示例20: __call__

    def __call__(self, locs, wfImage):
        """Align a set of localizations to a widefield image.
        
        Parameters
        ----------
        locs    : Pandas DataFrame
            The DataFrame containing the localizations. x- and y-column
            labels are specified in self.coordCols.
        wfImage : array of int or array of float 
            The widefield image to align the localizations to.
        
        Returns
        -------
        offsets : tuple of float
            The estimated offset between the localizations and widefield
            image. The first element is the offset in x and the second
            in y. These should be subtracted from the input localizations
            to align them to the widefield image.
            
        """
        upsampleFactor = self.upsampleFactor
        
        # Bin the localizations into a 2D histogram;
        # x corresponds to rows for histogram2d
        binsX = np.arange(0, upsampleFactor * wfImage.shape[0] + 1, 1) \
                                            * self.pixelSize / upsampleFactor
        binsY = np.arange(0, upsampleFactor * wfImage.shape[1] + 1, 1) \
                                            * self.pixelSize / upsampleFactor
        H, _, _ = np.histogram2d(locs[self.coordCols[0]],
                                 locs[self.coordCols[1]],
                                 bins = [binsX, binsY])
                           
        # Upsample and flip the image to align it to the histogram;
        # then compute the cross correlation
        crossCorr = fftconvolve(H,
                                zoom(np.transpose(wfImage)[::-1, ::-1], 
                                     upsampleFactor, order = 0),
                                mode = 'same')
        
        # Find the maximum of the cross correlation
        centerLoc = np.unravel_index(np.argmax(crossCorr), crossCorr.shape)

        # Find the center of the widefield image
        imgCorr = fftconvolve(zoom(np.transpose(wfImage), 
                                   upsampleFactor, order = 0),
                              zoom(np.transpose(wfImage)[::-1, ::-1], 
                                   upsampleFactor, order = 0),
                              mode = 'same')
        centerWF = np.unravel_index(np.argmax(imgCorr), imgCorr.shape)
                              
        # Find the shift between the images.
        # dx -> rows, dy -> cols because the image was transposed during
        # fftconvolve operation.
        dy = (centerLoc[1] - centerWF[1]) / upsampleFactor * self.pixelSize
        dx = (centerLoc[0] - centerWF[0]) / upsampleFactor * self.pixelSize
        
        offsets = (dx, dy)
        return offsets
开发者ID:kmdouglass,项目名称:bstore,代码行数:58,代码来源:multiprocessors.py



注:本文中的scipy.ndimage.zoom函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python filters.convolve函数代码示例发布时间:2022-05-27
下一篇:
Python ndimage.variance函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap