• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python color.rgb2grey函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中skimage.color.rgb2grey函数的典型用法代码示例。如果您正苦于以下问题:Python rgb2grey函数的具体用法?Python rgb2grey怎么用?Python rgb2grey使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了rgb2grey函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: focus_score

 def focus_score(self): 
     f_score = (color.rgb2grey(self.img) - erosion(color.rgb2grey(self.img), square(4)))
     non_zero_pixel_area = self.get_nonzero_pixel_area(f_score)
     #print("focus score: " + str(np.sum(f_score) / non_zero_pixel_area))
     #plt.imshow(f_score)
     #plt.show()
     return np.sum(f_score) / non_zero_pixel_area 
开发者ID:nathanieljevans,项目名称:vg_automated_microscope,代码行数:7,代码来源:Wafer.py


示例2: compare_images

def compare_images(imageA, imageB, title, show_plot=True):
    """
    computes the mean squared error and structural similarity
    """

    # index values for mean squared error
    if VERBOSE: print("comparing mean squared error...")
    m = mse(imageA, imageB)

    # convert the images to grayscale
    if VERBOSE: print("converting to greyscale...")
    imageA_grey = rgb2grey(imageA)
    imageB_grey = rgb2grey(imageB)

    # uses image copies to avoid runtime warning for ssim computation
    img1_grey = np.copy(imageA_grey)
    img2_grey = np.copy(imageB_grey)

    # index values for structural similarity
    if VERBOSE: print("comparing structural similarity...")
    s = ssim(img1_grey, img2_grey)

    if show_plot:
        if VERBOSE: print("plotting images...")
        try:
            import matplotlib.pyplot as plt
        except:
            print("Error importing pyplot from matplotlib, please install matplotlib package first...")
            sys.tracebacklimit=0
            raise Exception("Importing matplotlib failed")

        # setup the figure
        fig, ax = plt.subplots(2, 2)
        fig.suptitle("%s\nMSE: %.5f, SSIM: %.5f" % (title, m, s))

        ax[0][0].text(-10, -10, 'MSE: %.5f' %(m))

        # show first image
        ax[0][0].imshow(imageA, cmap=plt.cm.gray)
        ax[0][0].axis("off")

        # show the second image
        ax[0][1].imshow(imageB, cmap=plt.cm.gray)
        ax[0][1].axis("off")

        ax[1][0].text(-10, -10, 'SSIM: %.5f' %(s))

        # show first grey image
        ax[1][0].imshow(img1_grey, cmap=plt.cm.gray)
        ax[1][0].axis("off")

        # show the second grey image
        ax[1][1].imshow(img2_grey, cmap=plt.cm.gray)
        ax[1][1].axis("off")

        # show the images
        plt.show()

    return m, s
开发者ID:EtienneBachmann,项目名称:specfem2d,代码行数:59,代码来源:compare_two_images.py


示例3: read_image

def read_image(filename):
    """Read an image from the disk and output data arrays."""
    image_array_rgb = misc.imread(filename, mode='RGB')
    #  image_array_grey = misc.imread(filename, flatten=True, mode='F')
    image_array_grey = color.rgb2grey(image_array_rgb)*255
    image_array_luv = color.rgb2luv(image_array_rgb)
    return image_array_rgb, image_array_grey, image_array_luv
开发者ID:MPMakris,项目名称:Photo_Pro,代码行数:7,代码来源:img_data_functions.py


示例4: featurize

def featurize(img_name):
    """Load an image and convert it into a dictionary of features"""
    img = plt.imread(os.path.join('stimuli', img_name + '.png'))
    height, width, _ = img.shape
    features = defaultdict(int)
    for y in range(height):
        for x in range(width):
            features['red'] += img[y][x][0]
            features['green'] += img[y][x][1]
            features['blue'] += img[y][x][2]
            features['alpha'] += img[y][x][3]

    grey = color.rgb2grey(img)
    for y in range(height):
        for x in range(width):
            for key, value in per_pixel(grey, y, x):
                features[key] += value

    # Normalize over image size
    for key, value in features.items():
        features[key] = float(value) / height / width

    features['blob'] = feature.blob_dog(grey).shape[0]
    features['corners'] = feature.corner_peaks(
        feature.corner_harris(grey)).shape[0]
    return features
开发者ID:cmc333333,项目名称:neuraldata-final,代码行数:26,代码来源:runner.py


示例5: feature_extraction

def feature_extraction(raw_data):
    image = color.rgb2grey(raw_data)

    fd, hog_image = hog(image, orientations=8, pixels_per_cell=(16, 16),
                        cells_per_block=(1, 1), visualise=True)

    return hog_image
开发者ID:jtcorbett,项目名称:tribrain,代码行数:7,代码来源:classify.py


示例6: modify

def modify(img):
    """Randomly modify an image
    
    This is a preprocessing step for training an OCR classifier. It takes
    in an image and casts it to greyscale, reshapes it, and adds some
    (1) rotations, (2) translations and (3) noise.
    
    If more efficiency is needed, we could factor out some of the initial
    nonrandom transforms.
    """
    
    block_size = np.random.uniform(20, 40)
    rotation = 5*np.random.randn()
    
    #print 'BLOCK SIZE', block_size
    #print 'ROTATION  ', rotation
    
    img = color.rgb2grey(img)
    img = transform.resize(img, output_shape=(50,30))
    img = filter.threshold_adaptive(img, block_size=block_size)
    
    # rotate the image
    img = np.logical_not(transform.rotate(np.logical_not(img), rotation))
    # translate the image
    img = shift(img)
    # add some noise to the image
    img = noise(img)
    
    img = transform.resize(img, output_shape=(25,15))
    return filter.threshold_adaptive(img, block_size=25)
开发者ID:rmcgibbo,项目名称:autogert,代码行数:30,代码来源:train_synthetic.py


示例7: dhash

def dhash(picture):
    "Compute dhash as uint64."
    img = rgb2grey(resize(picture, (9, 8)))
    h = np.zeros([8], dtype=np.uint8)
    for a in range(8):
        h[a] = TWOS[img[a] > img[a + 1]].sum()
    return (BIGS * h).sum()
开发者ID:athoune,项目名称:picture-hash,代码行数:7,代码来源:dhash.py


示例8: register_feature_calculators

def register_feature_calculators():
    return [
        lambda img: GaborFilter.compute_feats(rgb2grey(img), GaborFilter.generate_kernels(2)),
        # lambda img: GLCM.compute_feats(rgb2grey(img), [1, 5, 10, 20], [0, np.pi / 4, np.pi / 2, np.pi * 3 / 4]),
        lambda img: ColorAnalyzer.compute_feats(img, 150, 255, ColorAnalyzer.ColorChannel.Green),
        lambda img: ColorAnalyzer.compute_feats(img, 50, 150, ColorAnalyzer.ColorChannel.Hue),
    ]
开发者ID:erdincay,项目名称:ScoreGrass,代码行数:7,代码来源:FeatureManager.py


示例9: _compute_auto_correlation

def _compute_auto_correlation(image, sigma):
    """Compute auto-correlation matrix using sum of squared differences.

    Parameters
    ----------
    image : ndarray
        Input image.
    sigma : float
        Standard deviation used for the Gaussian kernel, which is used as
        weighting function for the auto-correlation matrix.

    Returns
    -------
    Axx : ndarray
        Element of the auto-correlation matrix for each pixel in input image.
    Axy : ndarray
        Element of the auto-correlation matrix for each pixel in input image.
    Ayy : ndarray
        Element of the auto-correlation matrix for each pixel in input image.

    """

    if image.ndim == 3:
        image = img_as_float(rgb2grey(image))

    imx, imy = _compute_derivatives(image)

    # structure tensore
    Axx = ndimage.gaussian_filter(imx * imx, sigma, mode='constant', cval=0)
    Axy = ndimage.gaussian_filter(imx * imy, sigma, mode='constant', cval=0)
    Ayy = ndimage.gaussian_filter(imy * imy, sigma, mode='constant', cval=0)

    return Axx, Axy, Ayy
开发者ID:alfonsodiecko,项目名称:PYTHON_DIST,代码行数:33,代码来源:corner.py


示例10: processOneImage

def processOneImage(inputPath, outputPath):
    image = io.imread(inputPath)
    greyImage = rgb2grey(image)
    threshold = threshold_otsu(greyImage)
    imgout = closing(greyImage > threshold, square(1))
    imgout = crop(imgout)
    imgout = transform.resize(imgout, (max(imgout.shape), max(imgout.shape)))
    io.imsave(outputPath, imgout)
开发者ID:LaTournesol,项目名称:CSE-415-Project,代码行数:8,代码来源:NN_predict.py


示例11: analyze_image

def analyze_image(args):
    """Analyze all wells from all trays in one image."""
    filename, config = args
    LOGGER.debug(filename)
    rows = config["rows"]
    columns = config["columns"]
    well_names = config["well_names"]

    name = splitext(basename(filename))[0]
    if config["parse_dates"]:
        try:
            index = convert_to_datetime(fix_date(name))
        except ValueError as err:
            return {"error": str(err), "filename": filename}
    else:
        index = name

    try:
        image = rgb2grey(imread(filename))
    except OSError as err:
        return {"error": str(err), "filename": filename}

    plate_images = cut_image(image)

    data = dict()

    for i, plate_name in zip(config["plate_indexes"], config["plate_names"]):
        plate = data[plate_name] = dict()
        plate[config["index_name"]] = index
        plate_image = plate_images[i]
        if i // 3 == 0:
            calibration_plate = config["left_image"]
            positions = config["left_positions"]
        else:
            calibration_plate = config["right_image"]
            positions = config["right_positions"]

        try:
            edge_image = canny(plate_image, CANNY_SIGMA)
            offset = align_plates(edge_image, calibration_plate)

            # Add the offset to get the well centers in the analyzed plate.
            well_centers = generate_well_centers(
                np.array(positions) + offset, config["plate_size"], rows,
                columns)
            assert len(well_centers) == rows * columns
            # Add a minimal value to avoid zero division.
            plate_image /= (1 - plate_image + float_info.epsilon)

            well_intensities = [find_well_intensity(plate_image, center)
                                for center in well_centers]

            for well, intensity in zip(well_names, well_intensities):
                plate[well] = intensity
        except (AttributeError, IndexError) as err:
            return {"error": str(err), "filename": filename}

    return data
开发者ID:biosustain,项目名称:growth-profiler-align,代码行数:58,代码来源:analysis.py


示例12: image

def image():
    """Load a single image from p1 brain directory.
    output: a single image as a numpy array"""


    inputDir = '{}'.format(all.__path__[0])
    img = load_image('p1-D3-01b.jpg',inputDir)
    img = color.rgb2grey(img)
    return img 
开发者ID:ThunderShiviah,项目名称:brainmix_register,代码行数:9,代码来源:__init__.py


示例13: apply_watermark

def apply_watermark(filename):
    img = io.imread(filename) # Image in gray scale
    img = color.rgb2grey(img)
    if img.dtype.name != 'uint8':
        img = img * 255
        img = img.astype(numpy.uint8)
    image = img.copy()
    blocks = []
    width, height = image.shape
    hor_block = width / 4
    ver_block = height / 4
    block_counter = 0
    for x in range(0, hor_block):
        for y in range(0, ver_block):
            x_coor = x * 4
            y_coor = y * 4
            block = image[x_coor: x_coor + 4, y_coor: y_coor + 4]
            blocks.append(block)
            block_counter += 1
    n = block_counter
    k = Functions.get_biggest_prime(n)

    for index in range(0, n):
        block_B = blocks[index]
        block_A = (blocks[Functions.mapping(index + 1, k, n) - 1]).copy()
        for x in range(0, 4):
            for y in range(0, 4):
                block_B[x, y] = Functions.removeLSB(block_B[x, y])
        avg_B = Functions.average(block_B)
        for i in range(0, 2):
            for j in range(0, 2):
                i_coor = i * 2
                j_coor = j * 2
                blockBS = block_B[i_coor: i_coor+2, j_coor: j_coor+2]
                average = Functions.average(blockBS)
                v = 0
                if average >= avg_B:
                    v = 1
                p = 1
                if Functions.ones_in_sixMSB(average) % 2 == 0:
                    p = 0
                subblock_a = block_A[i_coor: i_coor+2, j_coor: j_coor+2].copy()
                avg_as = Functions.average(subblock_a)
                r = Functions.split_binary_sixMSB(avg_as)
                if v == 1:
                    v = 2
                if p == 1:
                    p = 2
                if r[2] == 1:
                    r[2] = 2
                if r[4] == 1:
                    r[4] = 2
                blockBS[0][0] = (blockBS[0][0] + v + r[0])
                blockBS[0][1] = (blockBS[0][1] + p + r[1])
                blockBS[1][0] = (blockBS[1][0] + r[2] + r[3])
                blockBS[1][1] = (blockBS[1][1] + r[4] + r[5])
    return image
开发者ID:Michotastico,项目名称:CC5508-T1,代码行数:57,代码来源:Watermark.py


示例14: normalize

def normalize(image, subtractMin):
    """
    @params { array-like } image Skimage type acceptable
    @return { np.ndarray }
    """
    if subtractMin:
        return color.rgb2grey(image)
    else:
        return np.divide(a, np.max(a))
开发者ID:HerringtonDarkholme,项目名称:Python-SignatureSal,代码行数:9,代码来源:util.py


示例15: stainspace_to_2d_array

def stainspace_to_2d_array(ihc_xyz, channel):
    #rescale = rescale_intensity(ihc_xyz[:, :, channel], out_range=(0,1))
    #stain_array = np.dstack((np.zeros_like(rescale), rescale, rescale))

    #try to not reverse engineer rescale right now
    stain_array = ihc_xyz[:, :, channel]
    #plt.imshow(stain_array)
    gray_array = rgb2grey(stain_array)
    #plt.imshow(gray_array)
    return gray_array
开发者ID:griffincalme,项目名称:MicroDeconvolution,代码行数:10,代码来源:stainNormalizationColorDeconv.py


示例16: load_th_image

def load_th_image(image_name):
    image = data.load(image_name)
    grey = rgb2grey(image)

    th = threshold_otsu(grey)

    bin = grey >= th

    bin[50:-50,50:-50] = 0
    return bin
开发者ID:exepulveda,项目名称:roots,代码行数:10,代码来源:binary_validation_test.py


示例17: predict

def predict(image_url, fileName=None):
    svmObject = getSVMInstance()
    image_url = image_url.replace(' ', '')[:-1] # to remove \n
    fileName = "temp.png"
    getImageAndSave(image_url)
    image = imread(fileName)
    image = skimage.transform.resize(image, (100,100))
    image = rgb2grey(image)
    fd = hog(image, orientations=9, pixels_per_cell=(16, 16), cells_per_block=(1, 1), visualise=False,normalise=True)
    prediction = svmObject.predict(fd)
    return prediction
开发者ID:cooxee,项目名称:VODOAT,代码行数:11,代码来源:hog.py


示例18: preprocess

def preprocess(image, height=50, block_size=50):
    """Turn to greyscale, scale to a height, and then threshold to binary
    """

    image = color.rgb2grey(image)
    size_factor = float(height) / image.shape[0]
    new_size = [int(e * size_factor) for e in image.shape]
    image = transform.resize(image, new_size)
    image = filter.threshold_adaptive(image, block_size=30)

    return image
开发者ID:rmcgibbo,项目名称:autogert,代码行数:11,代码来源:image.py


示例19: extract_histogram

 def extract_histogram(self, bins=10):
     """Extract grey intensity histogram."""
     assert len(self.images) > 0, 'No images loaded! Did you call ' \
                                  'load_images() ?'
     histograms = []
     for image in self.images:
         grey = skicol.rgb2grey(image)
         hist_values, bins = np.histogram(grey, range=(0, 1), bins=bins)
         histograms.append(hist_values)
     histograms = np.array(histograms)
     histograms = histograms.astype('float')
     return histograms
开发者ID:joke1196,项目名称:MLGKohonen,代码行数:12,代码来源:WangImageUtilities.py


示例20: watershed_counter

def watershed_counter(path_image):
    # load the image and convert it to a floating point data type
    rgb_image = img_as_float(io.imread(path_image))
    image = rgb2grey(rgb_image)

    bin_image = image > threshold_otsu(image)
    fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(8, 2.5))
    ax1.imshow(image, cmap=plt.cm.gray)
    ax1.set_title('Original Image')
    ax1.axis('off')

    ax2.hist(image)
    ax2.set_title('Otsu Thresholded Histogram')
    ax2.axvline(threshold_otsu(image), color='r')

    ax3.imshow(bin_image, cmap=plt.cm.gray)
    ax3.set_title('Thresholded Image')
    ax3.axis('off')

    # Now we want to separate the two objects in image
    # Generate the markers as local maxima of the distance to the background

    distance = ndi.distance_transform_edt(bin_image)
    local_maxi = peak_local_max(distance, indices=False, footprint=np.ones((3, 3)), labels=bin_image)
    markers = ndi.label(local_maxi)[0]
    labels = watershed(distance, markers, mask=bin_image)

    regions = regionprops(labels)
    regions = [r for r in regions if r.area > 50]
    num = len(regions)

    fig, axes = plt.subplots(ncols=4, figsize=(8, 2.7))
    ax0, ax1, ax2, ax3 = axes

    ax0.imshow(image, cmap=plt.cm.gray, interpolation='nearest')
    ax0.set_title('Overlapping objects')
    ax1.imshow(-distance, cmap=plt.cm.jet, interpolation='nearest')
    ax1.set_title('Distances')
    ax2.imshow(labels, cmap=plt.cm.spectral, interpolation='nearest')
    ax2.set_title(str(num) + ' Total Objects')
    ax3.imshow(rgb_image, cmap=plt.cm.gray, interpolation='nearest')
    ax3.contour(labels, [0.5], linewidths=1.2, colors='y')
    ax3.axis('off')

    for ax in axes:
        ax.axis('off')

    fig.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0,
                        right=1)

    print num

    plt.show()
开发者ID:skochaver,项目名称:_fiberoptic_counter,代码行数:53,代码来源:watershed_methods.py



注:本文中的skimage.color.rgb2grey函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python color.rgb2hed函数代码示例发布时间:2022-05-27
下一篇:
Python color.rgb2gray函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap