本文整理汇总了Python中skimage.color.rgb2hsv函数的典型用法代码示例。如果您正苦于以下问题:Python rgb2hsv函数的具体用法?Python rgb2hsv怎么用?Python rgb2hsv使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了rgb2hsv函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: getFeatures
def getFeatures(fn):
if isinstance(fn,str):
cropped_pillow_im = crop_border(fn)
# converting between PIL images and skimage ubyte is easy!
pic = img_as_ubyte(cropped_pillow_im) # uint8
else:
pic = fn
if pic.shape[1] < 50:
return None, None # too narrow
hues = rgb2hsv(pic)[:,:,0]
brightness = rgb2hsv(pic)[:,:,2] # Value in HSV
# std, mean, median
std = np.std(hues)
diff_avg = abs(np.mean(hues)-np.median(hues))
hue_vals = get_popular_values(hues, num=2)
brightness_vals = get_popular_values(brightness, num=3)
pixel_count = sum(np.histogram(hues)[0])
first_two_colors_close = (abs(hue_vals[0].idx - hue_vals[1].idx) == 1) or (hue_vals[0].idx==0 and\
hue_vals[1].idx==hue_vals[1].maxidx ) or (hue_vals[0].idx==hue_vals[0].maxidx and hue_vals[1].idx==0)\
or (hue_vals[1].cnt <(0.1 * pixel_count))
good_contrast = True
if std == 0.0: # no variance in hue means grayscale image
good_contrast = abs(brightness_vals[0].idx - brightness_vals[1].idx) < 3
res = Feature(std, diff_avg, first_two_colors_close, good_contrast)
if not isGood(res):
return None, None
newy = int(len(pic[0]) / (len(pic) / 250.0))
pic = resize(pic, (250, newy), mode="nearest")
return res, pic
开发者ID:carolinux,项目名称:mosaic,代码行数:31,代码来源:average.py
示例2: main
def main():
# read the images
image_from = io.imread(name_from) / 256
image_to = io.imread(name_to) / 256
# change to hsv domain (if requested)
if args.use_hsv:
image_from[:] = rgb2hsv(image_from)
image_to[:] = rgb2hsv(image_to)
# get shapes
shape_from = image_from.shape
shape_to = image_to.shape
# flatten
X_from = im2mat(image_from)
X_to = im2mat(image_to)
# number of pixes
n_pixels_from = X_from.shape[0]
n_pixels_to = X_to.shape[0]
# subsample
X_from_ss = X_from[np.random.randint(0, n_pixels_from-1, n_pixels),:]
X_to_ss = X_to[np.random.randint(0, n_pixels_to-1, n_pixels),:]
if save_col_distribution:
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('white')
fig, axes = plt.subplots(nrows=2, figsize=(5, 10))
for ax, X in zip(axes, [X_from_ss, X_to_ss]):
ax.scatter(X[:,0], X[:,1], color=X)
if args.use_hsv:
ax.set_xhsvel('hue')
ax.set_yhsvel('value')
else:
ax.set_xhsvel('red')
ax.set_yhsvel('green')
axes[0].set_title('distr. from')
axes[1].set_title('distr. to')
fig.tight_layout()
fig.savefig('color_distributions.png')
# optimal tranportation
ot_color = OptimalTransport(X_to_ss, X_from_ss, lam=lam,
distance_metric=distance_metric)
# model transfer
transfer_model = KNeighborsRegressor(n_neighbors=n_neighbors)
transfer_model.fit(X_to_ss, n_pixels * ot_color.P @ X_from_ss)
X_transfered = transfer_model.predict(X_to)
image_transferd = minmax(mat2im(X_transfered, shape_to))
if args.use_hsv:
image_transferd[:] = hsv2rgb(image_transferd)
io.imsave(name_out, image_transferd)
开发者ID:MichielStock,项目名称:Teaching,代码行数:58,代码来源:color_transfer.py
示例3: test_hsv_value_with_non_float_output
def test_hsv_value_with_non_float_output():
# Since `rgb2hsv` returns a float image and the result of the filtered
# result is inserted into the HSV image, we want to make sure there isn't
# a dtype mismatch.
filtered = edges_hsv_uint(COLOR_IMAGE)
filtered_value = color.rgb2hsv(filtered)[:, :, 2]
value = color.rgb2hsv(COLOR_IMAGE)[:, :, 2]
# Reduce tolerance because dtype conversion.
assert_allclose(filtered_value, filters.sobel(value), rtol=1e-5, atol=1e-5)
开发者ID:AbdealiJK,项目名称:scikit-image,代码行数:9,代码来源:test_adapt_rgb.py
示例4: convertHSV
def convertHSV(img):
"convert RGBA into HSV color Space"
if img.shape[2]==4:
return rgb2hsv(img[:,:,0:3])
else:
if img.shape[2]==3:
return rgb2hsv(img)
else:
print ("Image format not supported")
开发者ID:dgormez,项目名称:pattern-recognition,代码行数:9,代码来源:pattern-reco.py
示例5: legendCurveDictionary
def legendCurveDictionary(legends, curveLocs):
# print curveLocs
curves = [(x.split("Curve-")[1].split(".png")[0], rgb2hsv(imread(x)) * 360) for x in curveLocs]
lcd = {}
for i, l in enumerate(legends):
lcd[i] = [x for x in [curveScore(l, curve) for curve in curves] if x[1] is not None]
return lcd
开发者ID:sagnik,项目名称:svg-linegraph-processing,代码行数:7,代码来源:CurveLegendAssociation.py
示例6: stretchImageHue
def stretchImageHue(imrgb):
# Image must be stored as 0-1 bound float. If it's 0-255 int, convert
if( imrgb.max() > 1 ):
imrgb = imrgb*1./255
# Transform to HSV
imhsv = rgb2hsv(imrgb)
# Find 2-98 percentiles of H histogram (except de-saturated pixels)
plt.figure()
plt.hist(imhsv[imhsv[:,:,1]>0.1,0].flatten(), bins=360)
p2, p98 = np.percentile(imhsv[imhsv[:,:,1]>0.1,0], (2, 98))
print p2, p98
imhsv[:,:,0] = doStretch(imhsv[:,:,0], p2, p98, 0.6, 0.99)
plt.figure()
plt.hist(imhsv[imhsv[:,:,1]>0.1,0].flatten(), bins=360)
imrgb_stretched = hsv2rgb(imhsv)
plt.figure()
plt.imshow(imrgb)
plt.figure()
plt.imshow(imrgb_stretched)
plt.show()
开发者ID:adfoucart,项目名称:deep-net-histology,代码行数:25,代码来源:huestretcher.py
示例7: run
def run(args):
logging.basicConfig(level=logging.INFO)
slide = openslide.OpenSlide(args.wsi_path)
# note the shape of img_RGB is the transpose of slide.level_dimensions
img_RGB = np.transpose(np.array(slide.read_region((0, 0),
args.level,
slide.level_dimensions[args.level]).convert('RGB')),
axes=[1, 0, 2])
img_HSV = rgb2hsv(img_RGB)
background_R = img_RGB[:, :, 0] > threshold_otsu(img_RGB[:, :, 0])
background_G = img_RGB[:, :, 1] > threshold_otsu(img_RGB[:, :, 1])
background_B = img_RGB[:, :, 2] > threshold_otsu(img_RGB[:, :, 2])
tissue_RGB = np.logical_not(background_R & background_G & background_B)
tissue_S = img_HSV[:, :, 1] > threshold_otsu(img_HSV[:, :, 1])
min_R = img_RGB[:, :, 0] > args.RGB_min
min_G = img_RGB[:, :, 1] > args.RGB_min
min_B = img_RGB[:, :, 2] > args.RGB_min
tissue_mask = tissue_S & tissue_RGB & min_R & min_G & min_B
np.save(args.npy_path, tissue_mask)
开发者ID:bootuz,项目名称:NCRF,代码行数:25,代码来源:tissue_mask.py
示例8: get_disease2
def get_disease2(self):
r,g,b = my_image.image_split(self.i_source)
hsv = rgb2hsv(self.i_source)
dise= np.copy(self.i_source[:,:,1])
dise[dise>1]=0
dise[(hsv[:,:,0]>0) & (hsv[:,:,0]<float(45.0/255))&(r<100)&(g<100)&(b<50)]=1
label_im, nb_labels = ndimage.label(dise)
sizes = ndimage.sum(dise, label_im, range(nb_labels + 1))
mean_vals = ndimage.sum(dise, label_im, range(1, nb_labels + 1))
mask_size = sizes < np.max(sizes)
remove_pixel = mask_size[label_im]
label_im[remove_pixel] = 0
label_im[label_im>0]=1
# pdb.set_trace()
###
# remove artifacts connected to image border
self.s_disease = 0
# label image regions
region = regionprops(label(label_im))
for r1 in region:
# pdb.set_trace()
if r1.area > 10:
self.s_disease += r1.area
else:
minr, minc, maxr, maxc = r1.bbox
label_im[float(minr):float(maxr),float(minc):float(maxc)]=0
self.i_desease = label_im
self.i_leaf = self.i_source#blade
self.i_back = self.i_source#background
self.s_leaf = 1#s_b+s_d
开发者ID:A02l01,项目名称:Navautron,代码行数:32,代码来源:leaf.py
示例9: slic_data
def slic_data():
for i in range(uu_num_train+uu_num_test):
print "data %d" %(i+1)
img_name = ''
if i < 10:
img_name = '0' + str(i)
else:
img_name = str(i)
#Read first 70 images as floats
img = img_as_float(io.imread('..\data\\training\image_2\uu_0000' + img_name + '.png'))
img_hsv = color.rgb2hsv(img)
gt_img = img_as_float(io.imread('..\data\\training\gt_image_2\uu_road_0000' + img_name + '.png'))
#Create superpixels for training images
image_segment = slic(img, n_segments = numSegments, sigma = 5)
t, train_indices = np.unique(image_segment, return_index=True)
images_train_indices.append(train_indices)
image = np.reshape(img,(1,(img.shape[0]*img.shape[1]),3))
image_hsv = np.reshape(img_hsv,(1,(img_hsv.shape[0]*img_hsv.shape[1]),3))
#images_train.append([image[0][i] for i in train_indices])
images_train_hsv.append([image_hsv[0][i] for i in train_indices])
#Create gt training image values index at train_indices and converted to 1 or 0
gt_image = np.reshape(gt_img, (1,(gt_img.shape[0]*gt_img.shape[1]),3))
gt_image = [1 if gt_image[0][i][2] > 0 else 0 for i in train_indices]
gt_images_train.append(gt_image)
开发者ID:rudasi,项目名称:road-classification,代码行数:28,代码来源:old_svm_creator.py
示例10: extract_descriptors_he
def extract_descriptors_he(_img, w_size, _ncpus=None):
"""
EXRACT_LOCAL_DESCRIPTORS_HE: extracts a set of local descriptors of the image:
- histogram of Hue values
- histogram of haematoxylin and eosin planes
- Gabor descriptors in haematoxylin and eosin spaces, respectively
- local binary patterns in haematoxylin and eosin spaces, respectively
:param _img: numpy.ndarray
:param w_size: int
:return: list
"""
assert (_img.ndim == 3)
img_iterator = sliding_window(_img.shape[:-1], (w_size, w_size), step=(w_size, w_size)) # non-overlapping windows
gabor = GaborDescriptor()
lbp = LBPDescriptor()
hsv = rgb2hsv(_img)
h, e, _ = rgb2he2(_img)
res = []
with ProcessPoolExecutor(max_workers=_ncpus) as executor:
for w_coords in img_iterator:
res.append(executor.submit(_worker2, hsv[:,:,0], h, e, gabor, lbp, w_coords))
desc = []
for f in as_completed(res):
desc.append(f.result())
return desc
开发者ID:gitter-badger,项目名称:WSItk,代码行数:33,代码来源:extract.py
示例11: extr_beauty_ftrs
def extr_beauty_ftrs(imgFlNm):
img = os.path.basename(imgFlNm)
print("Extracting beauty features for %s" %imgFlNm)
try:
rgbImg = resize_img(io.imread(imgFlNm))
except Exception as e:
print("Invalid image")
return e
if len(rgbImg.shape) != 3 or rgbImg.shape[2] !=3:
print("Invalid image.. Continuing..")
final_ftr_obj_global[img] = None
return None
hsvImg = color.rgb2hsv(rgbImg)
grayImg = color.rgb2gray(rgbImg)
red, green, blue = get_arr(rgbImg)
hue, saturation, value = get_arr(hsvImg)
contrast = calc_contrast(red, green, blue)
ftrs = calc_color_ftrs(hue, saturation, value)
ftrs['contrast'] = contrast
ftrs['entropy'] = entropy(grayImg) # added to include entropy of the given image: more details: http://stackoverflow.com/a/42059758/5759063
ftrs.update(get_spat_arrng_ftrs(grayImg))
final_ftr_obj_global[img] = ftrs
return final_ftr_obj_global
开发者ID:smenon8,项目名称:AnimalWildlifeEstimator,代码行数:31,代码来源:ExtractBtyFtrs.py
示例12: RgbToPlateBackgroundScore
def RgbToPlateBackgroundScore(im):
#This function compares images to find number plate background colour
#since UK plates come in two different colours, they are merged into
#a single score here.
hsvImg = color.rgb2hsv(im)
#Target colours
#Yellow HSV 47/360, 81/100, 100/100 or 32/255, 217/255, > 248/255
#While HSV None, < 8/100, > 82/100 or ?/255, < 21/255, > 255/255
#Compare to white
whiteScore = (255.-hsvImg[:,:,1]) * (hsvImg[:,:,2]) / pow(255., 2.)
#Compare to yellow
#Hue is a repeating value similar to angle, compute dot product with yellow
hueAng = hsvImg[:,:,0] * (2. * math.pi / 255.)
hueSin = np.sin(hueAng)
hueCos = np.cos(hueAng)
targetSin = math.sin(math.radians(47.)) #Hue of yellow
targetCos = math.cos(math.radians(47.))
dotProd = hueSin * targetSin + hueCos * targetCos
yellowHueScore = (dotProd + 1.) / 2. #Scale from 0 to 1
yellowSatScore = np.abs(hsvImg[:,:,1] - 217.) / 217.
yellowValScore = hsvImg[:,:,2] / 255.
yellowScore = yellowHueScore * yellowSatScore * yellowValScore
scoreMax = np.maximum(whiteScore, yellowScore)
return scoreMax
开发者ID:TimSC,项目名称:pyanpr,代码行数:29,代码来源:deskewMarkedPlates.py
示例13: loadData
def loadData(self):
self.rawData = io.imread(self.fileName, plugin='tifffile')
self.rawData = cv2.merge((self.rawData[:, :, 0].T,
self.rawData[:, :, 1].T,
self.rawData[:, :, 2].T))
self.cData = self.rawData.copy()
self.grayData = self.rawData.copy()
self.grayData = color.rgb2gray(self.rawData)
self.hsvData = color.rgb2hsv(self.rawData)
# self.grayData = self.grayData.convert('LA')
# self.grayData = self.grayData.transpose(method=PIL.Image.TRANSPOSE)
self.grayData = transform.rotate(self.grayData, angle=0)
self.cData = transform.rotate(self.cData, angle=0)
self.hsvData = transform.rotate(self.hsvData, angle=0)
self.b = self.cData[:, :, 0]
self.g = self.cData[:, :, 1]
self.r = self.cData[:, :, 2]
self.v = self.hsvData[:, :, 0]
self.s = self.hsvData[:, :, 1]
self.h = self.hsvData[:, :, 2]
self.colorDict = {'RGB': self.cData,
'GRAY': self.grayData,
'B': self.b,
'G': self.g,
'R': self.r,
'HSV': self.hsvData,
'H': self.h,
'S': self.s,
'V': self.v}
开发者ID:MichalZG,项目名称:cellROI,代码行数:30,代码来源:cellroi.py
示例14: testPipo
def testPipo(self):
hsv = rgb2hsv(self.sample / 256.0).reshape((4, 3))
print hsv
polar = colors.convert(hsv, 0.0, 1.0)
print polar
xy = colors.unconvert(polar)
print xy
开发者ID:athoune,项目名称:Palette,代码行数:7,代码来源:colors_test.py
示例15: ton_and_color_corrections
def ton_and_color_corrections():
#色调和彩色校正
image=data.astronaut()
h1=color.rgb2hsv(image)
h2=h1.copy()
h1[:,:,1]=h1[:,:,1]*0.5
image1=color.hsv2rgb(h1)
h2[:,:,1]=h2[:,:,1]*0.5+0.5
image2=color.hsv2rgb(h2)
io.imshow(image)
io.imsave('astronaut.png',image)
io.imshow(image1)
io.imsave('astronautlight.png',image1)
io.imshow(image2)
io.imsave('astronautdark.png',image2)
imagered=image.copy()
imagered[:,:,0]=image[:,:,0]*127.0/255+128
io.imsave('astronautred.png',imagered)
imageblue=image.copy()
imageblue[:,:,2]=image[:,:,2]*127.0/255+128
io.imsave('astronautblue.png',imageblue)
imageyellow=image.copy()
imageyellow[:,:,0]=image[:,:,0]*127.0/255+128
imageyellow[:,:,1]=image[:,:,1]*127.0/255+128
io.imsave('astronautyellow.png',imageyellow)
io.imshow(imageyellow)
开发者ID:xingnix,项目名称:learning,代码行数:27,代码来源:colorimage.py
示例16: composite
def composite(overlay_rgb, background_rgb):
"""
Alpha composite RGB overlay on RGB background
- derive alpha from HSV value of overlay
Parameters
----------
overlay_rgb:
background_rgb:
Returns
-------
"""
overlay_hsv = color.rgb2hsv(overlay_rgb)
value = overlay_hsv[:,:,2]
alpha_rgb = np.dstack((value, value, value))
composite_rgb = overlay_rgb * alpha_rgb + background_rgb * (1.0 - alpha_rgb)
# Clamp values [0..1)
composite_rgb = composite_rgb.clip(0.0, 1.0)
return composite_rgb
开发者ID:jmtyszka,项目名称:atlaskit,代码行数:25,代码来源:prob_label_overlays.py
示例17: compute_color_feature_matrix
def compute_color_feature_matrix(file_list, N, ch, cs, cv):
m = []
for f in file_list:
img = io.imread(f, as_grey=False)
m.append(hsv_to_feature(color.rgb2hsv(img), N, ch, cs, cv))
return m
开发者ID:clemgaut,项目名称:as-cats-dogs,代码行数:7,代码来源:train.py
示例18: hsi_equalize_hist
def hsi_equalize_hist():
image=data.astronaut()
h=color.rgb2hsv(image)
h[:,:,2]=exposure.equalize_hist(h[:,:,2])
image_equal=color.hsv2rgb(h)
io.imshow(image_equal)
io.imsave('astronautequal.png',image_equal)
开发者ID:xingnix,项目名称:learning,代码行数:7,代码来源:colorimage.py
示例19: get_res
def get_res(self, img):
# # img.show()
img = np.array(img)
from skimage import color
img_hsv = color.rgb2hsv(img)
h = img_hsv[:, :, 0]
s = img_hsv[:, :, 1]
v = img_hsv[:, :, 2]
img = 255 - h / 100 - s / 1 + v / 8 - 255
img *= 255
img = np.array(img)
origin = img
from skimage.filters import threshold_otsu
# print img
for i in range(img.shape[0]):
for j in range(img.shape[1]):
if img[i][j] > -100:
img[i][j] = 255
else:
# print img[i][j]
img[i][j] = 0
new_img = img[:, 28:108]
res = []
for i in range(0, 5):
crop_img = new_img[6:, i * 13: i * 13 + 24]
res.append(crop_img)
return res
开发者ID:bohaohan,项目名称:freeOfWhuCaptchaServer,代码行数:32,代码来源:captcha_new.py
示例20: _process
def _process(self, img):
hsv = rgb2hsv(img)
h = hsv[:, :, 0] + self._adjust
h[h > 1] -= 1
hsv[:, :, 0] = h
img[:, :, :] = hsv2rgb(hsv)
return img
开发者ID:jason2506,项目名称:imeffect,代码行数:7,代码来源:basic.py
注:本文中的skimage.color.rgb2hsv函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论