• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python utils.assert_nD函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中skimage._shared.utils.assert_nD函数的典型用法代码示例。如果您正苦于以下问题:Python assert_nD函数的具体用法?Python assert_nD怎么用?Python assert_nD使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了assert_nD函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: roberts_negative_diagonal

def roberts_negative_diagonal(image, mask=None):
    """Find the cross edges of an image using the Roberts' Cross operator.

    The kernel is applied to the input image to produce separate measurements
    of the gradient component one orientation.

    Parameters
    ----------
    image : 2-D array
        Image to process.
    mask : 2-D array, optional
        An optional mask to limit the application to a certain area.
        Note that pixels surrounding masked regions are also masked to
        prevent masked regions from affecting the result.

    Returns
    -------
    output : 2-D array
        The Robert's edge map.

    Notes
    -----
    We use the following kernel and return the absolute value of the
    result at each point::

      0   1
     -1   0

    """
    assert_nD(image, 2)
    image = img_as_float(image)
    result = np.abs(convolve(image, ROBERTS_ND_WEIGHTS))
    return _mask_filter_result(result, mask)
开发者ID:lotteanna,项目名称:scikit-image,代码行数:33,代码来源:edges.py


示例2: prewitt_v

def prewitt_v(image, mask=None):
    """Find the vertical edges of an image using the Prewitt transform.

    Parameters
    ----------
    image : 2-D array
        Image to process.
    mask : 2-D array, optional
        An optional mask to limit the application to a certain area.
        Note that pixels surrounding masked regions are also masked to
        prevent masked regions from affecting the result.

    Returns
    -------
    output : 2-D array
        The Prewitt edge map.

    Notes
    -----
    We use the following kernel::

      1   0  -1
      1   0  -1
      1   0  -1

    """
    assert_nD(image, 2)
    image = img_as_float(image)
    result = convolve(image, VPREWITT_WEIGHTS)
    return _mask_filter_result(result, mask)
开发者ID:borevitzlab,项目名称:scikit-image,代码行数:30,代码来源:edges.py


示例3: sobel

def sobel(image, mask=None):
    """Find the edge magnitude using the Sobel transform.

    Parameters
    ----------
    image : 2-D array
        Image to process.
    mask : 2-D array, optional
        An optional mask to limit the application to a certain area.
        Note that pixels surrounding masked regions are also masked to
        prevent masked regions from affecting the result.

    Returns
    -------
    output : 2-D array
        The Sobel edge map.

    Notes
    -----
    Take the square root of the sum of the squares of the horizontal and
    vertical Sobels to get a magnitude that's somewhat insensitive to
    direction.

    Note that ``scipy.ndimage.sobel`` returns a directional Sobel which
    has to be further processed to perform edge detection.
    """
    assert_nD(image, 2)
    out = np.sqrt(hsobel(image, mask)**2 + vsobel(image, mask)**2)
    out /= np.sqrt(2)
    return out
开发者ID:lotteanna,项目名称:scikit-image,代码行数:30,代码来源:edges.py


示例4: scharr_v

def scharr_v(image, mask=None):
    """Find the vertical edges of an image using the Scharr transform.

    Parameters
    ----------
    image : 2-D array
        Image to process
    mask : 2-D array, optional
        An optional mask to limit the application to a certain area.
        Note that pixels surrounding masked regions are also masked to
        prevent masked regions from affecting the result.

    Returns
    -------
    output : 2-D array
        The Scharr edge map.

    Notes
    -----
    We use the following kernel::

       3   0   -3
      10   0  -10
       3   0   -3

    References
    ----------
    .. [1] D. Kroon, 2009, Short Paper University Twente, Numerical
           Optimization of Kernel Based Image Derivatives.

    """
    assert_nD(image, 2)
    image = img_as_float(image)
    result = convolve(image, VSCHARR_WEIGHTS)
    return _mask_filter_result(result, mask)
开发者ID:borevitzlab,项目名称:scikit-image,代码行数:35,代码来源:edges.py


示例5: hsobel

def hsobel(image, mask=None):
    """Find the horizontal edges of an image using the Sobel transform.

    Parameters
    ----------
    image : 2-D array
        Image to process.
    mask : 2-D array, optional
        An optional mask to limit the application to a certain area.
        Note that pixels surrounding masked regions are also masked to
        prevent masked regions from affecting the result.

    Returns
    -------
    output : 2-D array
        The Sobel edge map.

    Notes
    -----
    We use the following kernel and return the absolute value of the
    result at each point::

      1   2   1
      0   0   0
     -1  -2  -1

    """
    assert_nD(image, 2)
    image = img_as_float(image)
    result = np.abs(convolve(image, HSOBEL_WEIGHTS))
    return _mask_filter_result(result, mask)
开发者ID:lotteanna,项目名称:scikit-image,代码行数:31,代码来源:edges.py


示例6: forward

def forward(data, impulse_response=None, filter_params={},
            predefined_filter=None):
    """Apply the given filter to data.

    Parameters
    ----------
    data : (M,N) ndarray
        Input data.
    impulse_response : callable `f(r, c, **filter_params)`
        Impulse response of the filter.  See LPIFilter2D.__init__.
    filter_params : dict
        Additional keyword parameters to the impulse_response function.

    Other Parameters
    ----------------
    predefined_filter : LPIFilter2D
        If you need to apply the same filter multiple times over different
        images, construct the LPIFilter2D and specify it here.

    Examples
    --------

    Gaussian filter:

    >>> def filt_func(r, c):
    ...     return np.exp(-np.hypot(r, c)/1)
    >>>
    >>> from skimage import data
    >>> filtered = forward(data.coins(), filt_func)

    """
    assert_nD(data, 2, 'data')
    if predefined_filter is None:
        predefined_filter = LPIFilter2D(impulse_response, **filter_params)
    return predefined_filter(data)
开发者ID:Rapternmn,项目名称:scikit-image,代码行数:35,代码来源:lpi_filter.py


示例7: roberts

def roberts(image, mask=None):
    """Find the edge magnitude using Roberts' cross operator.

    Parameters
    ----------
    image : 2-D array
        Image to process.
    mask : 2-D array, optional
        An optional mask to limit the application to a certain area.
        Note that pixels surrounding masked regions are also masked to
        prevent masked regions from affecting the result.

    Returns
    -------
    output : 2-D array
        The Roberts' Cross edge map.

    See also
    --------
    sobel, scharr, prewitt, feature.canny

    Examples
    --------
    >>> from skimage import data
    >>> camera = data.camera()
    >>> from skimage import filters
    >>> edges = filters.roberts(camera)

    """
    assert_nD(image, 2)
    out = np.sqrt(roberts_pos_diag(image, mask)**2 +
                  roberts_neg_diag(image, mask)**2)
    out /= np.sqrt(2)
    return out
开发者ID:borevitzlab,项目名称:scikit-image,代码行数:34,代码来源:edges.py


示例8: prewitt

def prewitt(image, mask=None):
    """Find the edge magnitude using the Prewitt transform.

    Parameters
    ----------
    image : 2-D array
        Image to process.
    mask : 2-D array, optional
        An optional mask to limit the application to a certain area.
        Note that pixels surrounding masked regions are also masked to
        prevent masked regions from affecting the result.

    Returns
    -------
    output : 2-D array
        The Prewitt edge map.

    Notes
    -----
    Return the square root of the sum of squares of the horizontal
    and vertical Prewitt transforms.
    """
    assert_nD(image, 2)
    out = np.sqrt(hprewitt(image, mask)**2 + vprewitt(image, mask)**2)
    out /= np.sqrt(2)
    return out
开发者ID:lotteanna,项目名称:scikit-image,代码行数:26,代码来源:edges.py


示例9: local_binary_pattern

def local_binary_pattern(image, P, R, method='default'):
    """Gray scale and rotation invariant LBP (Local Binary Patterns).

    LBP is an invariant descriptor that can be used for texture classification.

    Parameters
    ----------
    image : (N, M) array
        Graylevel image.
    P : int
        Number of circularly symmetric neighbour set points (quantization of
        the angular space).
    R : float
        Radius of circle (spatial resolution of the operator).
    method : {'default', 'ror', 'uniform', 'var'}
        Method to determine the pattern.

        * 'default': original local binary pattern which is gray scale but not
            rotation invariant.
        * 'ror': extension of default implementation which is gray scale and
            rotation invariant.
        * 'uniform': improved rotation invariance with uniform patterns and
            finer quantization of the angular space which is gray scale and
            rotation invariant.
        * 'nri_uniform': non rotation-invariant uniform patterns variant
            which is only gray scale invariant [2].
        * 'var': rotation invariant variance measures of the contrast of local
            image texture which is rotation but not gray scale invariant.

    Returns
    -------
    output : (N, M) array
        LBP image.

    References
    ----------
    .. [1] Multiresolution Gray-Scale and Rotation Invariant Texture
           Classification with Local Binary Patterns.
           Timo Ojala, Matti Pietikainen, Topi Maenpaa.
           http://www.rafbis.it/biplab15/images/stories/docenti/Danielriccio/Articoliriferimento/LBP.pdf, 2002.
    .. [2] Face recognition with local binary patterns.
           Timo Ahonen, Abdenour Hadid, Matti Pietikainen,
           http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.214.6851,
           2004.
    """
    assert_nD(image, 2)

    methods = {
        'default': ord('D'),
        'ror': ord('R'),
        'uniform': ord('U'),
        'nri_uniform': ord('N'),
        'var': ord('V')
    }
    image = np.ascontiguousarray(image, dtype=np.double)
    output = _local_binary_pattern(image, P, R, methods[method.lower()])
    return output
开发者ID:JeanKossaifi,项目名称:scikit-image,代码行数:57,代码来源:texture.py


示例10: extract

    def extract(self, image, keypoints):
        """Extract BRIEF binary descriptors for given keypoints in image.

        Parameters
        ----------
        image : 2D array
            Input image.
        keypoints : (N, 2) array
            Keypoint coordinates as ``(row, col)``.

        """
        assert_nD(image, 2)

        np.random.seed(self.sample_seed)

        image = _prepare_grayscale_input_2D(image)

        # Gaussian low-pass filtering to alleviate noise sensitivity
        image = np.ascontiguousarray(gaussian_filter(image, self.sigma))

        # Sampling pairs of decision pixels in patch_size x patch_size window
        desc_size = self.descriptor_size
        patch_size = self.patch_size
        if self.mode == 'normal':
            samples = (patch_size / 5.0) * np.random.randn(desc_size * 8)
            samples = np.array(samples, dtype=np.int32)
            samples = samples[(samples < (patch_size // 2))
                              & (samples > - (patch_size - 2) // 2)]

            pos1 = samples[:desc_size * 2].reshape(desc_size, 2)
            pos2 = samples[desc_size * 2:desc_size * 4].reshape(desc_size, 2)
        elif self.mode == 'uniform':
            samples = np.random.randint(-(patch_size - 2) // 2,
                                        (patch_size // 2) + 1,
                                        (desc_size * 2, 2))
            samples = np.array(samples, dtype=np.int32)
            pos1, pos2 = np.split(samples, 2)

        pos1 = np.ascontiguousarray(pos1)
        pos2 = np.ascontiguousarray(pos2)

        # Removing keypoints that are within (patch_size / 2) distance from the
        # image border
        self.mask = _mask_border_keypoints(image.shape, keypoints,
                                           patch_size // 2)

        keypoints = np.array(keypoints[self.mask, :], dtype=np.intp,
                             order='C', copy=False)

        self.descriptors = np.zeros((keypoints.shape[0], desc_size),
                                    dtype=bool, order='C')

        _brief_loop(image, self.descriptors.view(np.uint8), keypoints,
                    pos1, pos2)
开发者ID:borevitzlab,项目名称:scikit-image,代码行数:54,代码来源:brief.py


示例11: _apply

def _apply(func, image, selem, out, mask, shift_x, shift_y, s0, s1,
           out_dtype=None):

    assert_nD(image, 2)
    image, selem, out, mask, max_bin = _handle_input(image, selem, out, mask,
                                                     out_dtype)

    func(image, selem, shift_x=shift_x, shift_y=shift_y, mask=mask,
         out=out, max_bin=max_bin, s0=s0, s1=s1)

    return out.reshape(out.shape[:2])
开发者ID:JeanKossaifi,项目名称:scikit-image,代码行数:11,代码来源:bilateral.py


示例12: extract

    def extract(self, image, keypoints, scales, orientations):
        """Extract rBRIEF binary descriptors for given keypoints in image.

        Note that the keypoints must be extracted using the same `downscale`
        and `n_scales` parameters. Additionally, if you want to extract both
        keypoints and descriptors you should use the faster
        `detect_and_extract`.

        Parameters
        ----------
        image : 2D array
            Input image.
        keypoints : (N, 2) array
            Keypoint coordinates as ``(row, col)``.
        scales : (N, ) array
            Corresponding scales.
        orientations : (N, ) array
            Corresponding orientations in radians.

        """
        assert_nD(image, 2)

        pyramid = self._build_pyramid(image)

        descriptors_list = []
        mask_list = []

        # Determine octaves from scales
        octaves = (np.log(scales) / np.log(self.downscale)).astype(np.intp)

        for octave in range(len(pyramid)):

            # Mask for all keypoints in current octave
            octave_mask = octaves == octave

            if np.sum(octave_mask) > 0:

                octave_image = np.ascontiguousarray(pyramid[octave])

                octave_keypoints = keypoints[octave_mask]
                octave_keypoints /= self.downscale ** octave

                octave_orientations = orientations[octave_mask]

                descriptors, mask = self._extract_octave(octave_image,
                                                         octave_keypoints,
                                                         octave_orientations)

                descriptors_list.append(descriptors)
                mask_list.append(mask)

        self.descriptors = np.vstack(descriptors_list).view(np.bool)
        self.mask_ = np.hstack(mask_list)
开发者ID:JeanKossaifi,项目名称:scikit-image,代码行数:53,代码来源:orb.py


示例13: __call__

    def __call__(self, data):
        """Apply the filter to the given data.

        Parameters
        ----------
        data : (M,N) ndarray

        """
        assert_nD(data, 2, 'data')
        F, G = self._prepare(data)
        out = np.dual.ifftn(F * G)
        out = np.abs(_centre(out, data.shape))
        return out
开发者ID:Rapternmn,项目名称:scikit-image,代码行数:13,代码来源:lpi_filter.py


示例14: gabor_filter

def gabor_filter(image, frequency, theta=0, bandwidth=1, sigma_x=None,
                 sigma_y=None, offset=0, mode='reflect', cval=0):
    """Return real and imaginary responses to Gabor filter.

    The real and imaginary parts of the Gabor filter kernel are applied to the
    image and the response is returned as a pair of arrays.

    Frequency and orientation representations of the Gabor filter are similar
    to those of the human visual system. It is especially suitable for texture
    classification using Gabor filter banks.

    Parameters
    ----------
    image : array
        Input image.
    frequency : float
        Frequency of the harmonic function.
    theta : float
        Orientation in radians. If 0, the harmonic is in the x-direction.
    bandwidth : float
        The bandwidth captured by the filter. For fixed bandwidth, `sigma_x`
        and `sigma_y` will decrease with increasing frequency. This value is
        ignored if `sigma_x` and `sigma_y` are set by the user.
    sigma_x, sigma_y : float
        Standard deviation in x- and y-directions. These directions apply to
        the kernel *before* rotation. If `theta = pi/2`, then the kernel is
        rotated 90 degrees so that `sigma_x` controls the *vertical* direction.
    offset : float, optional
        Phase offset of harmonic function in radians.

    Returns
    -------
    real, imag : arrays
        Filtered images using the real and imaginary parts of the Gabor filter
        kernel.

    References
    ----------
    .. [1] http://en.wikipedia.org/wiki/Gabor_filter
    .. [2] http://mplab.ucsd.edu/tutorials/gabor.pdf

    """
    assert_nD(image, 2)
    g = gabor_kernel(frequency, theta, bandwidth, sigma_x, sigma_y, offset)

    filtered_real = ndimage.convolve(image, np.real(g), mode=mode, cval=cval)
    filtered_imag = ndimage.convolve(image, np.imag(g), mode=mode, cval=cval)

    return filtered_real, filtered_imag
开发者ID:JeanKossaifi,项目名称:scikit-image,代码行数:49,代码来源:_gabor.py


示例15: detect

    def detect(self, image):
        """Detect oriented FAST keypoints along with the corresponding scale.

        Parameters
        ----------
        image : 2D array
            Input image.

        """
        assert_nD(image, 2)

        pyramid = self._build_pyramid(image)

        keypoints_list = []
        orientations_list = []
        scales_list = []
        responses_list = []

        for octave in range(len(pyramid)):

            octave_image = np.ascontiguousarray(pyramid[octave])

            keypoints, orientations, responses = \
                self._detect_octave(octave_image)

            keypoints_list.append(keypoints * self.downscale ** octave)
            orientations_list.append(orientations)
            scales_list.append(self.downscale **  octave
                               * np.ones(keypoints.shape[0], dtype=np.intp))
            responses_list.append(responses)

        keypoints = np.vstack(keypoints_list)
        orientations = np.hstack(orientations_list)
        scales = np.hstack(scales_list)
        responses = np.hstack(responses_list)

        if keypoints.shape[0] < self.n_keypoints:
            self.keypoints = keypoints
            self.scales = scales
            self.orientations = orientations
            self.responses = responses
        else:
            # Choose best n_keypoints according to Harris corner response
            best_indices = responses.argsort()[::-1][:self.n_keypoints]
            self.keypoints = keypoints[best_indices]
            self.scales = scales[best_indices]
            self.orientations = orientations[best_indices]
            self.responses = responses[best_indices]
开发者ID:JeanKossaifi,项目名称:scikit-image,代码行数:48,代码来源:orb.py


示例16: sobel

def sobel(image, mask=None):
    """Find the edge magnitude using the Sobel transform.

    Parameters
    ----------
    image : 2-D array
        Image to process.
    mask : 2-D array, optional
        An optional mask to limit the application to a certain area.
        Note that pixels surrounding masked regions are also masked to
        prevent masked regions from affecting the result.

    Returns
    -------
    output : 2-D array
        The Sobel edge map.

    See also
    --------
    scharr, prewitt, roberts, feature.canny

    Notes
    -----
    Take the square root of the sum of the squares of the horizontal and
    vertical Sobels to get a magnitude that's somewhat insensitive to
    direction.

    The 3x3 convolution kernel used in the horizontal and vertical Sobels is
    an approximation of the gradient of the image (with some slight blurring
    since 9 pixels are used to compute the gradient at a given pixel). As an
    approximation of the gradient, the Sobel operator is not completely
    rotation-invariant. The Scharr operator should be used for a better
    rotation invariance.

    Note that ``scipy.ndimage.sobel`` returns a directional Sobel which
    has to be further processed to perform edge detection.

    Examples
    --------
    >>> from skimage import data
    >>> camera = data.camera()
    >>> from skimage import filters
    >>> edges = filters.sobel(camera)
    """
    assert_nD(image, 2)
    out = np.sqrt(sobel_h(image, mask)**2 + sobel_v(image, mask)**2)
    out /= np.sqrt(2)
    return out
开发者ID:borevitzlab,项目名称:scikit-image,代码行数:48,代码来源:edges.py


示例17: prewitt

def prewitt(image, mask=None):
    """Find the edge magnitude using the Prewitt transform.

    Parameters
    ----------
    image : 2-D array
        Image to process.
    mask : 2-D array, optional
        An optional mask to limit the application to a certain area.
        Note that pixels surrounding masked regions are also masked to
        prevent masked regions from affecting the result.

    Returns
    -------
    output : 2-D array
        The Prewitt edge map.

    See also
    --------
    sobel, scharr

    Notes
    -----
    Return the square root of the sum of squares of the horizontal
    and vertical Prewitt transforms. The edge magnitude depends slightly
    on edge directions, since the approximation of the gradient operator by
    the Prewitt operator is not completely rotation invariant. For a better
    rotation invariance, the Scharr operator should be used. The Sobel operator
    has a better rotation invariance than the Prewitt operator, but a worse
    rotation invariance than the Scharr operator.

    Examples
    --------
    >>> from skimage import data
    >>> camera = data.camera()
    >>> from skimage import filters
    >>> edges = filters.prewitt(camera)
    """
    assert_nD(image, 2)
    out = np.sqrt(prewitt_h(image, mask)**2 + prewitt_v(image, mask)**2)
    out /= np.sqrt(2)
    return out
开发者ID:borevitzlab,项目名称:scikit-image,代码行数:42,代码来源:edges.py


示例18: roberts

def roberts(image, mask=None):
    """Find the edge magnitude using Roberts' cross operator.

    Parameters
    ----------
    image : 2-D array
        Image to process.
    mask : 2-D array, optional
        An optional mask to limit the application to a certain area.
        Note that pixels surrounding masked regions are also masked to
        prevent masked regions from affecting the result.

    Returns
    -------
    output : 2-D array
        The Roberts' Cross edge map.
    """
    assert_nD(image, 2)
    return np.sqrt(roberts_positive_diagonal(image, mask)**2 +
                   roberts_negative_diagonal(image, mask)**2)
开发者ID:Rapternmn,项目名称:scikit-image,代码行数:20,代码来源:edges.py


示例19: wiener

def wiener(data, impulse_response=None, filter_params={}, K=0.25,
           predefined_filter=None):
    """Minimum Mean Square Error (Wiener) inverse filter.

    Parameters
    ----------
    data : (M,N) ndarray
        Input data.
    K : float or (M,N) ndarray
        Ratio between power spectrum of noise and undegraded
        image.
    impulse_response : callable `f(r, c, **filter_params)`
        Impulse response of the filter.  See LPIFilter2D.__init__.
    filter_params : dict
        Additional keyword parameters to the impulse_response function.

    Other Parameters
    ----------------
    predefined_filter : LPIFilter2D
        If you need to apply the same filter multiple times over different
        images, construct the LPIFilter2D and specify it here.

    """
    assert_nD(data, 2, 'data')

    if not isinstance(K, float):
        assert_nD(K, 2, 'K')

    if predefined_filter is None:
        filt = LPIFilter2D(impulse_response, **filter_params)
    else:
        filt = predefined_filter

    F, G = filt._prepare(data)
    _min_limit(F)

    H_mag_sqr = np.abs(F)**2
    F = 1 / F * H_mag_sqr / (H_mag_sqr + K)

    return _centre(np.abs(ifftshift(np.dual.ifftn(G * F))), data.shape)
开发者ID:Rapternmn,项目名称:scikit-image,代码行数:40,代码来源:lpi_filter.py


示例20: _handle_input

def _handle_input(image, selem, out, mask, out_dtype=None, pixel_size=1):

    assert_nD(image, 2)
    if image.dtype not in (np.uint8, np.uint16):
        image = img_as_ubyte(image)

    selem = np.ascontiguousarray(img_as_ubyte(selem > 0))
    image = np.ascontiguousarray(image)

    if mask is None:
        mask = np.ones(image.shape, dtype=np.uint8)
    else:
        mask = img_as_ubyte(mask)
        mask = np.ascontiguousarray(mask)

    if image is out:
        raise NotImplementedError("Cannot perform rank operation in place.")

    if out is None:
        if out_dtype is None:
            out_dtype = image.dtype
        out = np.empty(image.shape+(pixel_size,), dtype=out_dtype)
    else:
        if len(out.shape) == 2:
            out = out.reshape(out.shape+(pixel_size,))

    is_8bit = image.dtype in (np.uint8, np.int8)

    if is_8bit:
        max_bin = 255
    else:
        max_bin = max(4, image.max())

    bitdepth = int(np.log2(max_bin))
    if bitdepth > 10:
        warnings.warn("Bitdepth of %d may result in bad rank filter "
                      "performance due to large number of bins." % bitdepth)

    return image, selem, out, mask, max_bin
开发者ID:Rapternmn,项目名称:scikit-image,代码行数:39,代码来源:generic.py



注:本文中的skimage._shared.utils.assert_nD函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python color.gray2rgb函数代码示例发布时间:2022-05-27
下一篇:
Python testing.raises函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap