• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python Kernel.GaussianKernel类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中shogun.Kernel.GaussianKernel的典型用法代码示例。如果您正苦于以下问题:Python GaussianKernel类的具体用法?Python GaussianKernel怎么用?Python GaussianKernel使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了GaussianKernel类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: classify

def classify(classifier, features, labels, C=5, kernel_name=None, kernel_args=None):
    from shogun.Features import RealFeatures
    sigma = 10000
    kernel = GaussianKernel(features, features, sigma)
    # TODO
    # kernel = LinearKernel(features, features)
    # kernel = PolyKernel(features, features, 50, 2)
    # kernel = kernels[kernel_name](features, features, *kernel_args)

    svm = classifier(C, kernel, labels)
    svm.train(features)
    x_size = 640
    y_size = 400
    size = 100
    x1 = np.linspace(0, x_size, size)
    y1 = np.linspace(0, y_size, size)
    x, y = np.meshgrid(x1, y1)

    test = RealFeatures(np.array((np.ravel(x), np.ravel(y))))
    kernel.init(features, test)

    out = svm.apply(test).get_values()
    if not len(out):
        out = svm.apply(test).get_labels()
    z = out.reshape((size, size))
    z = np.transpose(z)

    return x, y, z
开发者ID:dvalcarce,项目名称:shogun-gsoc,代码行数:28,代码来源:svm.py


示例2: mlprocess

def mlprocess(task_filename, data_filename, pred_filename, verbose=True):
    """Demo of creating machine learning process."""
    task_type, fidx, lidx, train_idx, test_idx = parse_task(task_filename)
    outputs = init_output(task_type)
    all_data = parse_data(data_filename)
    train_ex, train_lab, test_ex, test_lab = split_data(all_data, fidx, lidx, train_idx, test_idx)
    label_train = outputs.str2label(train_lab)

    if verbose:
        print 'Number of features: %d' % train_ex.shape[0]
        print '%d training examples, %d test examples' % (len(train_lab), len(test_lab))

    feats_train = RealFeatures(train_ex)
    feats_test = RealFeatures(test_ex)
    width=1.0
    kernel=GaussianKernel(feats_train, feats_train, width)
    labels=Labels(label_train)
    svm = init_svm(task_type, kernel, labels)
    svm.train()

    kernel.init(feats_train, feats_test)
    preds = svm.classify().get_labels()
    pred_label = outputs.label2str(preds)

    pf = open(pred_filename, 'w')
    for pred in pred_label:
        pf.write(pred+'\n')
    pf.close()
开发者ID:jbeltram,项目名称:mldata-utils,代码行数:28,代码来源:mlprocess.py


示例3: statistics_kmm

def statistics_kmm (n,d):
	from shogun.Features import RealFeatures
	from shogun.Features import DataGenerator
	from shogun.Kernel import GaussianKernel, MSG_DEBUG
	from shogun.Statistics import KernelMeanMatching
	from shogun.Mathematics import Math

	# init seed for reproducability
	Math.init_random(1)
	random.seed(1);

	data = random.randn(d,n)

	# create shogun feature representation
	features=RealFeatures(data)

	# use a kernel width of sigma=2, which is 8 in SHOGUN's parametrization
	# which is k(x,y)=exp(-||x-y||^2 / tau), in constrast to the standard
	# k(x,y)=exp(-||x-y||^2 / (2*sigma^2)), so tau=2*sigma^2
	kernel=GaussianKernel(10,8)
	kernel.init(features,features)

	kmm = KernelMeanMatching(kernel,array([0,1,2,3,7,8,9],dtype=int32),array([4,5,6],dtype=int32))
	w = kmm.compute_weights()
	#print w
	return w
开发者ID:Argram,项目名称:shogun,代码行数:26,代码来源:statistics_kmm.py


示例4: regression_svrlight_modular

def regression_svrlight_modular(fm_train=traindat,fm_test=testdat,label_train=label_traindat, \
				    width=1.2,C=1,epsilon=1e-5,tube_epsilon=1e-2,num_threads=3):


	from shogun.Features import Labels, RealFeatures
	from shogun.Kernel import GaussianKernel
	try:
		from shogun.Regression import SVRLight
	except ImportError:
		print('No support for SVRLight available.')
		return

	feats_train=RealFeatures(fm_train)
	feats_test=RealFeatures(fm_test)

	kernel=GaussianKernel(feats_train, feats_train, width)

	labels=Labels(label_train)

	svr=SVRLight(C, epsilon, kernel, labels)
	svr.set_tube_epsilon(tube_epsilon)
	svr.parallel.set_num_threads(num_threads)
	svr.train()

	kernel.init(feats_train, feats_test)
	out = svr.apply().get_labels()
	
	return out, kernel 
开发者ID:harshitsyal,项目名称:shogun,代码行数:28,代码来源:regression_svrlight_modular.py


示例5: kernel_io_modular

def kernel_io_modular (fm_train_real=traindat,fm_test_real=testdat,width=1.9):
	from shogun.Features import RealFeatures
	from shogun.Kernel import GaussianKernel
	from shogun.Library import AsciiFile, BinaryFile
	
	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)


	kernel=GaussianKernel(feats_train, feats_train, width)
	km_train=kernel.get_kernel_matrix()
	f=AsciiFile("gaussian_train.ascii","w")
	kernel.save(f)
	del f

	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
	f=AsciiFile("gaussian_test.ascii","w")
	kernel.save(f)
	del f

	#clean up
	import os
	os.unlink("gaussian_test.ascii")
	os.unlink("gaussian_train.ascii")
	
	return km_train, km_test, kernel
开发者ID:AsherBond,项目名称:shogun,代码行数:27,代码来源:kernel_io_modular.py


示例6: createKernel

 def createKernel(self, feats_train):
     """Call the corresponding constructor for the kernel"""
 
     if self.kparam['name'] == 'gauss':
         kernel = GaussianKernel(feats_train, feats_train, self.kparam['width'])
     elif self.kparam['name'] == 'linear':
         kernel = LinearKernel(feats_train, feats_train, self.kparam['scale'])
     elif self.kparam['name'] == 'poly':
         kernel = PolyKernel(feats_train, feats_train, self.kparam['degree'], 
                             self.kparam['inhomogene'], self.kparam['normal'])
     elif self.kparam['name'] == 'wd':
         kernel = WeightedDegreePositionStringKernel(feats_train, feats_train, self.kparam['degree'])
         kernel.set_shifts(self.kparam['shift'] * numpy.ones(self.kparam['seqlength'], dtype=numpy.int32))
     elif self.kparam['name'] == 'spec':
         kernel = CommWordStringKernel(feats_train, feats_train)
     elif self.kparam['name'] == 'localalign':
         kernel = LocalAlignmentStringKernel(feats_train, feats_train)
     elif self.kparam['name'] == 'localimprove':
         kernel = LocalityImprovedStringKernel(feats_train, feats_train, self.kparam['length'], \
                                               self.kparam['indeg'], self.kparam['outdeg'])
     else:
         print 'Unknown kernel %s' % self.kparam['name']
         raise ValueError
     self.kernel = kernel
     return kernel
开发者ID:boya888,项目名称:oqtans_tools,代码行数:25,代码来源:EasySVM.py


示例7: kernel_gaussian_modular

def kernel_gaussian_modular (fm_train_real=traindat,fm_test_real=testdat, width=1.3):
	from shogun.Features import RealFeatures
	from shogun.Kernel import GaussianKernel

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)

	kernel=GaussianKernel(feats_train, feats_train, width)
	km_train=kernel.get_kernel_matrix()

	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
	return km_train,km_test,kernel
开发者ID:coodoing,项目名称:shogun,代码行数:13,代码来源:kernel_gaussian_modular.py


示例8: create_param_tree

def create_param_tree():
	root=ModelSelectionParameters()

	c1=ModelSelectionParameters("C1")
	root.append_child(c1)
	c1.build_values(-1.0, 1.0, R_EXP)

	c2=ModelSelectionParameters("C2")
	root.append_child(c2)
	c2.build_values(-1.0, 1.0, R_EXP)

	gaussian_kernel=GaussianKernel()

	# print all parameter available for modelselection
	# Dont worry if yours is not included, simply write to the mailing list
	gaussian_kernel.print_modsel_params()

	param_gaussian_kernel=ModelSelectionParameters("kernel", gaussian_kernel)
	gaussian_kernel_width=ModelSelectionParameters("width")
	gaussian_kernel_width.build_values(-1.0, 1.0, R_EXP, 1.0, 2.0)
	param_gaussian_kernel.append_child(gaussian_kernel_width)
	root.append_child(param_gaussian_kernel)

	power_kernel=PowerKernel()

	# print all parameter available for modelselection
	# Dont worry if yours is not included, simply write to the mailing list
	power_kernel.print_modsel_params()

	param_power_kernel=ModelSelectionParameters("kernel", power_kernel)
	root.append_child(param_power_kernel)

	param_power_kernel_degree=ModelSelectionParameters("degree")
	param_power_kernel_degree.build_values(1.0, 2.0, R_LINEAR)
	param_power_kernel.append_child(param_power_kernel_degree)

	metric=MinkowskiMetric(10)

	# print all parameter available for modelselection
	# Dont worry if yours is not included, simply write to the mailing list
	metric.print_modsel_params()

	param_power_kernel_metric1=ModelSelectionParameters("distance", metric)

	param_power_kernel.append_child(param_power_kernel_metric1)

	param_power_kernel_metric1_k=ModelSelectionParameters("k")
	param_power_kernel_metric1_k.build_values(1.0, 2.0, R_LINEAR)
	param_power_kernel_metric1.append_child(param_power_kernel_metric1_k)

	return root
开发者ID:ratschlab,项目名称:ASP,代码行数:51,代码来源:modelselection_grid_search_kernel.py


示例9: gaussian

def gaussian ():
	print 'Gaussian'
	from shogun.Features import RealFeatures
	from shogun.Kernel import GaussianKernel

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)
	width=1.9

	kernel=GaussianKernel(feats_train, feats_train, width)
	km_train=kernel.get_kernel_matrix()

	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
开发者ID:memimo,项目名称:shogun-liblinear,代码行数:14,代码来源:kernel_gaussian_modular.py


示例10: classifier_libsvm_minimal_modular

def classifier_libsvm_minimal_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_twoclass=label_traindat,width=2.1,C=1):
	from shogun.Features import RealFeatures, BinaryLabels
	from shogun.Classifier import LibSVM
	from shogun.Kernel import GaussianKernel

	feats_train=RealFeatures(fm_train_real);
	feats_test=RealFeatures(fm_test_real);
	kernel=GaussianKernel(feats_train, feats_train, width);

	labels=BinaryLabels(label_train_twoclass);
	svm=LibSVM(C, kernel, labels);
	svm.train();

	kernel.init(feats_train, feats_test);
	out=svm.apply().get_labels();
	testerr=mean(sign(out)!=label_train_twoclass)
开发者ID:Argram,项目名称:shogun,代码行数:16,代码来源:classifier_libsvm_minimal_modular.py


示例11: create_param_tree

def create_param_tree():
    from shogun.ModelSelection import ModelSelectionParameters, R_EXP, R_LINEAR
    from shogun.ModelSelection import ParameterCombination
    from shogun.Kernel import GaussianKernel, PolyKernel
    root=ModelSelectionParameters()

    tau=ModelSelectionParameters("tau")
    root.append_child(tau)

    # also R_LINEAR/R_LOG is available as type
    min=-1
    max=1
    type=R_EXP
    step=1.5
    base=2
    tau.build_values(min, max, type, step, base)

    # gaussian kernel with width
    gaussian_kernel=GaussianKernel()
    
    # print all parameter available for modelselection
    # Dont worry if yours is not included but, write to the mailing list
    gaussian_kernel.print_modsel_params()
    
    param_gaussian_kernel=ModelSelectionParameters("kernel", gaussian_kernel)
    gaussian_kernel_width=ModelSelectionParameters("width");
    gaussian_kernel_width.build_values(5.0, 8.0, R_EXP, 1.0, 2.0)
    param_gaussian_kernel.append_child(gaussian_kernel_width)
    root.append_child(param_gaussian_kernel)

    # polynomial kernel with degree
    poly_kernel=PolyKernel()
    
    # print all parameter available for modelselection
    # Dont worry if yours is not included but, write to the mailing list
    poly_kernel.print_modsel_params()
    
    param_poly_kernel=ModelSelectionParameters("kernel", poly_kernel)

    root.append_child(param_poly_kernel)

    # note that integers are used here
    param_poly_kernel_degree=ModelSelectionParameters("degree")
    param_poly_kernel_degree.build_values(1, 2, R_LINEAR)
    param_poly_kernel.append_child(param_poly_kernel_degree)

    return root
开发者ID:flxb,项目名称:shogun,代码行数:47,代码来源:modelselection_grid_search_krr.py


示例12: regression_kernel_ridge_modular

def regression_kernel_ridge_modular (fm_train=traindat,fm_test=testdat,label_train=label_traindat,width=0.8,tau=1e-6):

	from shogun.Features import Labels, RealFeatures
	from shogun.Kernel import GaussianKernel
	from shogun.Regression import KernelRidgeRegression

	feats_train=RealFeatures(fm_train)
	feats_test=RealFeatures(fm_test)

	kernel=GaussianKernel(feats_train, feats_train, width)

	labels=Labels(label_train)

	krr=KernelRidgeRegression(tau, kernel, labels)
	krr.train(feats_train)

	kernel.init(feats_train, feats_test)
	out = krr.apply().get_labels()
	return out,kernel,krr
开发者ID:harshitsyal,项目名称:shogun,代码行数:19,代码来源:regression_kernel_ridge_modular.py


示例13: classifier_multiclassmachine_modular

def classifier_multiclassmachine_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,width=2.1,C=1,epsilon=1e-5):
	from shogun.Features import RealFeatures, Labels
	from shogun.Kernel import GaussianKernel
	from shogun.Classifier import LibSVM, KernelMulticlassMachine, ONE_VS_REST_STRATEGY

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)
	kernel=GaussianKernel(feats_train, feats_train, width)

	labels=Labels(label_train_multiclass)

	classifier = LibSVM(C, kernel, labels)
	classifier.set_epsilon(epsilon)
	mc_classifier = KernelMulticlassMachine(ONE_VS_REST_STRATEGY,kernel,classifier,labels)
	mc_classifier.train()

	kernel.init(feats_train, feats_test)
	out = mc_classifier.apply().get_labels()
	return out
开发者ID:ashish-sadh,项目名称:shogun,代码行数:19,代码来源:classifier_multiclassmachine_modular.py


示例14: classifier_gmnpsvm_modular

def classifier_gmnpsvm_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,width=2.1,C=1,epsilon=1e-5):

	from shogun.Features import RealFeatures, MulticlassLabels
	from shogun.Kernel import GaussianKernel
	from shogun.Classifier import GMNPSVM

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)

	kernel=GaussianKernel(feats_train, feats_train, width)

	labels=MulticlassLabels(label_train_multiclass)

	svm=GMNPSVM(C, kernel, labels)
	svm.set_epsilon(epsilon)
	svm.train(feats_train)
	kernel.init(feats_train, feats_test)
	out=svm.apply(feats_test).get_labels()
	return out,kernel
开发者ID:behollis,项目名称:muViewBranch,代码行数:19,代码来源:classifier_gmnpsvm_modular.py


示例15: classifier_multiclasslibsvm_modular

def classifier_multiclasslibsvm_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,width=2.1,C=1,epsilon=1e-5):
	from shogun.Features import RealFeatures, Labels
	from shogun.Kernel import GaussianKernel
	from shogun.Classifier import MulticlassLibSVM

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)
	kernel=GaussianKernel(feats_train, feats_train, width)

	labels=Labels(label_train_multiclass)

	svm=MulticlassLibSVM(C, kernel, labels)
	svm.set_epsilon(epsilon)
	svm.train()

	kernel.init(feats_train, feats_test)
	out = svm.apply().get_labels()
	predictions = svm.apply()
	return predictions, svm, predictions.get_labels()
开发者ID:serialhex,项目名称:shogun,代码行数:19,代码来源:classifier_multiclasslibsvm_modular.py


示例16: mkl_binclass_modular

def mkl_binclass_modular (train_data, testdata, train_labels, test_labels, d1, d2):
        # create some Gaussian train/test matrix
    	tfeats = RealFeatures(train_data)
    	tkernel = GaussianKernel(128, d1)
    	tkernel.init(tfeats, tfeats)
    	K_train = tkernel.get_kernel_matrix()

    	pfeats = RealFeatures(test_data)
    	tkernel.init(tfeats, pfeats)
    	K_test = tkernel.get_kernel_matrix()

    	# create combined train features
    	feats_train = CombinedFeatures()
    	feats_train.append_feature_obj(RealFeatures(train_data))

    	# and corresponding combined kernel
    	kernel = CombinedKernel()
    	kernel.append_kernel(CustomKernel(K_train))
    	kernel.append_kernel(GaussianKernel(128, d2))
    	kernel.init(feats_train, feats_train)

    	# train mkl
    	labels = Labels(train_labels)
    	mkl = MKLClassification()
	
        # not to use svmlight
        mkl.set_interleaved_optimization_enabled(0)

    	# which norm to use for MKL
    	mkl.set_mkl_norm(2)

    	# set cost (neg, pos)
    	mkl.set_C(1, 1)

    	# set kernel and labels
    	mkl.set_kernel(kernel)
    	mkl.set_labels(labels)

    	# train
    	mkl.train()

    	# test
	# create combined test features
    	feats_pred = CombinedFeatures()
    	feats_pred.append_feature_obj(RealFeatures(test_data))

    	# and corresponding combined kernel
    	kernel = CombinedKernel()
    	kernel.append_kernel(CustomKernel(K_test))
    	kernel.append_kernel(GaussianKernel(128, d2))
    	kernel.init(feats_train, feats_pred)

	# and classify
    	mkl.set_kernel(kernel)
    	output = mkl.apply().get_labels()
	output = [1.0 if i>0 else -1.0 for i in output]
	accu = len(where(output == test_labels)[0]) / float(len(output))
	return accu
开发者ID:leiding326,项目名称:data-science,代码行数:58,代码来源:mkl_binclass_modular.py


示例17: classifier_libsvmoneclass_modular

def classifier_libsvmoneclass_modular (fm_train_real=traindat,fm_test_real=testdat,width=2.1,C=1,epsilon=1e-5):
	from shogun.Features import RealFeatures, Labels
	from shogun.Kernel import GaussianKernel
	from shogun.Classifier import LibSVMOneClass

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)

	kernel=GaussianKernel(feats_train, feats_train, width)

	svm=LibSVMOneClass(C, kernel)
	svm.set_epsilon(epsilon)
	svm.train()

	kernel.init(feats_train, feats_test)
	svm.apply().get_labels()

	predictions = svm.apply()
	return predictions, svm, predictions.get_labels()
开发者ID:Anshul-Bansal,项目名称:gsoc,代码行数:19,代码来源:classifier_libsvmoneclass_modular.py


示例18: regression_kernel_ridge_modular

def regression_kernel_ridge_modular (n=100,n_test=100, \
		x_range=6,x_range_test=10,noise_var=0.5,width=1, tau=1e-6, seed=1):

	from shogun.Features import RegressionLabels, RealFeatures
	from shogun.Kernel import GaussianKernel
	from shogun.Regression import KernelRidgeRegression

	# reproducable results
	random.seed(seed)

	# easy regression data: one dimensional noisy sine wave
	n=15
	n_test=100
	x_range_test=10
	noise_var=0.5;
	X=random.rand(1,n)*x_range
	
	X_test=array([[float(i)/n_test*x_range_test for i in range(n_test)]])
	Y_test=sin(X_test)
	Y=sin(X)+random.randn(n)*noise_var
	
	# shogun representation
	labels=RegressionLabels(Y[0])
	feats_train=RealFeatures(X)
	feats_test=RealFeatures(X_test)
	
	kernel=GaussianKernel(feats_train, feats_train, width)

	krr=KernelRidgeRegression(tau, kernel, labels)
	krr.train(feats_train)

	kernel.init(feats_train, feats_test)
	out = krr.apply().get_labels()
	
	# plot results
	#plot(X[0],Y[0],'x') # training observations
	#plot(X_test[0],Y_test[0],'-') # ground truth of test
	#plot(X_test[0],out, '-') # mean predictions of test
	#legend(["training", "ground truth", "mean predictions"])
	#show()
	
	return out,kernel,krr
开发者ID:Argram,项目名称:shogun,代码行数:42,代码来源:regression_kernel_ridge_modular.py


示例19: regression_libsvr_modular

def regression_libsvr_modular (svm_c=1, svr_param=0.1, n=100,n_test=100, \
		x_range=6,x_range_test=10,noise_var=0.5,width=1, seed=1):

	from shogun.Features import RegressionLabels, RealFeatures
	from shogun.Kernel import GaussianKernel
	from shogun.Regression import LibSVR, LIBSVR_NU_SVR, LIBSVR_EPSILON_SVR

	# reproducable results
	random.seed(seed)
	
	# easy regression data: one dimensional noisy sine wave
	n=15
	n_test=100
	x_range_test=10
	noise_var=0.5;
	X=random.rand(1,n)*x_range
	
	X_test=array([[float(i)/n_test*x_range_test for i in range(n_test)]])
	Y_test=sin(X_test)
	Y=sin(X)+random.randn(n)*noise_var
	
	# shogun representation
	labels=RegressionLabels(Y[0])
	feats_train=RealFeatures(X)
	feats_test=RealFeatures(X_test)

	kernel=GaussianKernel(feats_train, feats_train, width)
	
	# two svr models: epsilon and nu
	svr_epsilon=LibSVR(svm_c, svr_param, kernel, labels, LIBSVR_EPSILON_SVR)
	svr_epsilon.train()
	svr_nu=LibSVR(svm_c, svr_param, kernel, labels, LIBSVR_NU_SVR)
	svr_nu.train()

	# predictions
	kernel.init(feats_train, feats_test)
	out1_epsilon=svr_epsilon.apply().get_labels()
	out2_epsilon=svr_epsilon.apply(feats_test).get_labels()
	out1_nu=svr_epsilon.apply().get_labels()
	out2_nu=svr_epsilon.apply(feats_test).get_labels()

	return out1_epsilon,out2_epsilon,out1_nu,out2_nu ,kernel
开发者ID:Argram,项目名称:shogun,代码行数:42,代码来源:regression_libsvr_modular.py


示例20: classifier_multiclassmachine_modular

def classifier_multiclassmachine_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,width=2.1,C=1,epsilon=1e-5):
	from shogun.Features import RealFeatures, MulticlassLabels
	from shogun.Kernel import GaussianKernel
	from shogun.Classifier import LibSVM, KernelMulticlassMachine, MulticlassOneVsRestStrategy

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)
	kernel=GaussianKernel(feats_train, feats_train, width)

	labels=MulticlassLabels(label_train_multiclass)

	classifier = LibSVM()
	classifier.set_epsilon(epsilon)
	#print labels.get_labels()
	mc_classifier = KernelMulticlassMachine(MulticlassOneVsRestStrategy(),kernel,classifier,labels)
	mc_classifier.train()

	kernel.init(feats_train, feats_test)
	out = mc_classifier.apply().get_labels()
	return out
开发者ID:lgatto,项目名称:shogun,代码行数:20,代码来源:classifier_multiclassmachine_modular.py



注:本文中的shogun.Kernel.GaussianKernel类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python module_registry.replace_modules函数代码示例发布时间:2022-05-27
下一篇:
Python Kernel.CombinedKernel类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap