本文整理汇总了Python中sfepy.base.log.Log类的典型用法代码示例。如果您正苦于以下问题:Python Log类的具体用法?Python Log怎么用?Python Log使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Log类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self, conf, problem, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
conf.problem = problem
conf = self.conf
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration'],
[r'$\gamma$', r'$\max(\delta)$', r'$\max(\tau)$']],
xlabels=['', '', 'all iterations'],
ylabels=[r'$||r||$', 'iteration', 'stabilization'],
yscales=['log', 'linear', 'log'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d'],
['%.8e', '%.8e', '%.8e']])
else:
self.log = None
开发者ID:Nasrollah,项目名称:sfepy,代码行数:25,代码来源:oseen.py
示例2: vary_incident_wave_dir
def vary_incident_wave_dir( problem ):
default_printer.prefix = 'vary_incident_wave_dir:'
log_conf = {
'is_plot' : True,
'yscales' : ['linear'],
'xaxes' : ['incident wave angle [degrees]'],
'yaxes' : ['phase velocity [m/s]'],
}
dim = problem.domain.mesh.dim
log = Log.from_conf( log_conf,
['phase velocity %d' % ii for ii in range( dim )] )
alphas = nm.linspace( 0.0, 360.0, 37 )
output( 'running for angles:', alphas )
pause()
for ii, alpha in enumerate( alphas ):
output( 'iteration %d: alpha %2f' % (ii, alpha) )
opts = problem.conf.options
ra = nm.pi * alpha / 180.0
iwd = nm.zeros( (dim,), dtype = nm.float64 )
iwd[0:2] = [nm.cos( ra ), nm.sin( ra )]
opts.incident_wave_dir = iwd
out = []
yield problem, out
#You have: sqrt( 10^10Pa / 10^4kg * m^3 )
#You want:
#Definition: 1000 m / s
convert_to_ms = 1000.0
phase_velocity = out[0] * convert_to_ms # to m/s.
log( x = [alpha], *phase_velocity )
output( 'phase velocity [m/s]:', phase_velocity )
if opts.homogeneous:
mat = problem.materials['matrix']
# dilatation wave: vp = \sqrt{ (\lambda + 2\mu) / \rho }
vd = nm.sqrt( (mat.D[0,0]) / mat.density) * convert_to_ms
# shear wave: vs = \sqrt{ \mu / \rho }
vs = nm.sqrt( mat.D[-1,-1] / mat.density ) * convert_to_ms
output( 'analytical dilatation: %f, shear: %f' % (vd, vs) )
# pause()
yield None
print log
pause()
if opts.homogeneous:
name = 'homogeneous'
else:
name = 'perforated'
fig_name = os.path.join( problem.output_dir,
'phase_velocity_%s%s' % (name, opts.fig_suffix) )
log( save_figure = fig_name, finished = True )
开发者ID:certik,项目名称:sfepy,代码行数:57,代码来源:parametric.py
示例3: __init__
def __init__( self, conf, **kwargs ):
OptimizationSolver.__init__( self, conf, **kwargs )
conf = self.conf
if conf.is_any_log:
self.log = Log([[r'$||\Psi||$'], [r'$||\nabla \Psi||$'],
[r'$\alpha$'], ['iteration']],
xlabels=['', '', 'all iterations', 'all iterations'],
yscales=conf.yscales,
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%.3e'], ['%.3e'], ['%d']])
else:
self.log = None
开发者ID:olivierverdier,项目名称:sfepy,代码行数:14,代码来源:optimize.py
示例4: __init__
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
开发者ID:LeiDai,项目名称:sfepy,代码行数:14,代码来源:nls.py
示例5: __init__
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
if conf.is_any_log:
self.log = Log(
[[r"$||r||$"], ["iteration"]],
xlabels=["", "all iterations"],
ylabels=[r"$||r||$", "iteration"],
yscales=["log", "linear"],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[["%.8e"], ["%d"]],
)
else:
self.log = None
开发者ID:taldcroft,项目名称:sfepy,代码行数:17,代码来源:nls.py
示例6: __init__
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
开发者ID:cheon7886,项目名称:sfepy,代码行数:20,代码来源:nls.py
示例7: main
def main():
cwd = os.path.split(os.path.join(os.getcwd(), __file__))[0]
log = Log(
(["sin(x)", "cos(x)"], ["exp(x)"]),
yscales=["linear", "log"],
xlabels=["angle", None],
ylabels=[None, "a function"],
log_filename=os.path.join(cwd, "live_plot.log"),
)
log2 = Log(
[["x^3"]],
yscales=["linear"],
xlabels=["x"],
ylabels=["a cubic function"],
log_filename=os.path.join(cwd, "live_plot2.log"),
)
added = 0
for x in nm.linspace(0, 4.0 * nm.pi, 200):
output("x: ", x)
if x < (2.0 * nm.pi):
log(nm.sin(x), nm.cos(x), nm.exp(x), x=[x, None])
else:
if added:
log(nm.sin(x), nm.cos(x), nm.exp(x), x ** 2, x=[x, None, x])
else:
log.plot_vlines(color="r", linewidth=2)
log.add_group(["x^2"], "linear", "new x", "square", formats=["%+g"])
added += 1
if (added == 20) or (added == 50):
log.plot_vlines([2], color="g", linewidth=2)
log2(x * x * x, x=[x])
print log
print log2
pause()
log(finished=True)
log2(finished=True)
开发者ID:rosendo100,项目名称:sfepy,代码行数:44,代码来源:live_plot.py
示例8: main
def main():
log_conf = {
'is_plot' : True,
'aggregate' : 200,
'yscales' : ['linear', 'log'],
'xaxes' : ['angle', None],
'yaxes' : [None, 'a function'],
}
log = Log.from_conf( log_conf, (['sin( x )', 'cos( x )'],['exp( x )']) )
for x in nm.linspace( 0, 4.0 * nm.pi, 200 ):
output( 'x: ', x )
log( nm.sin( x ), nm.cos( x ), nm.exp( x ), x = [x, None] )
print log
pause()
log( finished = True )
开发者ID:certik,项目名称:sfepy,代码行数:20,代码来源:live_plot.py
示例9: main
def main():
cwd = os.path.split(os.path.join(os.getcwd(), __file__))[0]
log = Log((['sin(x) + i sin(x**2)', 'cos(x)'], ['exp(x)']),
yscales=['linear', 'log'],
xlabels=['angle', None], ylabels=[None, 'a function'],
log_filename=os.path.join(cwd, 'live_plot.log'))
log2 = Log([['x^3']],
yscales=['linear'],
xlabels=['x'], ylabels=['a cubic function'],
aggregate=50, sleep=0.05,
log_filename=os.path.join(cwd, 'live_plot2.log'),
formats=[['{:.5e}']])
added = 0
for x in nm.linspace(0, 4.0 * nm.pi, 200):
output('x: ', x)
if x < (2.0 * nm.pi):
log(nm.sin(x)+1j*nm.sin(x**2), nm.cos(x), nm.exp(x), x=[x, None])
else:
if added:
log(nm.sin(x)+1j*nm.sin(x**2), nm.cos(x), nm.exp(x), x**2,
x=[x, None, x])
else:
log.plot_vlines(color='r', linewidth=2)
log.add_group(['x^2'], yscale='linear', xlabel='new x',
ylabel='square', formats=['%+g'])
added += 1
if (added == 20) or (added == 50):
log.plot_vlines([2], color='g', linewidth=2)
log2(x*x*x, x=[x])
print(log)
print(log2)
pause()
log(finished=True)
log2(finished=True)
开发者ID:rc,项目名称:sfepy,代码行数:42,代码来源:live_plot.py
示例10: FMinSteepestDescent
class FMinSteepestDescent( OptimizationSolver ):
name = 'opt.fmin_sd'
def process_conf( conf ):
"""
Missing items are set to default values.
Example configuration, all items::
solver_0 = {
'name' : 'fmin_sd',
'kind' : 'opt.fmin_sd',
'i_max' : 10,
'eps_rd' : 1e-5, # Relative delta of objective function
'eps_of' : 1e-4,
'eps_ofg' : 1e-8,
'norm' : nm.Inf,
'ls' : True, # Linesearch.
'ls_method' : 'backtracking', # 'backtracking' or 'full'
'ls0' : 0.25,
'ls_red' : 0.5,
'ls_red_warp' : 0.1,
'ls_on' : 0.99999,
'ls_min' : 1e-5,
'check' : 0,
'delta' : 1e-6,
'output' : None, # 'itc'
'log' : {'text' : 'output/log.txt',
'plot' : 'output/log.png'},
'yscales' : ['linear', 'log', 'log', 'linear'],
}
"""
get = conf.get_default_attr
i_max = get( 'i_max', 10 )
eps_rd = get( 'eps_rd', 1e-5 )
eps_of = get( 'eps_of', 1e-4 )
eps_ofg = get( 'eps_ofg', 1e-8 )
norm = get( 'norm', nm.Inf )
ls = get( 'ls', True )
ls_method = get( 'ls_method', 'backtracking' )
ls0 = get( 'ls0', 0.25 )
ls_red = get( 'ls_red', 0.5 )
ls_red_warp = get( 'ls_red_warp', 0.1 )
ls_on = get( 'ls_on', 0.99999 )
ls_min = get( 'ls_min', 1e-5 )
check = get( 'check', 0 )
delta = get( 'delta', 1e-6)
output = get( 'output', None )
yscales = get( 'yscales', ['linear', 'log', 'log', 'linear'] )
log = get_logging_conf(conf)
log = Struct(name='log_conf', **log)
is_any_log = (log.text is not None) or (log.plot is not None)
common = OptimizationSolver.process_conf( conf )
return Struct( **locals() ) + common
process_conf = staticmethod( process_conf )
##
# 17.10.2007, c
def __init__( self, conf, **kwargs ):
OptimizationSolver.__init__( self, conf, **kwargs )
conf = self.conf
if conf.is_any_log:
self.log = Log([[r'$||\Psi||$'], [r'$||\nabla \Psi||$'],
[r'$\alpha$'], ['iteration']],
xlabels=['', '', 'all iterations', 'all iterations'],
yscales=conf.yscales,
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%.3e'], ['%.3e'], ['%d']])
else:
self.log = None
##
# 19.04.2006, c
# 20.04.2006
# 21.04.2006
# 26.04.2006
# 06.06.2006
# 07.06.2006
# 04.09.2006
# 21.03.2007
# 17.10.2007, from fmin_sd()
def __call__( self, x0, conf = None, obj_fun = None, obj_fun_grad = None,
status = None, obj_args = None ):
# def fmin_sd( conf, x0, fn_of, fn_ofg, args = () ):
conf = get_default( conf, self.conf )
obj_fun = get_default( obj_fun, self.obj_fun )
obj_fun_grad = get_default( obj_fun_grad, self.obj_fun_grad )
status = get_default( status, self.status )
obj_args = get_default( obj_args, self.obj_args )
if conf.output:
globals()['output'] = conf.output
#.........这里部分代码省略.........
开发者ID:olivierverdier,项目名称:sfepy,代码行数:101,代码来源:optimize.py
示例11: solve_eigen_problem_n
def solve_eigen_problem_n( self ):
opts = self.app_options
pb = self.problem
dim = pb.domain.mesh.dim
pb.set_equations( pb.conf.equations )
pb.select_bcs( ebc_names = ['ZeroSurface'] )
output( 'assembling rhs...' )
tt = time.clock()
mtx_b = pb.evaluate(pb.conf.equations['rhs'], mode='weak',
auto_init=True, dw_mode='matrix')
output( '...done in %.2f s' % (time.clock() - tt) )
assert_( nm.alltrue( nm.isfinite( mtx_b.data ) ) )
## mtx_b.save( 'b.txt', format='%d %d %.12f\n' )
aux = pb.create_evaluable(pb.conf.equations['lhs'], mode='weak',
dw_mode='matrix')
mtx_a_equations, mtx_a_variables = aux
if self.options.plot:
log_conf = {
'is_plot' : True,
'aggregate' : 1,
'yscales' : ['linear', 'log'],
}
else:
log_conf = {
'is_plot' : False,
}
log = Log.from_conf( log_conf, ([r'$|F(x)|$'], [r'$|F(x)-x|$']) )
file_output = Output('', opts.log_filename, combined = True)
eig_conf = pb.get_solver_conf( opts.eigen_solver )
eig_solver = Solver.any_from_conf( eig_conf )
# Just to get the shape. Assumes one element group only!!!
v_hxc_qp = pb.evaluate('dq_state_in_volume_qp.i1.Omega(Psi)')
v_hxc_qp.fill(0.0)
self.qp_shape = v_hxc_qp.shape
vec_v_hxc = self._interp_to_nodes(v_hxc_qp)
self.norm_v_hxc0 = nla.norm(vec_v_hxc)
self.itercount = 0
aux = wrap_function(self.iterate,
(eig_solver,
mtx_a_equations, mtx_a_variables,
mtx_b, log, file_output))
ncalls, times, nonlin_v, results = aux
# Create and call the DFT solver.
dft_conf = pb.get_solver_conf(opts.dft_solver)
dft_status = {}
dft_solver = Solver.any_from_conf(dft_conf,
fun = nonlin_v,
status = dft_status)
v_hxc_qp = dft_solver(v_hxc_qp.ravel())
v_hxc_qp = nm.array(v_hxc_qp, dtype=nm.float64)
v_hxc_qp.shape = self.qp_shape
eigs, mtx_s_phi, vec_n, vec_v_h, v_ion_qp, v_xc_qp, v_hxc_qp = results
output( 'DFT iteration time [s]:', dft_status['time_stats'] )
fun = pb.materials['mat_v'].function
variable = self.problem.create_variables(['scalar'])['scalar']
vec_v_ion = fun(None, variable.field.get_coor(),
mode='qp')['V_ion'].squeeze()
vec_v_xc = self._interp_to_nodes(v_xc_qp)
vec_v_hxc = self._interp_to_nodes(v_hxc_qp)
vec_v_sum = self._interp_to_nodes(v_hxc_qp + v_ion_qp)
coor = pb.domain.get_mesh_coors()
r2 = norm_l2_along_axis(coor, squared=True)
vec_nr2 = vec_n * r2
pb.select_bcs( ebc_names = ['ZeroSurface'] )
mtx_phi = self.make_full( mtx_s_phi )
out = {}
update_state_to_output(out, pb, vec_n, 'n')
update_state_to_output(out, pb, vec_nr2, 'nr2')
update_state_to_output(out, pb, vec_v_h, 'V_h')
update_state_to_output(out, pb, vec_v_xc, 'V_xc')
update_state_to_output(out, pb, vec_v_ion, 'V_ion')
update_state_to_output(out, pb, vec_v_hxc, 'V_hxc')
update_state_to_output(out, pb, vec_v_sum, 'V_sum')
self.save_results(eigs, mtx_phi, out=out)
if self.options.plot:
log( save_figure = opts.iter_fig_name )
pause()
log(finished=True)
return Struct( pb = pb, eigs = eigs, mtx_phi = mtx_phi,
vec_n = vec_n, vec_nr2 = vec_nr2,
vec_v_h = vec_v_h, vec_v_xc = vec_v_xc )
开发者ID:olivierverdier,项目名称:sfepy,代码行数:100,代码来源:schroedinger.py
示例12: solve_eigen_problem_n
def solve_eigen_problem_n( conf, options ):
pb = ProblemDefinition.from_conf( conf )
dim = pb.domain.mesh.dim
pb.time_update()
dummy = pb.create_state_vector()
output( 'assembling rhs...' )
tt = time.clock()
mtx_b = eval_term_op( dummy, conf.equations['rhs'], pb,
dw_mode = 'matrix', tangent_matrix = pb.mtx_a.copy() )
output( '...done in %.2f s' % (time.clock() - tt) )
#mtxA.save( 'tmp/a.txt', format='%d %d %.12f\n' )
#mtxB.save( 'tmp/b.txt', format='%d %d %.12f\n' )
try:
n_eigs = conf.options.n_eigs
except AttributeError:
n_eigs = mtx_a.shape[0]
if n_eigs is None:
n_eigs = mtx_a.shape[0]
## mtx_a.save( 'a.txt', format='%d %d %.12f\n' )
## mtx_b.save( 'b.txt', format='%d %d %.12f\n' )
if options.plot:
log_conf = {
'is_plot' : True,
'aggregate' : 1,
'yscales' : ['linear', 'log'],
}
else:
log_conf = {
'is_plot' : False,
}
log = Log.from_conf( log_conf, ([r'$|F(x)|$'], [r'$|F(x)|$']) )
eig_conf = pb.get_solver_conf( conf.options.eigen_solver )
eig_solver = Solver.any_from_conf( eig_conf )
vec_vhxc = nm.zeros( (pb.variables.di.ptr[-1],), dtype = nm.float64 )
aux = wrap_function( iterate,
(pb, conf, eig_solver, n_eigs, mtx_b, log) )
ncalls, times, nonlin_v = aux
vec_vhxc = broyden3( nonlin_v, vec_vhxc, verbose = True )
out = iterate( vec_vhxc, pb, conf, eig_solver, n_eigs, mtx_b )
eigs, mtx_s_phi, vec_n, vec_vh, vec_vxc = out
if options.plot:
log( finished = True )
pause()
coor = pb.domain.get_mesh_coors()
r = coor[:,0]**2 + coor[:,1]**2 + coor[:,2]**2
vec_nr2 = vec_n * r
n_eigs = eigs.shape[0]
mtx_phi = nm.empty( (pb.variables.di.ptr[-1], mtx_s_phi.shape[1]),
dtype = nm.float64 )
for ii in xrange( n_eigs ):
mtx_phi[:,ii] = pb.variables.make_full_vec( mtx_s_phi[:,ii] )
save = get_default_attr( conf.options, 'save_eig_vectors', None )
out = {}
for ii in xrange( n_eigs ):
if save is not None:
if (ii >= save[0]) and (ii < (n_eigs - save[1])): continue
aux = pb.state_to_output( mtx_phi[:,ii] )
key = aux.keys()[0]
out[key+'%03d' % ii] = aux[key]
update_state_to_output( out, pb, vec_n, 'n' )
update_state_to_output( out, pb, vec_nr2, 'nr2' )
update_state_to_output( out, pb, vec_vh, 'vh' )
update_state_to_output( out, pb, vec_vxc, 'vxc' )
ofn_trunk = options.output_filename_trunk
pb.domain.mesh.write( ofn_trunk + '.vtk', io = 'auto', out = out )
fd = open( ofn_trunk + '_eigs.txt', 'w' )
eigs.tofile( fd, ' ' )
fd.close()
return Struct( pb = pb, eigs = eigs, mtx_phi = mtx_phi )
开发者ID:certik,项目名称:sfepy,代码行数:88,代码来源:schroedinger.py
示例13: Oseen
class Oseen(NonlinearSolver):
"""
The Oseen solver for Navier-Stokes equations.
"""
name = 'nls.oseen'
__metaclass__ = SolverMeta
_parameters = [
('stabil_mat', 'str', None, True,
'The name of stabilization material.'),
('adimensionalize', 'bool', False, False,
'If True, adimensionalize the problem (not implemented!).'),
('check_navier_stokes_rezidual', 'bool', False, False,
'If True, check the Navier-Stokes rezidual after the nonlinear loop.'),
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
]
def __init__(self, conf, problem, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
conf.problem = problem
conf = self.conf
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration'],
[r'$\gamma$', r'$\max(\delta)$', r'$\max(\tau)$']],
xlabels=['', '', 'all iterations'],
ylabels=[r'$||r||$', 'iteration', 'stabilization'],
yscales=['log', 'linear', 'log'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d'],
['%.8e', '%.8e', '%.8e']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, status=None, problem=None):
"""
Oseen solver is problem-specific - it requires a Problem instance.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
status = get_default(status, self.status)
problem = get_default(problem, conf.problem,
'`problem` parameter needs to be set!')
time_stats = {}
stabil = problem.get_materials()[conf.stabil_mat]
ns, ii = stabil.function.function.get_maps()
variables = problem.get_variables()
update_var = variables.set_data_from_state
make_full_vec = variables.make_full_vec
output('problem size:')
output(' velocity: %s' % ii['us'])
output(' pressure: %s' % ii['ps'])
vec_x = vec_x0.copy()
vec_x_prev = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err0 = -1.0
it = 0
while 1:
vec_x_prev_f = make_full_vec(vec_x_prev)
update_var(ns['b'], vec_x_prev_f, ns['u'])
vec_b = vec_x_prev_f[ii['u']]
b_norm = nla.norm(vec_b, nm.inf)
#.........这里部分代码省略.........
开发者ID:Nasrollah,项目名称:sfepy,代码行数:101,代码来源:oseen.py
示例14: FMinSteepestDescent
class FMinSteepestDescent(OptimizationSolver):
"""
Steepest descent optimization solver.
"""
name = 'opt.fmin_sd'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('eps_rd', 'float', 1e-5, False,
'The relative delta of the objective function.'),
('eps_of', 'float', 1e-4, False,
'The tolerance for the objective function.'),
('eps_ofg', 'float', 1e-8, False,
'The tolerance for the objective function gradient.'),
('norm', 'numpy norm', nm.Inf, False,
'The norm to be used.'),
('ls', 'bool', True, False,
'If True, use a line-search.'),
('ls_method', "{'backtracking', 'full'}", 'backtracking', False,
'The line-search method.'),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls0', '0.0 < float < 1.0', 1.0, False,
'The initial step.'),
('ls_red', '0.0 < float < 1.0', 0.5, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.1, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('output', 'function', None, False,
"""If given, use it instead of :func:`output()
<sfepy.base.base.output()>` function."""),
('yscales', 'list of str', ['linear', 'log', 'log', 'linear'], False,
'The list of four convergence log subplot scales.'),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
]
def __init__(self, conf, **kwargs):
OptimizationSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||\Psi||$'], [r'$||\nabla \Psi||$'],
[r'$\alpha$'], ['iteration']],
xlabels=['', '', 'all iterations', 'all iterations'],
yscales=conf.yscales,
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%.3e'], ['%.3e'], ['%d']])
else:
self.log = None
def __call__(self, x0, conf=None, obj_fun=None, obj_fun_grad=None,
status=None, obj_args=None):
conf = get_default(conf, self.conf)
obj_fun = get_default(obj_fun, self.obj_fun)
obj_fun_grad = get_default(obj_fun_grad, self.obj_fun_grad)
status = get_default(status, self.status)
obj_args = get_default(obj_args, self.obj_args)
if conf.output:
globals()['output'] = conf.output
output('entering optimization loop...')
nc_of, tt_of, fn_of = wrap_function(obj_fun, obj_args)
nc_ofg, tt_ofg, fn_ofg = wrap_function(obj_fun_grad, obj_args)
time_stats = {'of' : tt_of, 'ofg': tt_ofg, 'check' : []}
ofg = None
it = 0
xit = x0.copy()
while 1:
of = fn_of(xit)
#.........这里部分代码省略.........
开发者ID:Gkdnz,项目名称:sfepy,代码行数:101,代码来源:optimize.py
示例15: Newton
class Newton( NonlinearSolver ):
name = 'nls.newton'
def process_conf( conf ):
"""
Missing items are set to default values for a linear problem.
Example configuration, all items::
solver_1 = {
'name' : 'newton',
'kind' : 'nls.newton',
'i_max' : 2,
'eps_a' : 1e-8,
'eps_r' : 1e-2,
'macheps' : 1e-16,
'lin_red' : 1e-2, # Linear system error < (eps_a * lin_red).
'ls_red' : 0.1,
'ls_red_warp' : 0.001,
'ls_on' : 0.99999,
'ls_min' : 1e-5,
'check' : 0,
'delta' : 1e-6,
'is_plot' : False,
'log' : None,
# 'nonlinear' or 'linear' (ignore i_max)
'problem' : 'nonlinear',
}
"""
get = conf.get_default_attr
i_max = get( 'i_max', 1 )
eps_a = get( 'eps_a', 1e-10 )
eps_r = get( 'eps_r', 1.0 )
macheps = get( 'macheps', nm.finfo( nm.float64 ).eps )
lin_red = get( 'lin_red', 1.0 )
ls_red = get( 'ls_red', 0.1 )
ls_red_warp = get( 'ls_red_warp', 0.001 )
ls_on = get( 'ls_on', 0.99999 )
ls_min = get( 'ls_min', 1e-5 )
check = get( 'check', 0 )
delta = get( 'delta', 1e-6)
is_plot = get( 'is_plot', False )
problem = get( 'problem', 'nonlinear' )
log = get_logging_conf(conf)
log = Struct(name='log_conf', **log)
is_any_log = (log.text is not None) or (log.plot is not None)
common = NonlinearSolver.process_conf( conf )
return Struct( **locals() ) + common
process_conf = staticmethod( process_conf )
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__( self, conf, **kwargs )
conf = self.conf
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
##
# c: 02.12.2005, r: 04.04.2008
# 10.10.2007, from newton()
def __call__( self, vec_x0, conf = None, fun = None, fun_grad = None,
lin_solver = None, status = None ):
"""setting conf.problem == 'linear' means 1 iteration and no rezidual
check!
"""
import sfepy.base.plotutils as plu
conf = get_default( conf, self.conf )
fun = get_default( fun, self.fun )
fun_grad = get_default( fun_grad, self.fun_grad )
lin_solver = get_default( lin_solver, self.lin_solver )
status = get_default( status, self.status )
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err0 = -1.0
err_last = -1.0
it = 0
while 1:
ls = 1.0
#.........这里部分代码省略.........
开发者ID:olivierverdier,项目名称:sfepy,代码行数:101,代码来源:nls.py
示例16: solve_navier_stokes
def solve_navier_stokes(conf, options):
opts = conf.options
dpb = ProblemDefinition.from_conf(conf, init_equations=False)
equations = getattr(conf, "_".join(("equations_direct", opts.problem)))
dpb.set_equations(equations)
ls_conf = dpb.get_solver_conf(opts.ls)
nls_conf = dpb.get_solver_conf(opts.nls_direct)
method = opts.direct_method
if method == "stationary":
data = {}
dpb.time_update(None)
state_dp = dpb.solve(nls_conf=nls_conf)
elif method == "transient":
ls = Solver.any_from_conf(ls_conf)
ts_conf = dpb.get_solver_conf(opts.ts_direct)
data = {"ts": Struct(dt=ts_conf.dt)}
# Plug in mass term.
mequations = {}
for key, eq in equations.iteritems():
if "dw_div_grad" in eq:
eq = "+".join((ts_conf.mass_term, eq)).replace("++", "+")
mequations[key] = eq
if ts_conf.stokes_init:
state_dp0 = solve_stokes(dpb, conf.equations_direct_stokes, nls_conf)
dpb.set_equations(mequations)
else:
dpb.set_equations(mequations)
state_dp0 = dpb.create_state()
dpb.time_update(None)
state_dp0.apply_ebc()
from sfepy.base.log import Log
log = Log.from_conf(Struct(is_plot=True), ([r"$||u||$"], [r"$||p||$"]))
output("Navier-Stokes...")
ev = BasicEvaluator(dpb, ts=Struct(dt=ts_conf.dt))
nls = Solver.any_from_conf(nls_conf, evaluator=ev, lin_solver=ls)
n_step = ts_conf.n_step
step = 0
while 1:
for ii in xrange(n_step):
output(step)
vec_u = state_dp0("w")
vec_p = state_dp0("r")
log(nm.linalg.norm(vec_u), nm.linalg.norm(vec_p))
dpb.variables.set_data_from_state("w_0", state_dp0(), "w")
vec_dp = nls(state_dp0())
step += 1
state_dp = state_dp0.copy()
state_dp.set_reduced(vec_dp)
state_dp0 = state_dp
if ts_conf.interactive:
try:
n_step = int(raw_input("continue: "))
if n_step <= 0:
break
except:
break
vec_u = state_dp("w")
vec_p = state_dp("r")
log(nm.linalg.norm(vec_u), nm.linalg.norm(vec_p), finished=True)
else:
raise "unknown Navier-Stokes solution method (%s)!" % method
return dpb, state_dp, data
开发者ID:brbr520,项目名称:sfepy,代码行数:81,代码来源:shaper.py
示例17: Newton
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
#.........这里部分代码省略.........
开发者ID:cheon7886,项目名称:sfepy,代码行数:101,代码来源:nls.py
示例18: Newton
class Newton(NonlinearSolver):
name = "nls.newton"
@staticmethod
def process_conf(conf, kwargs):
"""
Missing items are set to default values for a linear problem.
Example configuration, all items::
solver_1 = {
'name' : 'newton',
'kind' : 'nls.newton',
'i_max' : 2,
'eps_a' : 1e-8,
'eps_r' : 1e-2,
'macheps' : 1e-16,
|
请发表评论