• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python testing.assert_函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中skimage._shared.testing.assert_函数的典型用法代码示例。如果您正苦于以下问题:Python assert_函数的具体用法?Python assert_怎么用?Python assert_使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了assert_函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_mask

def test_mask():
    length = 100
    ramps = [np.linspace(0, 4 * np.pi, length),
             np.linspace(0, 8 * np.pi, length),
             np.linspace(0, 6 * np.pi, length)]
    image = np.vstack(ramps)
    mask_1d = np.ones((length,), dtype=np.bool)
    mask_1d[0] = mask_1d[-1] = False
    for i in range(len(ramps)):
        # mask all ramps but the i'th one
        mask = np.zeros(image.shape, dtype=np.bool)
        mask |= mask_1d.reshape(1, -1)
        mask[i, :] = False   # unmask i'th ramp
        image_wrapped = np.ma.array(np.angle(np.exp(1j * image)), mask=mask)
        image_unwrapped = unwrap_phase(image_wrapped)
        image_unwrapped -= image_unwrapped[0, 0]    # remove phase shift
        # The end of the unwrapped array should have value equal to the
        # endpoint of the unmasked ramp
        assert_array_almost_equal_nulp(image_unwrapped[:, -1], image[i, -1])
        assert_(np.ma.isMaskedArray(image_unwrapped))

        # Same tests, but forcing use of the 3D unwrapper by reshaping
        with expected_warnings(['length 1 dimension']):
            shape = (1,) + image_wrapped.shape
            image_wrapped_3d = image_wrapped.reshape(shape)
            image_unwrapped_3d = unwrap_phase(image_wrapped_3d)
            # remove phase shift
            image_unwrapped_3d -= image_unwrapped_3d[0, 0, 0]
        assert_array_almost_equal_nulp(image_unwrapped_3d[:, :, -1],
                                       image[i, -1])
开发者ID:Cadair,项目名称:scikit-image,代码行数:30,代码来源:test_unwrap.py


示例2: test_wavelet_threshold

def test_wavelet_threshold():
    rstate = np.random.RandomState(1234)

    img = astro_gray
    sigma = 0.1
    noisy = img + sigma * rstate.randn(*(img.shape))
    noisy = np.clip(noisy, 0, 1)

    # employ a single, user-specified threshold instead of BayesShrink sigmas
    with expected_warnings([PYWAVELET_ND_INDEXING_WARNING]):
        denoised = _wavelet_threshold(noisy, wavelet='db1', method=None,
                                      threshold=sigma)
    psnr_noisy = compare_psnr(img, noisy)
    psnr_denoised = compare_psnr(img, denoised)
    assert_(psnr_denoised > psnr_noisy)

    # either method or threshold must be defined
    with testing.raises(ValueError):
        _wavelet_threshold(noisy, wavelet='db1', method=None, threshold=None)

    # warns if a threshold is provided in a case where it would be ignored
    with expected_warnings(["Thresholding method ",
                            PYWAVELET_ND_INDEXING_WARNING]):
        _wavelet_threshold(noisy, wavelet='db1', method='BayesShrink',
                           threshold=sigma)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:25,代码来源:test_denoise.py


示例3: test_wavelet_denoising_levels

def test_wavelet_denoising_levels():
    rstate = np.random.RandomState(1234)
    ndim = 2
    N = 256
    wavelet = 'db1'
    # Generate a very simple test image
    img = 0.2*np.ones((N, )*ndim)
    img[[slice(5, 13), ] * ndim] = 0.8

    sigma = 0.1
    noisy = img + sigma * rstate.randn(*(img.shape))
    noisy = np.clip(noisy, 0, 1)

    denoised = restoration.denoise_wavelet(noisy, wavelet=wavelet)
    denoised_1 = restoration.denoise_wavelet(noisy, wavelet=wavelet,
                                             wavelet_levels=1)
    psnr_noisy = compare_psnr(img, noisy)
    psnr_denoised = compare_psnr(img, denoised)
    psnr_denoised_1 = compare_psnr(img, denoised_1)

