• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python Features.SparseRealFeatures类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中shogun.Features.SparseRealFeatures的典型用法代码示例。如果您正苦于以下问题:Python SparseRealFeatures类的具体用法?Python SparseRealFeatures怎么用?Python SparseRealFeatures使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了SparseRealFeatures类的18个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: compute_output_plot_isolines

def compute_output_plot_isolines(classifier, kernel=None, train=None, sparse=False, pos=None, neg=None, regression=False):
	size=100
	if pos is not None and neg is not None:
		x1_max=max(1.2*pos[0,:])
		x1_min=min(1.2*neg[0,:])
		x2_min=min(1.2*neg[1,:])
		x2_max=max(1.2*pos[1,:])
		x1=linspace(x1_min, x1_max, size)
		x2=linspace(x2_min, x2_max, size)
	else:
		x1=linspace(-5, 5, size)
		x2=linspace(-5, 5, size)

	x, y=meshgrid(x1, x2)

	dense=RealFeatures(array((ravel(x), ravel(y))))
	if sparse:
		test=SparseRealFeatures()
		test.obtain_from_simple(dense)
	else:
		test=dense

	if kernel and train:
		kernel.init(train, test)
	else:
		classifier.set_features(test)

	labels = None
	if regression:
		labels=classifier.apply().get_labels()
	else:
		labels=classifier.apply().get_confidences()
	z=labels.reshape((size, size))

	return x, y, z
开发者ID:TharinduRusira,项目名称:shogun,代码行数:35,代码来源:util.py


示例2: features_read_svmlight_format_modular

def features_read_svmlight_format_modular(fname):
	import os
	from shogun.Features import SparseRealFeatures

	f=SparseRealFeatures()
	lab=f.load_svmlight_file(fname)
	f.write_svmlight_file('testwrite.light', lab)
	os.unlink('testwrite.light')
开发者ID:behollis,项目名称:muViewBranch,代码行数:8,代码来源:features_read_svmlight_format_modular.py


示例3: convSparseToShog

def convSparseToShog(data,delFeature=False):
    resFeat = SparseRealFeatures()
    resFeat.create_sparse_feature_matrix(len(data))
    for iRec in xrange(len(data)):
        feat = data[iRec]["feature"]
        resFeat.set_sparse_feature_vector(iRec,feat["ind"].astype('i4')-1,feat["val"].astype('f8'))
        if delFeature:
            data[iRec]["feature"] = None
    return resFeat
开发者ID:andreyto,项目名称:mgtaxa,代码行数:9,代码来源:__init__.py


示例4: features_sparse_modular

def features_sparse_modular(A):
	from scipy.sparse import csc_matrix
	from shogun.Features import SparseRealFeatures
	from numpy import array, float64, all

	# sparse representation X of dense matrix A
	# note, will work with types other than float64 too,
	# but requires recent scipy.sparse
	X=csc_matrix(A)
	#print A

	# create sparse shogun features from dense matrix A
	a=SparseRealFeatures(A)
	a_out=a.get_full_feature_matrix()
	#print a_out
	assert(all(a_out==A))
	#print a_out

	# create sparse shogun features from sparse matrix X
	a.set_sparse_feature_matrix(X)
	a_out=a.get_full_feature_matrix()
	#print a_out
	assert(all(a_out==A))

	# create sparse shogun features from sparse matrix X
	a=SparseRealFeatures(X)
	a_out=a.get_full_feature_matrix()
	#print a_out
	assert(all(a_out==A))

	# obtain (data,row,indptr) csc arrays of sparse shogun features
	z=csc_matrix(a.get_sparse_feature_matrix())
	z_out=z.todense()
	#print z_out
	assert(all(z_out==A))
开发者ID:Anshul-Bansal,项目名称:gsoc,代码行数:35,代码来源:features_sparse_modular.py


示例5: getSparseRealFeatures

 def getSparseRealFeatures(self,sequences,method="frequences"):
     maxSeqLen = max( ( len(seq) for seq in sequences ) )
     kmer_ind = numpy.zeros(maxSeqLen,dtype='i8')
     if method == 'frequences':
         kmer_val = numpy.zeros(maxSeqLen,dtype='f4')
     else:
         kmer_val = numpy.zeros(maxSeqLen,dtype='i4')
     kmerMethod = getattr(self,method)
     resFeat = SparseRealFeatures()
     resFeat.create_sparse_feature_matrix(len(sequences))
     for iSeq in xrange(len(sequences)):
         seq = sequences[iSeq]
         if isinstance(seq,str):
             seq = numpy.fromstring(seq,'S1')
         self.process(seq)
         (size,total) = kmerMethod(kmer_val,kmer_ind)
         #print size, total, kmer_val[:10],kmer_ind[:10]
         resFeat.set_sparse_feature_vector(iSeq,kmer_ind[:size].astype('i4')-1,kmer_val[:size].astype('f8'))
     #pdb.set_trace()
     return resFeat
开发者ID:andreyto,项目名称:mgtaxa,代码行数:20,代码来源:KmerFeatures.py


示例6: classifier_svmlin_modular

def classifier_svmlin_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_twoclass=label_traindat,C=0.9,epsilon=1e-5,num_threads=1):
	from shogun.Features import RealFeatures, SparseRealFeatures, BinaryLabels
	from shogun.Classifier import SVMLin

	realfeat=RealFeatures(fm_train_real)
	feats_train=SparseRealFeatures()
	feats_train.obtain_from_simple(realfeat)
	realfeat=RealFeatures(fm_test_real)
	feats_test=SparseRealFeatures()
	feats_test.obtain_from_simple(realfeat)

	labels=BinaryLabels(label_train_twoclass)

	svm=SVMLin(C, feats_train, labels)
	svm.set_epsilon(epsilon)
	svm.parallel.set_num_threads(num_threads)
	svm.set_bias_enabled(True)
	svm.train()

	svm.set_features(feats_test)
	svm.get_bias()
	svm.get_w()
	svm.apply().get_labels()
	predictions = svm.apply()
	return predictions, svm, predictions.get_labels()
开发者ID:AlexBinder,项目名称:shogun,代码行数:25,代码来源:classifier_svmlin_modular.py


示例7: classify

def classify (true_labels):
	num_feats=2
	num_vec=true_labels.get_num_labels()

	data_train=numpy.concatenate(
		(numpy.random.randn(num_feats, num_vec/2)-1,
			numpy.random.randn(num_feats, num_vec/2)+1),
		axis=1)
	realfeat=RealFeatures(data_train)
	feats_train=SparseRealFeatures()
	feats_train.obtain_from_simple(realfeat)
	C=3.
	svm=SVMOcas(C, feats_train, true_labels)
	svm.train()

	data_test=numpy.concatenate(
		(numpy.random.randn(num_feats, num_vec/2)-1,
			numpy.random.randn(num_feats, num_vec/2)+1),
		axis=1)
	realfeat=RealFeatures(data_test)
	feats_test=SparseRealFeatures()
	feats_test.obtain_from_simple(realfeat)
	svm.set_features(feats_test)

	return numpy.array(svm.classify().get_labels())
开发者ID:AsherBond,项目名称:shogun,代码行数:25,代码来源:all_evaluation.py


示例8: subgradient_svm

def subgradient_svm ():
	print 'SubGradientSVM'

	from shogun.Features import RealFeatures, SparseRealFeatures, Labels
	from shogun.Classifier import SubGradientSVM

	realfeat=RealFeatures(fm_train_real)
	feats_train=SparseRealFeatures()
	feats_train.obtain_from_simple(realfeat)
	realfeat=RealFeatures(fm_test_real)
	feats_test=SparseRealFeatures()
	feats_test.obtain_from_simple(realfeat)

	C=0.9
	epsilon=1e-3
	num_threads=1
	max_train_time=1.
	labels=Labels(label_train_twoclass)

	svm=SubGradientSVM(C, feats_train, labels)
	svm.set_epsilon(epsilon)
	svm.parallel.set_num_threads(num_threads)
	svm.set_bias_enabled(False)
	svm.set_max_train_time(max_train_time)
	svm.train()

	svm.set_features(feats_test)
	svm.classify().get_labels()
开发者ID:polyactis,项目名称:test,代码行数:28,代码来源:classifier_subgradientsvm_modular.py


示例9: svmlin

def svmlin ():
	print 'SVMLin'

	from shogun.Features import RealFeatures, SparseRealFeatures, Labels
	from shogun.Classifier import SVMLin

	realfeat=RealFeatures(fm_train_real)
	feats_train=SparseRealFeatures()
	feats_train.obtain_from_simple(realfeat)
	realfeat=RealFeatures(fm_test_real)
	feats_test=SparseRealFeatures()
	feats_test.obtain_from_simple(realfeat)

	C=0.9
	epsilon=1e-5
	num_threads=1
	labels=Labels(label_train_twoclass)

	svm=SVMLin(C, feats_train, labels)
	svm.set_epsilon(epsilon)
	svm.parallel.set_num_threads(num_threads)
	svm.set_bias_enabled(True)
	svm.train()

	svm.set_features(feats_test)
	svm.get_bias()
	svm.get_w()
	svm.classify().get_labels()
开发者ID:polyactis,项目名称:test,代码行数:28,代码来源:classifier_svmlin_modular.py


示例10: svmsgd

def svmsgd ():
	print 'SVMSGD'

	from shogun.Features import RealFeatures, SparseRealFeatures, Labels
	from shogun.Classifier import SVMSGD

	realfeat=RealFeatures(fm_train_real)
	feats_train=SparseRealFeatures()
	feats_train.obtain_from_simple(realfeat)
	realfeat=RealFeatures(fm_test_real)
	feats_test=SparseRealFeatures()
	feats_test.obtain_from_simple(realfeat)

	C=0.9	
	num_threads=1
	num_iter=5
	labels=Labels(label_train_twoclass)

	svm=SVMSGD(C, feats_train, labels)
	svm.set_epochs(num_iter)
	#svm.io.set_loglevel(0)
	svm.train()
	
	
	svm.set_features(feats_test)
	labelPrediction = svm.classify().get_labels()
	print labelPrediction>0
开发者ID:polyactis,项目名称:test,代码行数:27,代码来源:classifier_svmsgd_modular.py


示例11: sparse_euclidian_distance

def sparse_euclidian_distance ():
	print 'SparseEuclidianDistance'

	from shogun.Features import RealFeatures, SparseRealFeatures
	from shogun.Distance import SparseEuclidianDistance

	realfeat=RealFeatures(fm_train_real)
	feats_train=SparseRealFeatures()
	feats_train.obtain_from_simple(realfeat)
	realfeat=RealFeatures(fm_test_real)
	feats_test=SparseRealFeatures()
	feats_test.obtain_from_simple(realfeat)

	distance=SparseEuclidianDistance(feats_train, feats_train)

	dm_train=distance.get_distance_matrix()
	distance.init(feats_train, feats_test)
	dm_test=distance.get_distance_matrix()
开发者ID:memimo,项目名称:shogun-liblinear,代码行数:18,代码来源:distance_sparseeuclidean_modular.py


示例12: distance_sparseeuclidean_modular

def distance_sparseeuclidean_modular (fm_train_real=traindat,fm_test_real=testdat):
	from shogun.Features import RealFeatures, SparseRealFeatures
	from shogun.Distance import SparseEuclidianDistance

	realfeat=RealFeatures(fm_train_real)
	feats_train=SparseRealFeatures()
	feats_train.obtain_from_simple(realfeat)
	realfeat=RealFeatures(fm_test_real)
	feats_test=SparseRealFeatures()
	feats_test.obtain_from_simple(realfeat)

	distance=SparseEuclidianDistance(feats_train, feats_train)

	dm_train=distance.get_distance_matrix()
	distance.init(feats_train, feats_test)
	dm_test=distance.get_distance_matrix()

	return distance,dm_train,dm_test
开发者ID:behollis,项目名称:muViewBranch,代码行数:18,代码来源:distance_sparseeuclidean_modular.py


示例13: classifier_svmsgd_modular

def classifier_svmsgd_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_twoclass=label_traindat,C=0.9,num_threads=1,num_iter=5):

	from shogun.Features import RealFeatures, SparseRealFeatures, Labels
	from shogun.Classifier import SVMSGD

	realfeat=RealFeatures(fm_train_real)
	feats_train=SparseRealFeatures()
	feats_train.obtain_from_simple(realfeat)
	realfeat=RealFeatures(fm_test_real)
	feats_test=SparseRealFeatures()
	feats_test.obtain_from_simple(realfeat)

	labels=Labels(label_train_twoclass)

	svm=SVMSGD(C, feats_train, labels)
	svm.set_epochs(num_iter)
	#svm.io.set_loglevel(0)
	svm.train()

	svm.set_features(feats_test)
	svm.apply().get_labels()
	predictions = svm.apply()
	return predictions, svm, predictions.get_labels()
开发者ID:Anshul-Bansal,项目名称:gsoc,代码行数:23,代码来源:classifier_svmsgd_modular.py


示例14: classifier_subgradientsvm_modular

def classifier_subgradientsvm_modular(fm_train_real, fm_test_real, label_train_twoclass, C, epsilon, max_train_time):

    from shogun.Features import RealFeatures, SparseRealFeatures, Labels
    from shogun.Classifier import SubGradientSVM

    realfeat = RealFeatures(fm_train_real)
    feats_train = SparseRealFeatures()
    feats_train.obtain_from_simple(realfeat)
    realfeat = RealFeatures(fm_test_real)
    feats_test = SparseRealFeatures()
    feats_test.obtain_from_simple(realfeat)

    labels = Labels(label_train_twoclass)

    svm = SubGradientSVM(C, feats_train, labels)
    svm.set_epsilon(epsilon)
    svm.set_max_train_time(max_train_time)
    svm.train()

    svm.set_features(feats_test)
    labels = svm.apply().get_labels()

    return labels, svm
开发者ID:Anshul-Bansal,项目名称:gsoc,代码行数:23,代码来源:classifier_subgradientsvm_modular.py


示例15: svmsgd

def svmsgd ():
	print 'SVMSGD'

	from shogun.Features import RealFeatures, SparseRealFeatures, Labels
	from shogun.Classifier import SVMSGD

	realfeat=RealFeatures(fm_train_real)
	feats_train=SparseRealFeatures()
	feats_train.obtain_from_simple(realfeat)
	realfeat=RealFeatures(fm_test_real)
	feats_test=SparseRealFeatures()
	feats_test.obtain_from_simple(realfeat)

	C=0.9
	epsilon=1e-5
	num_threads=1
	labels=Labels(label_train_twoclass)

	svm=SVMSGD(C, feats_train, labels)
	#svm.io.set_loglevel(0)
	svm.train()

	svm.set_features(feats_test)
	svm.classify().get_labels()
开发者ID:memimo,项目名称:shogun-liblinear,代码行数:24,代码来源:classifier_svmsgd_modular.py


示例16: assert

from scipy.sparse import csc_matrix
from shogun.Features import SparseRealFeatures
from numpy import array, float64, all

# create dense matrix A and its sparse representation X
# note, will work with types other than float64 too,
# but requires recent scipy.sparse
A=array([[1,2,3],[4,0,0],[0,0,0],[0,5,0],[0,0,6],[9,9,9]], dtype=float64)
X=csc_matrix(A)
print A

# create sparse shogun features from dense matrix A
a=SparseRealFeatures(A)
a_out=a.get_full_feature_matrix()
print a_out
assert(all(a_out==A))
print a_out

# create sparse shogun features from sparse matrix X
a.set_sparse_feature_matrix(X)
a_out=a.get_full_feature_matrix()
print a_out
assert(all(a_out==A))

# create sparse shogun features from sparse matrix X
a=SparseRealFeatures(X)
a_out=a.get_full_feature_matrix()
print a_out
assert(all(a_out==A))

# obtain (data,row,indptr) csc arrays of sparse shogun features
开发者ID:memimo,项目名称:shogun-liblinear,代码行数:31,代码来源:features_sparse_modular.py


示例17:

import os
from shogun.Features import SparseRealFeatures

f=SparseRealFeatures()
lab=f.load_svmlight_file('../data/train_sparsereal.light')
f.write_svmlight_file('testwrite.light', lab)
os.unlink('testwrite.light')
开发者ID:memimo,项目名称:shogun-liblinear,代码行数:7,代码来源:features_read_svmlight_format_modular.py


示例18: features_io_modular

def features_io_modular(fm_train_real, label_train_twoclass):
	import numpy
	from shogun.Features import SparseRealFeatures, RealFeatures, Labels
	from shogun.Kernel import GaussianKernel
	from shogun.IO import AsciiFile, BinaryFile, HDF5File

	feats=SparseRealFeatures(fm_train_real)
	feats2=SparseRealFeatures()

	f=BinaryFile("fm_train_sparsereal.bin","w")
	feats.save(f)

	f=AsciiFile("fm_train_sparsereal.ascii","w")
	feats.save(f)

	f=BinaryFile("fm_train_sparsereal.bin")
	feats2.load(f)

	f=AsciiFile("fm_train_sparsereal.ascii")
	feats2.load(f)

	feats=RealFeatures(fm_train_real)
	feats2=RealFeatures()

	f=BinaryFile("fm_train_real.bin","w")
	feats.save(f)

	f=HDF5File("fm_train_real.h5","w", "/data/doubles")
	feats.save(f)

	f=AsciiFile("fm_train_real.ascii","w")
	feats.save(f)

	f=BinaryFile("fm_train_real.bin")
	feats2.load(f)
	#print "diff binary", numpy.max(numpy.abs(feats2.get_feature_matrix().flatten()-fm_train_real.flatten()))

	f=AsciiFile("fm_train_real.ascii")
	feats2.load(f)
	#print "diff ascii", numpy.max(numpy.abs(feats2.get_feature_matrix().flatten()-fm_train_real.flatten()))

	lab=Labels(numpy.array([1.0,2.0,3.0]))
	lab2=Labels()
	f=AsciiFile("label_train_twoclass.ascii","w")
	lab.save(f)

	f=BinaryFile("label_train_twoclass.bin","w")
	lab.save(f)

	f=HDF5File("label_train_real.h5","w", "/data/labels")
	lab.save(f)

	f=AsciiFile("label_train_twoclass.ascii")
	lab2.load(f)

	f=BinaryFile("label_train_twoclass.bin")
	lab2.load(f)

	f=HDF5File("fm_train_real.h5","r", "/data/doubles")
	feats2.load(f)
	#print feats2.get_feature_matrix()
	f=HDF5File("label_train_real.h5","r", "/data/labels")
	lab2.load(f)
	#print lab2.get_labels()

	#clean up
	import os
	for f in ['fm_train_sparsereal.bin','fm_train_sparsereal.ascii',
			'fm_train_real.bin','fm_train_real.h5','fm_train_real.ascii',
			'label_train_real.h5', 'label_train_twoclass.ascii','label_train_twoclass.bin']:
		os.unlink(f)
	return feats, feats2, lab, lab2
开发者ID:ashish-sadh,项目名称:shogun,代码行数:72,代码来源:features_io_modular.py



注:本文中的shogun.Features.SparseRealFeatures类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python Features.StringCharFeatures类代码示例发布时间:2022-05-27
下一篇:
Python Features.RealFeatures类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap