• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python cPickle.dump函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中six.moves.cPickle.dump函数的典型用法代码示例。如果您正苦于以下问题:Python dump函数的具体用法?Python dump怎么用?Python dump使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了dump函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_complete

def test_complete():
    fig = plt.figure('Figure with a label?', figsize=(10, 6))

    plt.suptitle('Can you fit any more in a figure?')

    # make some arbitrary data
    x, y = np.arange(8), np.arange(10)
    data = u = v = np.linspace(0, 10, 80).reshape(10, 8)
    v = np.sin(v * -0.6)

    plt.subplot(3, 3, 1)
    plt.plot(list(xrange(10)))

    plt.subplot(3, 3, 2)
    plt.contourf(data, hatches=['//', 'ooo'])
    plt.colorbar()

    plt.subplot(3, 3, 3)
    plt.pcolormesh(data)

    plt.subplot(3, 3, 4)
    plt.imshow(data)

    plt.subplot(3, 3, 5)
    plt.pcolor(data)

    plt.subplot(3, 3, 6)
    plt.streamplot(x, y, u, v)

    plt.subplot(3, 3, 7)
    plt.quiver(x, y, u, v)

    plt.subplot(3, 3, 8)
    plt.scatter(x, x**2, label='$x^2$')
    plt.legend(loc='upper left')

    plt.subplot(3, 3, 9)
    plt.errorbar(x, x * -0.5, xerr=0.2, yerr=0.4)

    ###### plotting is done, now test its pickle-ability #########

    # Uncomment to debug any unpicklable objects. This is slow (~200 seconds).
#    recursive_pickle(fig)

    result_fh = BytesIO()
    pickle.dump(fig, result_fh, pickle.HIGHEST_PROTOCOL)

    plt.close('all')

    # make doubly sure that there are no figures left
    assert_equal(plt._pylab_helpers.Gcf.figs, {})

    # wind back the fh and load in the figure
    result_fh.seek(0)
    fig = pickle.load(result_fh)

    # make sure there is now a figure manager
    assert_not_equal(plt._pylab_helpers.Gcf.figs, {})

    assert_equal(fig.get_label(), 'Figure with a label?')
开发者ID:Cassie90,项目名称:matplotlib,代码行数:60,代码来源:test_pickle.py


示例2: train_model

def train_model(args):
	data_loader = InputHandler(args.data_dir, args.batch_size, args.result_length)
	args.vocabulary_size = data_loader.vocabulary_size

	# Save the original files, so that we can load the model when sampling
	with open(os.path.join(args.snapshots_dir, CONFIGURATION_FILE), 'wb') as f:
		cPickle.dump(args, f)
	with open(os.path.join(args.snapshots_dir, WORDS_VOCABULARY_FILE), 'wb') as f:
		cPickle.dump((data_loader.words, data_loader.vocabulary), f)

	model = RNNModel(args.rnn_size, args.network_depth, args.batch_size, args.result_length,
					 args.vocabulary_size, args.gradient)

	with tf.Session() as session:
		tf.initialize_all_variables().run()
		saver = tf.train.Saver(tf.all_variables())
		for e in range(args.num_epochs):
			session.run(tf.assign(model.lr, args.training_rate * (args.decay_rate ** e)))
			data_loader.set_batch_pointer_to_zero()
			state = model.initial_state.eval()

			for b in range(data_loader.num_batches):
				x, y = data_loader.get_next_batch()
				feed = {model.input_data: x, model.targets: y, model.initial_state: state}
				train_loss, state, _ = session.run([model.cost, model.final_state, model.train_op], feed)
				if (e * data_loader.num_batches + b) % args.snapshot == 0 \
						or (e==args.num_epochs-1 and b == data_loader.num_batches-1): # save for the last result
					snapshot_path = os.path.join(args.snapshots_dir, 'model.ckpt')
					saver.save(session, snapshot_path, global_step = e * data_loader.num_batches + b)
					print("Model snapshot was taken to {}".format(snapshot_path))
开发者ID:lidanh,项目名称:game-of-thrones-tweets-generator,代码行数:30,代码来源:train_rnn_model.py


示例3: _run_tmva_training

    def _run_tmva_training(self, info):
        """
        Run subprocess to train tmva factory

        :param info: class with additional information
        """
        tmva_process = subprocess.Popen(
            'cd {directory}; {executable} -c "from rep.estimators import _tmvaFactory; _tmvaFactory.main()"'.format(
                directory=info.directory,
                executable=sys.executable),
            stdin=PIPE, stdout=PIPE, stderr=subprocess.STDOUT,
            shell=True)

        cPickle.dump(self, tmva_process.stdin)
        cPickle.dump(info, tmva_process.stdin)
        stdout, stderr = tmva_process.communicate()
        assert tmva_process.returncode == 0, \
            'ERROR: TMVA process is incorrect finished \n LOG: %s \n %s' % (stderr, stdout)

        assert 'TrainTree' in root_numpy.list_trees(os.path.join(info.directory, info.tmva_root)), \
            'ERROR: Result file has not TrainTree'

        xml_filename = os.path.join(info.directory, 'weights',
                                    '{job}_{name}.weights.xml'.format(job=info.tmva_job, name=self._method_name))
        with open(xml_filename, 'r') as xml_file:
            self.formula_xml = xml_file.read()
开发者ID:0x0all,项目名称:rep,代码行数:26,代码来源:tmva.py


示例4: setUp

 def setUp(self):
     numpy.random.seed(9 + 5 + 2015)
     self.train_features_mock = numpy.random.randint(
         0, 256, (10, 3, 32, 32)).astype('uint8')
     self.train_fine_labels_mock = numpy.random.randint(
         0, 100, (10,)).astype('uint8')
     self.train_coarse_labels_mock = numpy.random.randint(
         0, 20, (10,)).astype('uint8')
     self.test_features_mock = numpy.random.randint(
         0, 256, (10, 3, 32, 32)).astype('uint8')
     self.test_fine_labels_mock = numpy.random.randint(
         0, 100, (10,)).astype('uint8')
     self.test_coarse_labels_mock = numpy.random.randint(
         0, 20, (10,)).astype('uint8')
     self.tempdir = tempfile.mkdtemp()
     cwd = os.getcwd()
     os.chdir(self.tempdir)
     os.mkdir('cifar-100-python')
     filename = os.path.join('cifar-100-python', 'train')
     with open(filename, 'wb') as f:
         cPickle.dump({'data': self.train_features_mock.reshape((10, -1)),
                       'fine_labels': self.train_fine_labels_mock,
                       'coarse_labels': self.train_coarse_labels_mock}, f)
     filename = os.path.join('cifar-100-python', 'test')
     with open(filename, 'wb') as f:
         cPickle.dump({'data': self.test_features_mock.reshape((10, -1)),
                       'fine_labels': self.test_fine_labels_mock,
                       'coarse_labels': self.test_coarse_labels_mock}, f)
     with tarfile.open('cifar-100-python.tar.gz', 'w:gz') as tar_file:
         tar_file.add('cifar-100-python')
     os.chdir(cwd)
开发者ID:DavidDJChen,项目名称:fuel,代码行数:31,代码来源:test_converters.py


示例5: append_flipped_rois

    def append_flipped_rois(self):
        """
        This method is irrelevant with database, so implement here
        Append flipped images to ROI database
        Note this method doesn't actually flip the 'image', it flip
        boxes instead
        """
        cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.TRAIN.PROPOSAL_METHOD + '_roidb_flip.pkl')
        if os.path.exists(cache_file):
            with open(cache_file, 'rb') as fid:
                flip_roidb = cPickle.load(fid)
            print('{} gt flipped roidb loaded from {}'.format(self.name, cache_file))
        else:
            num_images = self.num_images
            widths = [PIL.Image.open(self.image_path_at(i)).size[0]
                      for i in range(num_images)]
            flip_roidb = []
            for i in range(num_images):
                boxes = self.roidb[i]['boxes'].copy()
                oldx1 = boxes[:, 0].copy()
                oldx2 = boxes[:, 2].copy()
                boxes[:, 0] = widths[i] - oldx2 - 1
                boxes[:, 2] = widths[i] - oldx1 - 1
                assert (boxes[:, 2] >= boxes[:, 0]).all()
                entry = {'boxes': boxes,
                         'gt_overlaps': self.roidb[i]['gt_overlaps'],
                         'gt_classes': self.roidb[i]['gt_classes'],
                         'flipped': True}
                flip_roidb.append(entry)
            with open(cache_file, 'wb') as fid:
                cPickle.dump(flip_roidb, fid, cPickle.HIGHEST_PROTOCOL)
            print('wrote gt flipped roidb to {}'.format(cache_file))

        self.roidb.extend(flip_roidb)
        self._image_index *= 2
开发者ID:delftrobotics,项目名称:MNC,代码行数:35,代码来源:pascal_voc_det.py


示例6: fetch_train_thoughts

def fetch_train_thoughts(m, pcs, batches, name="trainthoughts"):
    all_thoughts = []
    for i in range(batches):
        ipt, opt = multi_training.getPieceBatch(pcs)
        thoughts = m.update_thought_fun(ipt, opt)
        all_thoughts.append((ipt, opt, thoughts))
    pickle.dump(all_thoughts, open('output/' + name + '.p', 'wb'))
开发者ID:ruohoruotsi,项目名称:biaxial-rnn-music-composition,代码行数:7,代码来源:main.py


示例7: create_pickle

def create_pickle(data_folders, force=False):
    """Function for converting data into separate pickle files for each label.
    data_folders is the list of folder names of all classes.
    Set force = False if pickle files are already created and are not to be overwritten.
    Set force = True to overwrite already created pickle files.
    """
    # List of names of pickle files for individual classes
    dataset_names = []

    for folder in data_folders:
        set_filename = folder + '.pickle'
        dataset_names.append(set_filename)

        if os.path.exists(set_filename) and not force:
            print('%s already present - Skipping pickling.' % set_filename)
        else:
            print('Pickling %s.' % set_filename)
            dataset = load_emotion(folder)
            try:
                with open(set_filename, 'wb') as f:
                    pickle.dump(dataset, f, pickle.HIGHEST_PROTOCOL)
            except Exception as e:
                print('Unable to save data to', set_filename, ':', e)

    return dataset_names
开发者ID:robocomp,项目名称:robocomp-robolab,代码行数:25,代码来源:preprocess.py


示例8: get_abinit_variables

def get_abinit_variables():
    """Returns the database with the description of the ABINIT variables."""
    global __VARS_DATABASE

    if __VARS_DATABASE is None: 
        pickle_file = os.path.join(os.getenv("HOME"), ".abinit", "abipy", "abinit_vars.pickle")
        
        if os.path.exists(pickle_file): 
            #print("Reading from pickle")
            with open(pickle_file, "rb") as fh:
                __VARS_DATABASE = pickle.load(fh)

        else:
            # Make dir and file if not present.
            if not os.path.exists(os.path.dirname(pickle_file)):
                os.makedirs(os.path.dirname(pickle_file))

            #print("Reading database from YAML file and generating pickle version. It may take a while...")
            from abipy import data as abidata
            yaml_file = abidata.var_file('abinit_vars.yml')
            with open(yaml_file, "rt") as fh:
                var_list = yaml.load(fh)

            # Build ordered dict with variables in alphabetical order.
            var_list = sorted(var_list, key=lambda v: v.varname)
            __VARS_DATABASE = VariableDatabase([(v.varname, v) for v in var_list])

            # Save object to pickle file so that can we can reload it from pickle instead of yaml (slower)
            with open(pickle_file, "wb") as fh:
                pickle.dump(__VARS_DATABASE, fh)

    return __VARS_DATABASE
开发者ID:temok-mx,项目名称:abipy,代码行数:32,代码来源:abivars_db.py


示例9: load_additional_args

    def load_additional_args(self, config):
        """
        """
        self.set_attribute(config, 'request_powermin', 'General',
                           'power min', cast='float')
        self.set_attribute(config, 'request_powermax', 'General',
                           'power max', cast='float')

        # read in the coefficients from file
        coeffs = self.config_get(config, 'PowerMeter', 'coefficients')
        if coeffs is not None:
            self.power_meter_calibration = MeterCalibration(coeffs)

        coeffs = self.config_get(config, 'PowerOutput', 'coefficients')
        if coeffs is not None:

            p = os.path.join(paths.hidden_dir, '{}_power_calibration'.format(self.name.split('.')[0]))

            obj = MeterCalibration(coeffs)
            # dump to the hidden dir
            # the manager will use it directly
            try:
                self.info('loading power calibration from config file')
                with open(p, 'wb') as f:
                    pickle.dump(obj, f)
            except (OSError, pickle.PickleError):
                self.warning('failed loading power output calibration')

        return super(FusionsCO2LogicBoard, self).load_additional_args(config)
开发者ID:NMGRL,项目名称:pychron,代码行数:29,代码来源:fusions_co2_logic_board.py


示例10: save_classifier

def save_classifier(cl, fn, use_joblib=True, **kwargs):
    """Save a classifier to disk.

    Parameters
    ----------
    cl : classifier object
        Pickleable object or a classify.VigraRandomForest object.
    fn : string
        Writeable path/filename.
    use_joblib : bool, optional
        Whether to prefer joblib persistence to pickle.
    kwargs : keyword arguments
        Keyword arguments to be passed on to either `pck.dump` or 
        `joblib.dump`.

    Returns
    -------
    None

    Notes
    -----
    For joblib persistence, `compress=3` is the default.
    """
    if isinstance(cl, VigraRandomForest):
        cl.save_to_disk(fn)
    elif use_joblib and sklearn_available:
        if "compress" not in kwargs:
            kwargs["compress"] = 3
        joblib.dump(cl, fn, **kwargs)
    else:
        with open(fn, "wb") as f:
            pck.dump(cl, f, protocol=kwargs.get("protocol", 2))
开发者ID:jefferis,项目名称:gala,代码行数:32,代码来源:classify.py


示例11: _run_tmva_predict

    def _run_tmva_predict(info, data):
        """
        Run subprocess to train tmva factory

        :param info: class with additional information
        """
        tmva_process = subprocess.Popen(
            'cd "{directory}"; {executable} -c "from rep.estimators import _tmvaReader; _tmvaReader.main()"'.format(
                directory=info.directory,
                executable=sys.executable),
            stdin=PIPE, stdout=PIPE, stderr=subprocess.STDOUT,
            shell=True)

        try:
            cPickle.dump(info, tmva_process.stdin)
            cPickle.dump(data, tmva_process.stdin)
        except:
            # Doing nothing, there is check later.
            pass
        stdout, stderr = tmva_process.communicate()
        assert tmva_process.returncode == 0, \
            'ERROR: TMVA process is incorrect finished \n LOG: %s \n %s' % (stderr, stdout)
        with open(info.result_filename, 'rb') as predictions_file:
            predictions = cPickle.load(predictions_file)
        return predictions
开发者ID:jithsjoy,项目名称:rep,代码行数:25,代码来源:tmva.py


示例12: _run_tmva_training

    def _run_tmva_training(self, info, X, y, sample_weight):
        """
        Run subprocess to train tmva factory

        :param info: class with additional information
        """
        tmva_process = subprocess.Popen(
            'cd "{directory}"; {executable} -c "from rep.estimators import _tmvaFactory; _tmvaFactory.main()"'.format(
                directory=info.directory,
                executable=sys.executable),
            stdin=PIPE, stdout=PIPE, stderr=subprocess.STDOUT,
            shell=True)

        try:
            cPickle.dump(self, tmva_process.stdin)
            cPickle.dump(info, tmva_process.stdin)
            cPickle.dump(X, tmva_process.stdin)
            cPickle.dump(y, tmva_process.stdin)
            cPickle.dump(sample_weight, tmva_process.stdin)
        except:
            # continuing, next we check the output of process
            pass
        stdout, stderr = tmva_process.communicate()
        assert tmva_process.returncode == 0, \
            'ERROR: TMVA process is incorrect finished \n LOG: %s \n %s' % (stderr, stdout)

        xml_filename = os.path.join(info.directory, 'weights',
                                    '{job}_{name}.weights.xml'.format(job=info.tmva_job, name=self._method_name))
        with open(xml_filename, 'r') as xml_file:
            self.formula_xml = xml_file.read()
开发者ID:jithsjoy,项目名称:rep,代码行数:30,代码来源:tmva.py


示例13: train_loop

def train_loop():
    graph_generated = False
    while True:
        while data_q.empty():
            time.sleep(0.1)
        inp = data_q.get()
        if inp == 'end':  # quit
            res_q.put('end')
            break
        elif inp == 'train':  # restart training
            res_q.put('train')
            train = True
            continue
        elif inp == 'val':  # start validation
            pickle.dump(model, open(LOGPATH + 'model', 'wb'), -1)
            res_q.put('val')
            train = False
            continue


        x = xp.asarray(inp[0])
        y = xp.asarray(inp[1])

        if train:
            optimizer.zero_grads()
            loss = model.forward(x, y, train=True)
            loss.backward()
            optimizer.update()

        else:
            loss = model.forward(x, y, train=False)

        res_q.put(float(cuda.to_cpu(loss.data)))
        del loss, x, y
开发者ID:mtjuney,项目名称:train_depth,代码行数:34,代码来源:experiment3.py


示例14: parse_ctgs

def parse_ctgs(bestedges, frgtoctg):
    cache = "frgtoctg.cache"
    if need_update(frgtoctg, cache):
        reads_to_ctgs = {}
        frgtodeg = frgtoctg.replace(".frgctg", ".frgdeg")
        iidtouid = frgtoctg.replace(".posmap.frgctg", ".iidtouid")
        fp = open(iidtouid)
        frgstore = {}
        for row in fp:
            tag, iid, uid = row.split()
            if tag == "FRG":
                frgstore[uid] = int(iid)

        for pf, f in zip(("ctg", "deg"), (frgtoctg, frgtodeg)):
            fp = open(f)
            logging.debug("Parse posmap file `{0}`".format(f))
            for row in fp:
                frg, ctg = row.split()[:2]
                frg = frgstore[frg]
                reads_to_ctgs[frg] = pf + ctg
            logging.debug("Loaded mapping: {0}".format(len(reads_to_ctgs)))

        fw = open(cache, "w")
        dump(reads_to_ctgs, fw)
        fw.close()
        logging.debug("Contig mapping written to `{0}`".format(cache))

    reads_to_ctgs = load(open(cache))
    logging.debug("Contig mapping loaded from `{0}`".format(cache))
    return reads_to_ctgs
开发者ID:tanghaibao,项目名称:jcvi,代码行数:30,代码来源:ca.py


示例15: train

def train(epoch_num, output_dir, *args):

    model_name = args[0][0]
    file       = args[0][1]
    log_name   = "logs/" + model_name + ".log"
    model_name = output_dir + "training/" + model_name

    # direct stdout to log file
    log_file = open(log_name, 'a+')

    # TODO: gram_num here is a magic number!
    train_chars = LargeCharFeatureGenerator(file, 10);

    if os.path.isfile(model_name):
        with open(model_name,'rb') as f:
            model = cPickle.load(f)
    else:
        model = SimpleLSTM(train_chars.vocab_size)

    avg_loss = train_with_sgd(model,
                              train_chars,
                              nepoch=_NEPOCH,
                              learning_rate=_LEARNING_RATE,
                              mini_batch_size=_BATCH_SIZE)

    with open(model_name, 'wb') as f:
        cPickle.dump(model, f, protocol=cPickle.HIGHEST_PROTOCOL)

    log_file.write(avg_loss)
    log_file.close()
开发者ID:alikewmk,项目名称:simple_lstm,代码行数:30,代码来源:batch_processor.py


示例16: train

def train(args):
    data_loader = TextLoader(args.data_dir, args.batch_size, args.seq_length)
    args.vocab_size = data_loader.vocab_size

    with open(os.path.join(args.save_dir, 'config.pkl'), 'wb') as f:
        cPickle.dump(args, f)
    with open(os.path.join(args.save_dir, 'chars_vocab.pkl'), 'wb') as f:
        cPickle.dump((data_loader.chars, data_loader.vocab), f)

    model = Model(args)

    with tf.Session() as sess:
        tf.initialize_all_variables().run()
        saver = tf.train.Saver(tf.all_variables())
        for e in range(args.num_epochs):
            sess.run(tf.assign(model.lr, args.learning_rate * (args.decay_rate ** e)))
            data_loader.reset_batch_pointer()
            state = model.initial_state.eval()
            for b in range(data_loader.num_batches):
                start = time.time()
                x, y = data_loader.next_batch()
                feed = {model.input_data: x, model.targets: y, model.initial_state: state}
                train_loss, state, _ = sess.run([model.cost, model.final_state, model.train_op], feed)
                end = time.time()
                print("{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \
                    .format(e * data_loader.num_batches + b,
                            args.num_epochs * data_loader.num_batches,
                            e, train_loss, end - start))
                if (e * data_loader.num_batches + b) % args.save_every == 0:
                    checkpoint_path = os.path.join(args.save_dir, 'model.ckpt')
                    saver.save(sess, checkpoint_path, global_step = e * data_loader.num_batches + b)
                    print("model saved to {}".format(checkpoint_path))
开发者ID:DeepLearningProjects,项目名称:poem-bot,代码行数:32,代码来源:train.py


示例17: create_content_dir

def create_content_dir():
    """
    Make empty files for colnames.pkl, colnames_all.pkl and archfiles.db3
    for the current content type ft['content'].

    This only works within the development (git) directory in conjunction
    with the --create option.
    """
    dirname = msid_files['contentdir'].abs
    if not os.path.exists(dirname):
        logger.info('Making directory {}'.format(dirname))
        os.makedirs(dirname)

    empty = set()
    if not os.path.exists(msid_files['colnames'].abs):
        with open(msid_files['colnames'].abs, 'wb') as f:
            pickle.dump(empty, f, protocol=0)
    if not os.path.exists(msid_files['colnames_all'].abs):
        with open(msid_files['colnames_all'].abs, 'wb') as f:
            pickle.dump(empty, f, protocol=0)

    if not os.path.exists(msid_files['archfiles'].abs):
        archfiles_def = open('archfiles_def.sql').read()
        filename = msid_files['archfiles'].abs
        logger.info('Creating db {}'.format(filename))
        db = Ska.DBI.DBI(dbi='sqlite', server=filename, autocommit=False)
        db.execute(archfiles_def)
        db.commit()
开发者ID:sot,项目名称:eng_archive,代码行数:28,代码来源:update_archive.py


示例18: write_nl

def write_nl(model, nl_filename, **kwds):
    """
    Writes a Pyomo model in NL file format and stores
    information about the symbol map that allows it to be
    recovered at a later time for a Pyomo model with
    matching component names.
    """
    symbol_map_filename = nl_filename+".symbol_map.pickle"

    # write the model and obtain the symbol_map
    _, smap_id = model.write(nl_filename,
                             format=ProblemFormat.nl,
                             io_options=kwds)
    symbol_map = model.solutions.symbol_map[smap_id]

    # save a persistent form of the symbol_map (using pickle) by
    # storing the NL file label with a ComponentUID, which is
    # an efficient lookup code for model components (created
    # by John Siirola)
    tmp_buffer = {} # this makes the process faster
    symbol_cuid_pairs = tuple(
        (symbol, ComponentUID(var_weakref(), cuid_buffer=tmp_buffer))
        for symbol, var_weakref in symbol_map.bySymbol.items())
    with open(symbol_map_filename, "wb") as f:
        pickle.dump(symbol_cuid_pairs, f)

    return symbol_map_filename
开发者ID:EWilson2016,项目名称:PyomoGallery,代码行数:27,代码来源:write.py


示例19: store_and_or_load_data

def store_and_or_load_data(outputdir, dataset, data_dir):
    save_path = os.path.join(outputdir, dataset + '_Manager.pkl')
    if not os.path.exists(save_path):
        lock = lockfile.LockFile(save_path)
        while not lock.i_am_locking():
            try:
                lock.acquire(timeout=60)  # wait up to 60 seconds
            except lockfile.LockTimeout:
                lock.break_lock()
                lock.acquire()
        print('I locked', lock.path)
        # It is not yet sure, whether the file already exists
        try:
            if not os.path.exists(save_path):
                D = SimpleDataManager(dataset, data_dir, verbose=True)
                fh = open(save_path, 'w')
                pickle.dump(D, fh, -1)
                fh.close()
            else:
                D = pickle.load(open(save_path, 'r'))
        except Exception:
            raise
        finally:
            lock.release()
    else:
        D = pickle.load(open(save_path, 'r'))
        print('Loaded data')
    return D
开发者ID:WarmongeR1,项目名称:auto-sklearn,代码行数:28,代码来源:wrapper_for_SMAC.py


示例20: save_model

    def save_model(self, model, idx, seed):
        # This should fail if no models directory exists
        filepath = os.path.join(self.get_model_dir(),
                                '%s.%s.model' % (seed, idx))

        with open(filepath, 'wb') as fh:
            pickle.dump(model, fh, -1)
开发者ID:Mahgoobi,项目名称:auto-sklearn,代码行数:7,代码来源:backend.py



注:本文中的six.moves.cPickle.dump函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python cPickle.dumps函数代码示例发布时间:2022-05-27
下一篇:
Python builtins.min函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap