本文整理汇总了Python中skimage.img_as_float函数的典型用法代码示例。如果您正苦于以下问题:Python img_as_float函数的具体用法?Python img_as_float怎么用?Python img_as_float使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了img_as_float函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: mpl_image_to_rgba
def mpl_image_to_rgba(mpl_image):
"""Return RGB image from the given matplotlib image object.
Each image in a matplotlib figure has its own colormap and normalization
function. Return RGBA (RGB + alpha channel) image with float dtype.
Parameters
----------
mpl_image : matplotlib.image.AxesImage object
The image being converted.
Returns
-------
img : array of float, shape (M, N, 4)
An image of float values in [0, 1].
"""
image = mpl_image.get_array()
if image.ndim == 2:
input_range = (mpl_image.norm.vmin, mpl_image.norm.vmax)
image = rescale_intensity(image, in_range=input_range)
# cmap complains on bool arrays
image = mpl_image.cmap(img_as_float(image))
elif image.ndim == 3 and image.shape[2] == 3:
# add alpha channel if it's missing
image = np.dstack((image, np.ones_like(image)))
return img_as_float(image)
开发者ID:almarklein,项目名称:scikit-image,代码行数:26,代码来源:core.py
示例2: crop_image
def crop_image(x, target_height=227, target_width=227):
if isinstance(x, str):
image = skimage.img_as_float(skimage.io.imread(x)).astype(np.float32)
else:
image = skimage.img_as_float(x).astype(np.float32)
if len(image.shape) == 2:
image = np.tile(image[:,:,None], 3)
elif len(image.shape) == 4:
image = image[:,:,:,0]
height, width, rgb = image.shape
if width == height:
resized_image = cv2.resize(image, (target_height,target_width))
elif height < width:
resized_image = cv2.resize(image, (int(width * float(target_height)/height), target_width))
cropping_length = int((resized_image.shape[1] - target_height) / 2)
resized_image = resized_image[:,cropping_length:resized_image.shape[1] - cropping_length]
else:
resized_image = cv2.resize(image, (target_height, int(height * float(target_width) / width)))
cropping_length = int((resized_image.shape[0] - target_width) / 2)
resized_image = resized_image[cropping_length:resized_image.shape[0] - cropping_length,:]
return cv2.resize(resized_image, (target_height, target_width))
开发者ID:jazzsaxmafia,项目名称:video_recognition,代码行数:27,代码来源:cnn_util.py
示例3: __init__
def __init__(self, headers, lightfield_name, darkfield_name):
"""
Load images from a detector for given Header(s). Subtract
dark images from each corresponding light image automatically.
Parameters
----------
headers : Header or list of Headers
lightfield_name : str
alias (data key) of lightfield images
darkfield_name : str
alias (data key) of darkfield images
Example
-------
>>> header = DataBroker[-1]
>>> images = SubtractedImages(header, 'my_lightfield', 'my_darkfield')
>>> for image in images:
# do something
"""
self.light = Images(headers, lightfield_name)
self.dark = Images(headers, darkfield_name)
if len(self.light) != len(self.dark):
raise ValueError("The streams from {0} and {1} have unequal "
"length and cannot be automatically subtracted.")
self._len = len(self.light)
example = img_as_float(self.light[0]) - img_as_float(self.dark[0])
self._dtype = example.dtype
self._shape = example.shape
开发者ID:giltis,项目名称:dataportal,代码行数:29,代码来源:pims_readers.py
示例4: transform_image
def transform_image(image, params=[], tags=[]):
image = apply_tags(image, tags)
image = extract_roi(image, params)
for k,v in params:
if k=='saturation':
saturation = float(v)
image = scale_saturation(image, saturation)
elif k=='gamma':
gamma = float(v)
image = np.power(img_as_float(image), gamma)
elif k=='brightness':
b = float(v)
image = (img_as_float(image) * b).clip(0.,1.)
elif k=='width':
scale = float(v) / image.shape[1]
image = rescale(image, scale)
elif k=='maxwidth':
w = float(v)
if image.shape[1] > w:
scale = w / image.shape[1]
image = rescale(image, scale)
elif k=='height':
scale = float(v) / image.shape[0]
image = rescale(image, scale)
elif k=='maxheight':
h = float(v)
if image.shape[0] > h:
scale = h / image.shape[0]
image = rescale(image, scale)
return image
开发者ID:joefutrelle,项目名称:habcam-image-service,代码行数:30,代码来源:transform.py
示例5: repeated_sales
def repeated_sales(df, artistname, artname, r2thresh=7000, fftr2thresh=10000, IMAGES_DIR='/home/ryan/asi_images/'):
"""
Takes a dataframe, artistname and artname and tries to decide, via image matching, if there is a repeat sale. Returns a dict of lot_ids, each entry a list of repeat sales
"""
artdf = df[(df['artistID']==artistname) & (df['artTitle']==artname)]
artdf.images = artdf.images.apply(getpath)
paths = artdf[['_id','images']].dropna()
id_dict = {}
img_buffer = {}
already_ordered = []
for i, path_i in paths.values:
id_dict[i] = []
img_buffer[i] = img_as_float(rgb2gray(resize(imread(IMAGES_DIR + path_i), (300,300))))
for j, path_j in paths[paths._id != i].values:
if j > i and j not in already_ordered:
if j not in img_buffer.keys():
img_buffer[j] = img_as_float(rgb2gray(resize(imread(IMAGES_DIR + path_j), (300,300))))
if norm(img_buffer[i] - img_buffer[j]) < r2thresh and\
norm(fft2(img_buffer[i]) - fft2(img_buffer[j])) < fftr2thresh:
id_dict[i].append(j)
already_ordered.append(j)
for key in id_dict.keys():
if id_dict[key] == []:
id_dict.pop(key)
return id_dict
开发者ID:rhsimplex,项目名称:artsift,代码行数:26,代码来源:art_utils.py
示例6: main
def main():
img = imread('givenImg.png')
img = img_as_float(img)
subplot(1, 3, 1)
imshow(imread('givenImg.png'))
title('Given')
figure()
gray()
"""
>>>img = imread('givenImg.png')
>>>img = img_as_float(img)
>>>energy=dual_gradient_energy(img)
>>>minval,minIndex,sOfIJ=find_seam(img,energy)
>>>print minval
0.488050766739
"""
for i in range(50): #Plot 50 Seams
energy = dual_gradient_energy(img)
minval, minIndex, sOfIJ = find_seam(img, energy)
img = plot_seam(img, minIndex, sOfIJ)
subplot(1, 3, 2)
imshow(img)
title('Seam Plot')
img = imread('givenImg.png')
img = img_as_float(img)
for i in range(50): #Delete 50 Seams
energy = dual_gradient_energy(img)
minval, minIndex, sOfIJ = find_seam(img, energy)
print minval
img = remove_seam(img, minIndex, sOfIJ)
subplot(1, 3, 3)
imshow(img)
title('Resized Image')
show()
pass
开发者ID:mpatward,项目名称:Seam-Carving-Algorithm,代码行数:35,代码来源:seamcarver.py
示例7: readTrainingFragment
def readTrainingFragment(datapath, fragList, imgSize=(1,224,224), meanImage=[], classNum=10):
ch, ih, iw = imgSize
fragLen = len(fragList)
if ch == 1:
X = np.zeros((fragLen, 1, ih, iw))
Y = np.zeros((fragLen), dtype=int)
idx = -1
print('reading data')
for f in fragList:
idx += 1
# print(f)
label = np.int(f[0])
img = skimage.img_as_float(skio.imread(datapath+f) )
# img -= meanImage
X[idx, 0, ...] = img
Y[idx] = label
elif ch == 3:
X = np.zeros((fragLen, 3, ih, iw))
Y = np.zeros((fragLen), dtype=int)
idx = -1
print('reading data')
for f in fragList:
idx += 1
label = np.int(f[0])
img = skimage.img_as_float(skio.imread(datapath+f) )
img = img.swapaxes(1, 2)
img = img.swapaxes(0, 1)
# img -= meanImage
X[idx, ...] = img
Y[idx] = label
X -= np.tile(meanImage, [fragLen, 1, 1, 1])
Y = np_utils.to_categorical(Y, classNum)
return X, Y
开发者ID:fucusy,项目名称:kaggle-state-farm-distracted-driver-detection,代码行数:33,代码来源:DataReader_KERAS.py
示例8: readTestingFragment
def readTestingFragment(datapath, fragList, imgSize=(1,224,224), meanImage=[]):
ch, ih, iw = imgSize
fragLen = len(fragList)
if ch == 1:
X = np.zeros((fragLen, 1, ih, iw))
idx = -1
print('reading data')
for f in fragList:
idx += 1
# print(f)
img = skimage.img_as_float(skio.imread(datapath+f) )
# img -= meanImage
X[idx, 0, ...] = img
elif ch == 3:
X = np.zeros((fragLen, 3, ih, iw))
idx = -1
print('reading data')
for f in fragList:
idx += 1
img = skimage.img_as_float(skio.imread(datapath+f) )
img = img.swapaxes(1, 2)
img = img.swapaxes(0, 1)
# img -= meanImage
X[idx, ...] = img
X -= np.tile(meanImage, [fragLen, 1, 1, 1])
return X
开发者ID:fucusy,项目名称:kaggle-state-farm-distracted-driver-detection,代码行数:26,代码来源:DataReader_KERAS.py
示例9: find_movement
def find_movement():
# img = imread('shot1.jpg')
# img2 = imread('shot2.jpg')
img = imread("frame0.jpg")
img2 = imread("frame2.jpg")
img1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
img1 = img_as_float(img1)
img2 = img_as_float(img2)
# print img1
h1, w1 = img1.shape
h2, w2 = img2.shape
img3 = zeros((h1, w1))
for x in range(0, h1 - 1):
for y in range(0, w1 - 1):
if abs(img1[x, y] - img2[x, y]) > 0.01:
# print img1[x, y], " ", img2[x, y]
img3[x, y] = 1
figure()
# subplot(1, 2, 1), imshow(img)
# subplot(1, 2, 2), \
imshow(img3)
show()
开发者ID:bks2009,项目名称:ImageDeepLearning,代码行数:26,代码来源:Subtraction.py
示例10: computeMeanImage
def computeMeanImage(trainingPath, testingPath, savePath, imgSize):
ch, ih, iw = imgSize
meanImage = np.zeros((ch, ih, iw))
print('computing mean image')
folder = os.listdir(trainingPath)
trainNum = 0
for f in folder:
if not f[-4:] == '.jpg':
continue
img = skimage.img_as_float( skio.imread(trainingPath+f) )
trainNum += 1
if ch == 3:
img = img.swapaxes(1, 2)
img = img.swapaxes(0, 1)
meanImage += img
folder = os.listdir(testingPath)
testNum = 0
for f in folder:
if not f[-4:] == '.jpg':
continue
img = skimage.img_as_float( skio.imread(testingPath+f) )
testNum += 1
if ch == 3:
img = img.swapaxes(1, 2)
img = img.swapaxes(0, 1)
meanImage += img
meanImage /= (trainNum + testNum)
with open(savePath, 'wb') as f:
np.save(f, meanImage)
开发者ID:fucusy,项目名称:kaggle-state-farm-distracted-driver-detection,代码行数:30,代码来源:DataReader_KERAS.py
示例11: compute_mean_image
def compute_mean_image(training_data_path, testing_data_path, save_flag=True, save_file=''):
print('computing mean images')
folder = os.listdir(training_data_path)
trainNum = len(folder)
init_flag = True
for f in folder:
img = skimage.img_as_float( skio.imread(training_data_path+f) )
if init_flag:
mean_image = img
init_flag = False
else:
mean_image += img
folder = os.listdir(testing_data_path)
testNum = len(folder)
for f in folder:
img = skimage.img_as_float( skio.imread(testing_data_path+f) )
mean_image += img
mean_image /= (trainNum + testNum)
if len(mean_image.shape) == 2:
'''if gray, (h, w) to (1, h, w)'''
tmp = np.zeros((1, mean_image.shape[0], mean_image.shape[1]))
tmp[0, ...] = mean_image
mean_image = tmp
else:
'''if color, swap (h, w, ch) to (ch, h, w)'''
mean_image = mean_image.swapaxes(1,2)
mean_image = mean_image.swapaxes(0,1)
if save_flag:
with open(save_file, 'wb') as f:
np.save(f, mean_image)
return mean_image
开发者ID:fucusy,项目名称:kaggle-state-farm-distracted-driver-detection,代码行数:35,代码来源:data_tools.py
示例12: image_compare
def image_compare(df, IMAGES_DIR='/home/ryan/asi_images/'):
'''
takes a list of n image ids and returns sum(n..n-1) n comparisons of r2 difference, r2(fft) difference, and average number of thresholded pixels
'''
img_buffer = {}
return_list = []
artdf = df[['_id', 'images']].copy()
artdf.images = artdf.images.apply(getpath)
paths = artdf[['_id','images']].dropna()
paths.index = paths._id
paths = paths.images
if paths.shape[0] < 2:
return DataFrame([])
for id_pair in combinations(paths.index, 2):
if id_pair[0] in img_buffer:
img1 = img_buffer[id_pair[0]]
else:
img_buffer[id_pair[0]] = img_as_float(rgb2gray(resize(imread(IMAGES_DIR + paths[id_pair[0]]), (300,300))))
img1 = img_buffer[id_pair[0]]
if id_pair[1] in img_buffer:
img2 = img_buffer[id_pair[1]]
else:
img_buffer[id_pair[1]] = img_as_float(rgb2gray(resize(imread(IMAGES_DIR + paths[id_pair[1]]), (300,300))))
img2 = img_buffer[id_pair[1]]
return_list.append(
[id_pair[0], id_pair[1], \
norm(img1 - img2), \
norm(fft2(img1) - fft2(img2)), \
#mean([sum(img1 > threshold_otsu(img1)), sum(img2 > threshold_otsu(img2))])]
#mean([sum(img1 > 0.9), sum(img2 > 0.9)])]
std(img1)+std(img2)/2.]
)
return DataFrame(return_list, columns=['id1','id2','r2diff', 'fftdiff', 'stdavg'])
开发者ID:rhsimplex,项目名称:artsift,代码行数:34,代码来源:art_utils.py
示例13: main
def main():
img = img_as_float(imread("HJoceanSmall.png"))
img_seam_v = img_as_float(imread("HJoceanSmall.png"))
img_transformed_v = img_as_float(imread("HJoceanSmall.png"))
iterations = 20
img_seam_v, img_transformed_v = seam_carve(iterations, img_seam_v, img_transformed_v)
figure()
subplot(221)
imshow(img)
title("1. Original")
subplot(222)
imshow(img_seam_v)
title("2. Seam carved vertical")
# Transposed Image
img_seam_hv = img_transformed_v.transpose(1, 0, 2)
img_transformed_hv = img_transformed_v.transpose(1, 0, 2)
iterations = 20
img_seam_hv, img_transformed_hv = seam_carve(iterations, img_seam_hv, img_transformed_hv)
subplot(223)
imshow(img_seam_hv.transpose(1, 0, 2))
title("3. Seam carved horizontal")
subplot(224)
imshow(img_transformed_hv.transpose(1, 0, 2))
title("4. Transformed Image")
show()
开发者ID:srikiranpanchavati,项目名称:DataStructures,代码行数:34,代码来源:seamcarver.py
示例14: test_copy
def test_copy():
x = np.array([1], dtype=np.float64)
y = img_as_float(x)
z = img_as_float(x, force_copy=True)
assert y is x
assert z is not x
开发者ID:GerardoLopez,项目名称:scikits-image,代码行数:7,代码来源:test_dtype.py
示例15: main
def main(image):
matplotlib.rcParams["font.size"] = 10
def show_img(img, axes):
"""Plot the image as float"""
# img = img_as_float(img)
ax_img = axes
ax_img.imshow(img, cmap=plt.cm.gray)
ax_img.set_axis_off()
return ax_img
# Open and read in the fits image
try:
fits = pyfits.open(image)
# fits = Image.open(image)
except IOError:
print "Can not read the fits image: " + image + " !!"
# Check the input image
img = fits[0].data
# img = np.array(fits)
if img.ndim != 2:
raise NameError("Data need to be 2-D image !")
# Logrithm scaling of the image
img_log = np.log10(img)
img_log = img_as_float(img_log)
# Contrast streching
p5, p95 = np.percentile(img, (2, 98))
img_rescale = exposure.rescale_intensity(img, in_range=(p5, p95))
# Adaptive equalization
img_new = bytescale(img_rescale)
img_ahe = exposure.equalize_adapthist(img_new, ntiles_x=16, ntiles_y=16, clip_limit=0.05, nbins=256)
img_ahe = img_as_float(img_ahe)
# Display results
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(16, 5))
# Original image
ax_img = show_img(img_log, axes[0])
ax_img.set_title("Original")
# Contrast Enhanced one
ax_img = show_img(img_rescale, axes[1])
ax_img.set_title("Rescale")
# AHE Enhanced one
ax_img = show_img(img_ahe, axes[2])
ax_img.set_title("AHE")
# Prevent overlap of y-axis
fig.subplots_adjust(bottom=0.1, right=0.9, top=0.9, left=0.1, wspace=0.05)
# Save a PNG file
plt.gcf().savefig("ahe_test.png")
开发者ID:dr-guangtou,项目名称:hs_python,代码行数:59,代码来源:hs_local_ahe.py
示例16: test_bounding_values
def test_bounding_values():
image = img_as_float(data.page())
template = np.zeros((3, 3))
template[1, 1] = 1
result = match_template(img_as_float(data.page()), template)
print(result.max())
assert result.max() < 1 + 1e-7
assert result.min() > -1 - 1e-7
开发者ID:TheArindham,项目名称:scikit-image,代码行数:8,代码来源:test_template.py
示例17: main
def main():
"""
>>> img = imread('C:\Users\DELL\PycharmProjects\cc3\image.png')
>>> img = img_as_float(img)
>>> energy = dual_gradient_energy(img)
>>> minVal,minIndex,sOfTJ=find_seam(img,energy)
>>> img_modified, path = plot_seam(img, minIndex, sOfTJ)
>>> print minVal
0.488050766739
"""
img = imread("C:\Users\DELL\PycharmProjects\cc3\image.png")
img = img_as_float(img)
R = img[:, :, 0]
G = img[:, :, 1]
B = img[:, :, 2]
figure(1)
gray()
subplot(1, 4, 1)
imshow(img)
title("RGB")
subplot(1, 4, 2)
imshow(R)
title("Red")
subplot(1, 4, 3)
imshow(G)
title("Green")
subplot(1, 4, 4)
imshow(B)
title("Blue")
show()
energy = dual_gradient_energy(img)
figure(2)
subplot(2, 1, 1)
imshow(energy)
title("Dual Energy Gradient")
show()
for i in range(50):
energy = dual_gradient_energy(img)
val, index, seam = find_seam(img, energy)
img1, path = plot_seam(img, index, seam)
figure(3)
subplot(3, 2, 1)
imshow(img1)
title("Seams Plotted")
img = imread('C:\Users\DELL\PycharmProjects\cc3\image.png')
img = img_as_float(img)
for i in range(50):
energy = dual_gradient_energy(img)
val, index, seam = find_seam(img, energy)
img1, path = plot_seam(img, index, seam)
img = remove_seam(img1, path)
subplot(3, 2, 2)
imshow(img)
title("Seams Removed")
show()
开发者ID:richsta,项目名称:SER501,代码行数:56,代码来源:seamcarving.py
示例18: mpl_image_to_rgba
def mpl_image_to_rgba(mpl_image):
"""Return RGB image from the given matplotlib image object.
Each image in a matplotlib figure has it's own colormap and normalization
function. Return RGBA (RGB + alpha channel) image with float dtype.
"""
input_range = (mpl_image.norm.vmin, mpl_image.norm.vmax)
image = rescale_intensity(mpl_image.get_array(), in_range=input_range)
image = mpl_image.cmap(img_as_float(image)) # cmap complains on bool arrays
return img_as_float(image)
开发者ID:Autodidact24,项目名称:scikit-image,代码行数:10,代码来源:core.py
示例19: preprocess
def preprocess(im, blur=True, boxcar=True, noise_size=1, boxcar_width=5):
"""
Perform bluring and background subtraction of image.
Parameters
----------
im : ndarray
Image to preprocess.
blur : bool
If True, perform a Gaussian blur on each image.
boxcar : bool
If True, perfrom a boxcar (mean) filter to compute background.
The background is then subtracted.
noise_size : float
The characteristic length scale of noise in the images
in units of pixels. This is used to set the sigma value
in the Gaussian blur. Ignored if blur is False.
boxcar_width : int
Width of the boxcar filter. Should be an odd integer greater
than the pixel radius, but smaller than interparticle distance.
Returns
-------
output : ndarray, shape as im, dtype float
Blurred, background subtracted image.
"""
# Convert the image to float
im = skimage.img_as_float(im)
# Return image back if we do nothing
if not blur and not boxcar:
return skimage.img_as_float(im)
# Compute background using boxcar (mean) filter
if boxcar:
if boxcar_width % 2 == 0:
raise ValueError('boxcar_width must be odd.')
# Perform mean filter with a square structuring element
im_bg = scipy.ndimage.uniform_filter(im, boxcar_width)
else:
im_bg = 0.0
# Perform Gaussian blur
if blur:
im_blur = skimage.filters.gaussian(im, noise_size)
else:
im_blur = im
# Subtract background from blurred image
bg_subtracted_image = im_blur - im_bg
# Set negative values to zero and return
return np.maximum(bg_subtracted_image, 0)
开发者ID:acorbe,项目名称:simple-particle-tracker,代码行数:55,代码来源:particle_find.py
示例20: compute_mean_image
def compute_mean_image(training_data_path
, testing_data_path
, save_file):
if os.path.exists(save_file):
logging.info("mean file already exists at %s, return it directly" % save_file)
mean_img = skio.imread(save_file)
logging.info("mean img is %s" % mean_img)
return mean_img
logging.info('computing mean images')
folder = ["c%d" % x for x in range(10)]
total_num = 0
mean_image = None
# count image first
for train_path in training_data_path:
for f in folder:
folder_path = os.path.join(train_path, f)
total_num += len(load_image_path_list(folder_path))
for path in testing_data_path:
total_num += len(load_image_path_list(path))
i = 0
for train_path in training_data_path:
for f in folder:
folder_path = os.path.join(train_path, f)
for img_path in load_image_path_list(folder_path):
i += 1
if i % 100 == 0:
logging.info("process %d/%d images now" % (i, total_num))
img = skimage.img_as_float(skio.imread(img_path))
if mean_image is None:
mean_image = np.zeros(img.shape)
mean_image += img / total_num
for path in testing_data_path:
for file_path in load_image_path_list(path):
i += 1
if i % 100 == 0:
logging.info("process %d/%d images now" % (i, total_num))
img = skimage.img_as_float( skio.imread(file_path))
mean_image += img / total_num
if save_file != "":
base_path = os.path.dirname(save_file)
if not os.path.exists(base_path):
os.makedirs(base_path)
with open(save_file, 'wb') as f:
imsave(f, mean_image)
logging.debug("saving mean file to %s" % save_file)
print mean_image
return mean_image
开发者ID:fucusy,项目名称:gait-simple-cnn,代码行数:53,代码来源:data_tools.py
注:本文中的skimage.img_as_float函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论