    # multi-level case should outperform single level case
    assert_(psnr_denoised > psnr_denoised_1 > psnr_noisy)

    # invalid number of wavelet levels results in a ValueError
    max_level = pywt.dwt_max_level(np.min(img.shape),
                                   pywt.Wavelet(wavelet).dec_len)
    with testing.raises(ValueError):
        restoration.denoise_wavelet(
            noisy,
            wavelet=wavelet, wavelet_levels=max_level+1)
    with testing.raises(ValueError):
        restoration.denoise_wavelet(
            noisy,
            wavelet=wavelet, wavelet_levels=-1)
开发者ID:Cadair,项目名称:scikit-image,代码行数:34,代码来源:test_denoise.py


示例4: test_wavelet_denoising_nd

def test_wavelet_denoising_nd():
    rstate = np.random.RandomState(1234)
    for method in ['VisuShrink', 'BayesShrink']:
        for ndim in range(1, 5):
            # Generate a very simple test image
            if ndim < 3:
                img = 0.2*np.ones((128, )*ndim)
            else:
                img = 0.2*np.ones((16, )*ndim)
            img[(slice(5, 13), ) * ndim] = 0.8

            sigma = 0.1
            noisy = img + sigma * rstate.randn(*(img.shape))
            noisy = np.clip(noisy, 0, 1)

            # Mark H. 2018.08:
            #   The issue arises because when ndim in [1, 2]
            #   ``waverecn`` calls ``_match_coeff_dims``
            #   Which includes a numpy 1.15 deprecation.
            #   for larger number of dimensions _match_coeff_dims isn't called
            #   for some reason.
            anticipated_warnings = (PYWAVELET_ND_INDEXING_WARNING
                                    if ndim < 3 else None)
            with expected_warnings([anticipated_warnings]):
                # Verify that SNR is improved with internally estimated sigma
                denoised = restoration.denoise_wavelet(noisy, method=method)
            psnr_noisy = compare_psnr(img, noisy)
            psnr_denoised = compare_psnr(img, denoised)
            assert_(psnr_denoised > psnr_noisy)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:29,代码来源:test_denoise.py


示例5: check_wrap_around

def check_wrap_around(ndim, axis):
    # create a ramp, but with the last pixel along axis equalling the first
    elements = 100
    ramp = np.linspace(0, 12 * np.pi, elements)
    ramp[-1] = ramp[0]
    image = ramp.reshape(tuple([elements if n == axis else 1
                                for n in range(ndim)]))
    image_wrapped = np.angle(np.exp(1j * image))

    index_first = tuple([0] * ndim)
    index_last = tuple([-1 if n == axis else 0 for n in range(ndim)])
    # unwrap the image without wrap around
    with warnings.catch_warnings():
        # We do not want warnings about length 1 dimensions
        warnings.simplefilter("ignore")
        image_unwrap_no_wrap_around = unwrap_phase(image_wrapped, seed=0)
    print('endpoints without wrap_around:',
          image_unwrap_no_wrap_around[index_first],
          image_unwrap_no_wrap_around[index_last])
    # without wrap around, the endpoints of the image should differ
    assert_(abs(image_unwrap_no_wrap_around[index_first] -
                image_unwrap_no_wrap_around[index_last]) > np.pi)
    # unwrap the image with wrap around
    wrap_around = [n == axis for n in range(ndim)]
    with warnings.catch_warnings():
        # We do not want warnings about length 1 dimensions
        warnings.simplefilter("ignore")
        image_unwrap_wrap_around = unwrap_phase(image_wrapped, wrap_around,
                                                seed=0)
    print('endpoints with wrap_around:',
          image_unwrap_wrap_around[index_first],
          image_unwrap_wrap_around[index_last])
    # with wrap around, the endpoints of the image should be equal
    assert_almost_equal(image_unwrap_wrap_around[index_first],
                        image_unwrap_wrap_around[index_last])
开发者ID:Cadair,项目名称:scikit-image,代码行数:35,代码来源:test_unwrap.py


示例6: test_clear_border_non_binary_3d

def test_clear_border_non_binary_3d():
    image3d = np.array(
        [[[1, 2, 3, 1, 2],
          [3, 3, 3, 4, 2],
          [3, 4, 3, 4, 2],
          [3, 3, 2, 1, 2]],
         [[1, 2, 3, 1, 2],
          [3, 3, 5, 4, 2],
          [3, 4, 5, 4, 2],
          [3, 3, 2, 1, 2]],
         [[1, 2, 3, 1, 2],
          [3, 3, 3, 4, 2],
          [3, 4, 3, 4, 2],
          [3, 3, 2, 1, 2]],
         ])

    result = clear_border(image3d)
    expected = np.array(
        [[[0, 0, 0, 0, 0],
          [0, 0, 0, 0, 0],
          [0, 0, 0, 0, 0],
          [0, 0, 0, 0, 0]],
         [[0, 0, 0, 0, 0],
          [0, 0, 5, 0, 0],
          [0, 0, 5, 0, 0],
          [0, 0, 0, 0, 0]],
         [[0, 0, 0, 0, 0],
          [0, 0, 0, 0, 0],
          [0, 0, 0, 0, 0],
          [0, 0, 0, 0, 0]],
         ])

    assert_array_equal(result, expected)
    assert_(not np.all(image3d == result))
开发者ID:Cadair,项目名称:scikit-image,代码行数:34,代码来源:test_clear_border.py


示例7: test_denoise_tv_chambolle_1d

def test_denoise_tv_chambolle_1d():
    """Apply the TV denoising algorithm on a 1D sinusoid."""
    x = 125 + 100*np.sin(np.linspace(0, 8*np.pi, 1000))
    x += 20 * np.random.rand(x.size)
    x = np.clip(x, 0, 255)
    res = restoration.denoise_tv_chambolle(x.astype(np.uint8), weight=0.1)
    assert_(res.dtype == np.float)
    assert_(res.std() * 255 < x.std())
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:8,代码来源:test_denoise.py


示例8: test_no_denoising_for_small_h

def test_no_denoising_for_small_h():
    img = np.zeros((40, 40))
    img[10:-10, 10:-10] = 1.
    img += 0.3*np.random.randn(*img.shape)
    # very small h should result in no averaging with other patches
    denoised = restoration.denoise_nl_means(img, 7, 5, 0.01, fast_mode=True,
                                            multichannel=True)
    assert_(np.allclose(denoised, img))
    denoised = restoration.denoise_nl_means(img, 7, 5, 0.01, fast_mode=False,
                                            multichannel=True)
    assert_(np.allclose(denoised, img))
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:11,代码来源:test_denoise.py


示例9: test_denoise_tv_chambolle_3d

def test_denoise_tv_chambolle_3d():
    """Apply the TV denoising algorithm on a 3D image representing a sphere."""
    x, y, z = np.ogrid[0:40, 0:40, 0:40]
    mask = (x - 22)**2 + (y - 20)**2 + (z - 17)**2 < 8**2
    mask = 100 * mask.astype(np.float)
    mask += 60
    mask += 20 * np.random.rand(*mask.shape)
    mask[mask < 0] = 0
    mask[mask > 255] = 255
    res = restoration.denoise_tv_chambolle(mask.astype(np.uint8), weight=0.1)
    assert_(res.dtype == np.float)
    assert_(res.std() * 255 < mask.std())
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:12,代码来源:test_denoise.py


示例10: test_denoise_tv_bregman_3d

def test_denoise_tv_bregman_3d():
    img = checkerboard.copy()
    # add some random noise
    img += 0.5 * img.std() * np.random.rand(*img.shape)
    img = np.clip(img, 0, 1)

    out1 = restoration.denoise_tv_bregman(img, weight=10)
    out2 = restoration.denoise_tv_bregman(img, weight=5)

    # make sure noise is reduced in the checkerboard cells
    assert_(img[30:45, 5:15].std() > out1[30:45, 5:15].std())
    assert_(out1[30:45, 5:15].std() > out2[30:45, 5:15].std())
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:12,代码来源:test_denoise.py


示例11: test_denoise_nl_means_multichannel

def test_denoise_nl_means_multichannel():
    # for true 3D data, 3D denoising is better than denoising as 2D+channels
    img = np.zeros((13, 10, 8))
    img[6, 4:6, 2:-2] = 1.
    sigma = 0.3
    imgn = img + sigma * np.random.randn(*img.shape)
    denoised_wrong_multichannel = restoration.denoise_nl_means(
        imgn, 3, 4, 0.6 * sigma, fast_mode=True, multichannel=True)
    denoised_ok_multichannel = restoration.denoise_nl_means(
        imgn, 3, 4, 0.6 * sigma, fast_mode=True, multichannel=False)
    psnr_wrong = compare_psnr(img, denoised_wrong_multichannel)
    psnr_ok = compare_psnr(img, denoised_ok_multichannel)
    assert_(psnr_ok > psnr_wrong)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:13,代码来源:test_denoise.py


示例12: test_range

def test_range():
    """Output of edge detection should be in [0, 1]"""
    image = np.random.random((100, 100))
    for detector in (filters.sobel, filters.scharr,
                     filters.prewitt, filters.roberts):
        out = detector(image)
        assert_(out.min() >= 0,
                "Minimum of `{0}` is smaller than zero".format(
                    detector.__name__)
                )
        assert_(out.max() <= 1,
                "Maximum of `{0}` is larger than 1".format(
                    detector.__name__)
                )
开发者ID:Cadair,项目名称:scikit-image,代码行数:14,代码来源:test_edges.py


示例13: test_denoise_bilateral_color

def test_denoise_bilateral_color():
    img = checkerboard.copy()[:50, :50]
    # add some random noise
    img += 0.5 * img.std() * np.random.rand(*img.shape)
    img = np.clip(img, 0, 1)

    out1 = restoration.denoise_bilateral(img, sigma_color=0.1,
                                         sigma_spatial=10, multichannel=True)
    out2 = restoration.denoise_bilateral(img, sigma_color=0.2,
                                         sigma_spatial=20, multichannel=True)

    # make sure noise is reduced in the checkerboard cells
    assert_(img[30:45, 5:15].std() > out1[30:45, 5:15].std())
    assert_(out1[30:45, 5:15].std() > out2[30:45, 5:15].std())
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:14,代码来源:test_denoise.py


示例14: test_wavelet_denoising

def test_wavelet_denoising():
    rstate = np.random.RandomState(1234)

    # version with one odd-sized dimension
    astro_gray_odd = astro_gray[:, :-1]
    astro_odd = astro[:, :-1]

    for img, multichannel, convert2ycbcr in [(astro_gray, False, False),
                                             (astro_gray_odd, False, False),
                                             (astro_odd, True, False),
                                             (astro_odd, True, True)]:
        sigma = 0.1
        noisy = img + sigma * rstate.randn(*(img.shape))
        noisy = np.clip(noisy, 0, 1)

        # Verify that SNR is improved when true sigma is used
        with expected_warnings([PYWAVELET_ND_INDEXING_WARNING]):
            denoised = restoration.denoise_wavelet(noisy, sigma=sigma,
                                                   multichannel=multichannel,
                                                   convert2ycbcr=convert2ycbcr)
        psnr_noisy = compare_psnr(img, noisy)
        psnr_denoised = compare_psnr(img, denoised)
        assert_(psnr_denoised > psnr_noisy)

        # Verify that SNR is improved with internally estimated sigma
        with expected_warnings([PYWAVELET_ND_INDEXING_WARNING]):
            denoised = restoration.denoise_wavelet(noisy,
                                                   multichannel=multichannel,
                                                   convert2ycbcr=convert2ycbcr)
        psnr_noisy = compare_psnr(img, noisy)
        psnr_denoised = compare_psnr(img, denoised)
        assert_(psnr_denoised > psnr_noisy)

        # SNR is improved less with 1 wavelet level than with the default.
        denoised_1 = restoration.denoise_wavelet(noisy,
                                                 multichannel=multichannel,
                                                 wavelet_levels=1,
                                                 convert2ycbcr=convert2ycbcr)
        psnr_denoised_1 = compare_psnr(img, denoised_1)
        assert_(psnr_denoised > psnr_denoised_1)
        assert_(psnr_denoised_1 > psnr_noisy)

        # Test changing noise_std (higher threshold, so less energy in signal)
        with expected_warnings([PYWAVELET_ND_INDEXING_WARNING]):
            res1 = restoration.denoise_wavelet(noisy, sigma=2 * sigma,
                                               multichannel=multichannel)
        with expected_warnings([PYWAVELET_ND_INDEXING_WARNING]):
            res2 = restoration.denoise_wavelet(noisy, sigma=sigma,
                                               multichannel=multichannel)
        assert_(np.sum(res1**2) <= np.sum(res2**2))
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:50,代码来源:test_denoise.py


示例15: test_denoise_nl_means_2d

def test_denoise_nl_means_2d():
    img = np.zeros((40, 40))
    img[10:-10, 10:-10] = 1.
    sigma = 0.3
    img += sigma * np.random.randn(*img.shape)
    for s in [sigma, 0]:
        denoised = restoration.denoise_nl_means(img, 7, 5, 0.2, fast_mode=True,
                                                multichannel=True, sigma=s)
        # make sure noise is reduced
        assert_(img.std() > denoised.std())
        denoised = restoration.denoise_nl_means(img, 7, 5, 0.2,
                                                fast_mode=False,
                                                multichannel=True, sigma=s)
        # make sure noise is reduced
        assert_(img.std() > denoised.std())
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:15,代码来源:test_denoise.py


示例16: test_unwrap_3d_all_masked

def test_unwrap_3d_all_masked():
    # all elements masked
    image = np.ma.zeros((10, 10, 10))
    image[:] = np.ma.masked
    unwrap = unwrap_phase(image)
    assert_(np.ma.isMaskedArray(unwrap))
    assert_(np.all(unwrap.mask))

    # 1 unmasked element, still zero edges
    image = np.ma.zeros((10, 10, 10))
    image[:] = np.ma.masked
    image[0, 0, 0] = 0
    unwrap = unwrap_phase(image)
    assert_(np.ma.isMaskedArray(unwrap))
    assert_(np.sum(unwrap.mask) == 999)   # all but one masked
    assert_(unwrap[0, 0, 0] == 0)
开发者ID:Cadair,项目名称:scikit-image,代码行数:16,代码来源:test_unwrap.py


示例17: test_denoise_tv_chambolle_weighting

def test_denoise_tv_chambolle_weighting():
    # make sure a specified weight gives consistent results regardless of
    # the number of input image dimensions
    rstate = np.random.RandomState(1234)
    img2d = astro_gray.copy()
    img2d += 0.15 * rstate.standard_normal(img2d.shape)
    img2d = np.clip(img2d, 0, 1)

    # generate 4D image by tiling
    img4d = np.tile(img2d[..., None, None], (1, 1, 2, 2))

    w = 0.2
    denoised_2d = restoration.denoise_tv_chambolle(img2d, weight=w)
    denoised_4d = restoration.denoise_tv_chambolle(img4d, weight=w)
    assert_(measure.compare_ssim(denoised_2d,
                                 denoised_4d[:, :, 0, 0]) > 0.99)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:16,代码来源:test_denoise.py


示例18: test_denoise_nl_means_3d

def test_denoise_nl_means_3d():
    img = np.zeros((12, 12, 8))
    img[5:-5, 5:-5, 2:-2] = 1.
    sigma = 0.3
    imgn = img + sigma * np.random.randn(*img.shape)
    psnr_noisy = compare_psnr(img, imgn)
    for s in [sigma, 0]:
        denoised = restoration.denoise_nl_means(imgn, 3, 4, h=0.75 * sigma,
                                                fast_mode=True,
                                                multichannel=False, sigma=s)
        # make sure noise is reduced
        assert_(compare_psnr(img, denoised) > psnr_noisy)
        denoised = restoration.denoise_nl_means(imgn, 3, 4, h=0.75 * sigma,
                                                fast_mode=False,
                                                multichannel=False, sigma=s)
        # make sure noise is reduced
        assert_(compare_psnr(img, denoised) > psnr_noisy)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:17,代码来源:test_denoise.py


示例19: test_denoise_tv_bregman_float_result_range

def test_denoise_tv_bregman_float_result_range():
    # astronaut image
    img = astro_gray.copy()
    int_astro = np.multiply(img, 255).astype(np.uint8)
    assert_(np.max(int_astro) > 1)
    denoised_int_astro = restoration.denoise_tv_bregman(int_astro, weight=60.0)
    # test if the value range of output float data is within [0.0:1.0]
    assert_(denoised_int_astro.dtype == np.float)
    assert_(np.max(denoised_int_astro) <= 1.0)
    assert_(np.min(denoised_int_astro) >= 0.0)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:10,代码来源:test_denoise.py


示例20: test_wavelet_denoising_levels

def test_wavelet_denoising_levels():
    rstate = np.random.RandomState(1234)
    ndim = 2
    N = 256
    wavelet = 'db1'
    # Generate a very simple test image
    img = 0.2*np.ones((N, )*ndim)
    img[(slice(5, 13), ) * ndim] = 0.8

    sigma = 0.1
    noisy = img + sigma * rstate.randn(*(img.shape))
    noisy = np.clip(noisy, 0, 1)

    with expected_warnings([PYWAVELET_ND_INDEXING_WARNING]):
        denoised = restoration.denoise_wavelet(noisy, wavelet=wavelet)
    denoised_1 = restoration.denoise_wavelet(noisy, wavelet=wavelet,
                                             wavelet_levels=1)
    psnr_noisy = compare_psnr(img, noisy)
    psnr_denoised = compare_psnr(img, denoised)
    psnr_denoised_1 = compare_psnr(img, denoised_1)

    # multi-level case should outperform single level case
    assert_(psnr_denoised > psnr_denoised_1 > psnr_noisy)

    # invalid number of wavelet levels results in a ValueError or UserWarning
    max_level = pywt.dwt_max_level(np.min(img.shape),
                                   pywt.Wavelet(wavelet).dec_len)
    if Version(pywt.__version__) < '1.0.0':
        # exceeding max_level raises a ValueError in PyWavelets 0.4-0.5.2
        with testing.raises(ValueError):
            with expected_warnings([PYWAVELET_ND_INDEXING_WARNING]):
                restoration.denoise_wavelet(
                    noisy, wavelet=wavelet, wavelet_levels=max_level + 1)
    else:
        # exceeding max_level raises a UserWarning in PyWavelets >= 1.0.0
        with expected_warnings([
                'all coefficients will experience boundary effects']):
            restoration.denoise_wavelet(
                noisy, wavelet=wavelet, wavelet_levels=max_level + 1)

    with testing.raises(ValueError):
        with expected_warnings([PYWAVELET_ND_INDEXING_WARNING]):
            restoration.denoise_wavelet(
                noisy,
                wavelet=wavelet, wavelet_levels=-1)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:45,代码来源:test_denoise.py



注:本文中的skimage._shared.testing.assert_函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python testing.assert_allclose函数代码示例发布时间:2022-05-27
下一篇:
Python _warnings.expected_warnings函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap