本文整理汇总了Python中skimage.data.coffee函数的典型用法代码示例。如果您正苦于以下问题:Python coffee函数的具体用法?Python coffee怎么用?Python coffee使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了coffee函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_i2v
def test_i2v():
"""Loads the i2v network and applies it to a test image.
"""
with tf.Session() as sess:
net = get_i2v_model()
tf.import_graph_def(net['graph_def'], name='i2v')
g = tf.get_default_graph()
names = [op.name for op in g.get_operations()]
x = g.get_tensor_by_name(names[0] + ':0')
softmax = g.get_tensor_by_name(names[-3] + ':0')
from skimage import data
img = preprocess(data.coffee())[np.newaxis]
res = np.squeeze(softmax.eval(feed_dict={x: img}))
print([(res[idx], net['labels'][idx])
for idx in res.argsort()[-5:][::-1]])
"""Let's visualize the network's gradient activation
when backpropagated to the original input image. This
is effectively telling us which pixels contribute to the
predicted class or given neuron"""
pools = [name for name in names if 'pool' in name.split('/')[-1]]
fig, axs = plt.subplots(1, len(pools))
for pool_i, poolname in enumerate(pools):
pool = g.get_tensor_by_name(poolname + ':0')
pool.get_shape()
neuron = tf.reduce_max(pool, 1)
saliency = tf.gradients(neuron, x)
neuron_idx = tf.arg_max(pool, 1)
this_res = sess.run([saliency[0], neuron_idx],
feed_dict={x: img})
grad = this_res[0][0] / np.max(np.abs(this_res[0]))
axs[pool_i].imshow((grad * 128 + 128).astype(np.uint8))
axs[pool_i].set_title(poolname)
开发者ID:Arn-O,项目名称:kadenze-deep-creative-apps,代码行数:35,代码来源:i2v.py
示例2: test_random_enhance_any_color
def test_random_enhance_any_color():
image = data.coffee()
for i in xrange(10):
enhanced = random_enhance_color(image,_seed=42)
assert (image != enhanced).any()
assert (image.shape == enhanced.shape)
assert (image.sum() < enhanced.sum())
开发者ID:psteinb,项目名称:20150925-scads,代码行数:8,代码来源:test_bootstrap_utils.py
示例3: color_transformation
def color_transformation():
# 彩色变换
image=data.coffee()
brighter=np.uint8(image*0.5+255*0.5)
darker=np.uint8(image*0.5)
io.imshow(brighter)
io.show()
io.imshow(darker)
io.show()
开发者ID:xingnix,项目名称:learning,代码行数:9,代码来源:colorimage.py
示例4: getImage
def getImage(self,params):
sigma = float(params['sigma'])
r = float(params['red'])
g = float(params['green'])
b = float(params['blue'])
image = data.coffee()
new_image = filter.gaussian_filter(image, sigma=sigma, multichannel=True)
new_image[:,:,0] = r*new_image[:,:,0]
new_image[:,:,1] = g*new_image[:,:,1]
new_image[:,:,2] = b*new_image[:,:,2]
return new_image
开发者ID:40a,项目名称:spyre,代码行数:11,代码来源:image_editor.py
示例5: main
def main():
"""Load image, collect pixels, cluster, create segment images, plot."""
# load image
img_rgb = data.coffee()
img_rgb = misc.imresize(img_rgb, (256, 256)) / 255.0
img = color.rgb2hsv(img_rgb)
height, width, channels = img.shape
print("Image shape is: ", img.shape)
# collect pixels as tuples of (r, g, b, y, x)
print("Collecting pixels...")
pixels = []
for y in range(height):
for x in range(width):
pixel = img[y, x, ...]
pixels.append([pixel[0], pixel[1], pixel[2], (y / height) * 2.0, (x / width) * 2.0])
pixels = np.array(pixels)
print("Found %d pixels to cluster" % (len(pixels)))
# cluster the pixels using mean shift
print("Clustering...")
bandwidth = estimate_bandwidth(pixels, quantile=0.05, n_samples=500)
clusterer = MeanShift(bandwidth=bandwidth, bin_seeding=True)
labels = clusterer.fit_predict(pixels)
# process labels generated during clustering
labels_unique = set(labels)
labels_counts = [(lu, len([l for l in labels if l == lu])) for lu in labels_unique]
labels_unique = sorted(list(labels_unique), key=lambda l: labels_counts[l], reverse=True)
nb_clusters = len(labels_unique)
print("Found %d clusters" % (nb_clusters))
print(labels.shape)
print("Creating images of segments...")
img_segments = [np.copy(img_rgb) * 0.25 for label in labels_unique]
for y in range(height):
for x in range(width):
pixel_idx = (y * width) + x
label = labels[pixel_idx]
img_segments[label][y, x, 0] = 1.0
print("Plotting...")
images = [img_rgb]
titles = ["Image"]
for i in range(min(8, nb_clusters)):
images.append(img_segments[i])
titles.append("Segment %d" % (i))
plot_images(images, titles)
开发者ID:aleju,项目名称:computer-vision-algorithms,代码行数:50,代码来源:mean_shift_segmentation.py
示例6: test_write_rgb
def test_write_rgb(tmpdir_factory):
img = coffee()
filename = str(tmpdir_factory.mktemp("write").join("rgb_img.tif"))
with Tiff(filename, "w") as handle:
handle.write(img, method="tile")
with Tiff(filename) as handle:
data = handle[:]
assert np.all(img == data[:, :, :3])
with Tiff(filename, "w") as handle:
handle.write(img, method="scanline")
with Tiff(filename) as handle:
data = handle[:]
assert np.all(img == data[:, :, :3])
开发者ID:FZJ-INM1-BDA,项目名称:pytiff,代码行数:14,代码来源:test_write.py
示例7: run
def run(dict,canload=0):
import os.path
if 'fname' in dict:
filename=dict['fname']
else:
print("No filename given")
exit(1)
print("\n",filename,"============================================","\n")
plt.ion()
G=hamiltonian.GaussGreen(dict['ell'],0)
no_steps=dict['no_steps']
if isinstance(no_steps, list):
ODE=diffeo.MultiShoot(G,1)
else:
ODE=diffeo.Shoot(G) # use single shooting
#
ODE.set_no_steps(dict['no_steps'])
ODE.set_landmarks(dict['landmarks_n'])
ODE.solve()
# plot warp
plot_setup()
plt.axis('equal')
ODE.plot_warp()
plt.savefig(filename+'warp.pdf',bbox_inches='tight')
#
# load test image
#image = data.checkerboard()
image = data.coffee()
#
# apply warp to image
new_image=ODE.warp(image)
# plotting and save to png
plot_setup()
plt.close()
fig, (ax0, ax1) = plt.subplots(1, 2,
figsize=(8, 3),
sharex=True,
sharey=True,
subplot_kw={'adjustable':'box-forced'}
)
ax0.imshow(image, cmap=plt.cm.gray, interpolation='none')
mpl.image.imsave('orig_image.png',image,cmap=plt.cm.gray)
ax0.axis('off')
#
ax1.imshow(new_image, cmap=plt.cm.gray, interpolation='none')
mpl.image.imsave('new_image.png',new_image,cmap=plt.cm.gray)
ax1.axis('off')
plt.show()
print("finished.")
开发者ID:tonyshardlow,项目名称:reg_sde,代码行数:49,代码来源:run_warp.py
示例8: test_minsize
def test_minsize():
# single-channel:
img = data.coins()[20:168, 0:128]
for min_size in np.arange(10, 100, 10):
segments = felzenszwalb(img, min_size=min_size, sigma=3)
counts = np.bincount(segments.ravel())
# actually want to test greater or equal.
assert_greater(counts.min() + 1, min_size)
# multi-channel:
coffee = data.coffee()[::4, ::4]
for min_size in np.arange(10, 100, 10):
segments = felzenszwalb(coffee, min_size=min_size, sigma=3)
counts = np.bincount(segments.ravel())
# actually want to test greater or equal.
assert_greater(counts.min() + 1, min_size)
开发者ID:Cadair,项目名称:scikit-image,代码行数:15,代码来源:test_felzenszwalb.py
示例9: test_minsize
def test_minsize():
# single-channel:
img = data.coins()[20:168,0:128]
for min_size in np.arange(10, 100, 10):
segments = felzenszwalb(img, min_size=min_size, sigma=3)
counts = np.bincount(segments.ravel())
# actually want to test greater or equal.
assert_greater(counts.min() + 1, min_size)
# multi-channel:
coffee = data.coffee()[::4, ::4]
for min_size in np.arange(10, 100, 10):
segments = felzenszwalb(coffee, min_size=min_size, sigma=3)
counts = np.bincount(segments.ravel())
# actually want to test greater or equal.
# the construction doesn't guarantee min_size is respected
# after intersecting the sementations for the colors
assert_greater(np.mean(counts) + 1, min_size)
开发者ID:AceHao,项目名称:scikit-image,代码行数:17,代码来源:test_felzenszwalb.py
示例10: _build_expected_output
def _build_expected_output(self):
funcs = (grey.erosion, grey.dilation, grey.opening, grey.closing,
grey.white_tophat, grey.black_tophat)
selems_2D = (selem.square, selem.diamond,
selem.disk, selem.star)
with expected_warnings(['Possible precision loss']):
image = img_as_ubyte(transform.downscale_local_mean(
color.rgb2gray(data.coffee()), (20, 20)))
output = {}
for n in range(1, 4):
for strel in selems_2D:
for func in funcs:
key = '{0}_{1}_{2}'.format(strel.__name__, n, func.__name__)
output[key] = func(image, strel(n))
return output
开发者ID:AbdealiJK,项目名称:scikit-image,代码行数:18,代码来源:test_grey.py
示例11: conditions
independently for each channel, as long as the number of channels is equal in
the input image and the reference.
Histogram matching can be used as a lightweight normalisation for image
processing, such as feature matching, especially in circumstances where the
images have been taken from different sources or in different conditions (i.e.
lighting).
"""
import matplotlib.pyplot as plt
from skimage import data
from skimage import exposure
from skimage.transform import match_histograms
reference = data.coffee()
image = data.chelsea()
matched = match_histograms(image, reference)
fig, (ax1, ax2, ax3) = plt.subplots(nrows=1, ncols=3, figsize=(8, 3),
sharex=True, sharey=True)
for aa in (ax1, ax2, ax3):
aa.set_axis_off()
ax1.imshow(image)
ax1.set_title('Source')
ax2.imshow(reference)
ax2.set_title('Reference')
ax3.imshow(matched)
ax3.set_title('Matched')
开发者ID:anntzer,项目名称:scikit-image,代码行数:31,代码来源:plot_histogram_matching.py
示例12:
This method computes the mean color of `dst`.
Parameters
----------
graph : RAG
The graph under consideration.
src, dst : int
The vertices in `graph` to be merged.
"""
graph.node[dst]['total color'] += graph.node[src]['total color']
graph.node[dst]['pixel count'] += graph.node[src]['pixel count']
graph.node[dst]['mean color'] = (graph.node[dst]['total color'] /
graph.node[dst]['pixel count'])
img = data.coffee()
labels = segmentation.slic(img, compactness=30, n_segments=400)
g = graph.rag_mean_color(img, labels)
labels2 = graph.merge_hierarchical(labels, g, thresh=35, rag_copy=False,
in_place_merge=True,
merge_func=merge_mean_color,
weight_func=_weight_mean_color)
g2 = graph.rag_mean_color(img, labels2)
out = color.label2rgb(labels2, img, kind='avg')
out = segmentation.mark_boundaries(out, labels2, (0, 0, 0))
io.imshow(out)
io.show()
开发者ID:AbdealiJK,项目名称:scikit-image,代码行数:30,代码来源:plot_rag_merge.py
示例13:
image can then be effectively performed by a mere thresholding of the HSV
channels.
.. [1] https://en.wikipedia.org/wiki/HSL_and_HSV
"""
##############################################################################
# We first load the RGB image and extract the Hue and Value channels:
import matplotlib.pyplot as plt
from skimage import data
from skimage.color import rgb2hsv
rgb_img = data.coffee()
hsv_img = rgb2hsv(rgb_img)
hue_img = hsv_img[:, :, 0]
value_img = hsv_img[:, :, 2]
fig, (ax0, ax1, ax2) = plt.subplots(ncols=3, figsize=(8, 2))
ax0.imshow(rgb_img)
ax0.set_title("RGB image")
ax0.axis('off')
ax1.imshow(hue_img, cmap='hsv')
ax1.set_title("Hue channel")
ax1.axis('off')
ax2.imshow(value_img)
ax2.set_title("Value channel")
ax2.axis('off')
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:31,代码来源:plot_rgb_to_hsv.py
示例14: int
References
----------
.. [1] Xie, Yonghong, and Qiang Ji. "A new efficient ellipse detection
method." Pattern Recognition, 2002. Proceedings. 16th International
Conference on. Vol. 2. IEEE, 2002
"""
import matplotlib.pyplot as plt
from skimage import data, filter, color
from skimage.transform import hough_ellipse
from skimage.draw import ellipse_perimeter
# Load picture, convert to grayscale and detect edges
image_rgb = data.coffee()[0:220, 160:420]
image_gray = color.rgb2gray(image_rgb)
edges = filter.canny(image_gray, sigma=2.0,
low_threshold=0.55, high_threshold=0.8)
# Perform a Hough Transform
# The accuracy corresponds to the bin size of a major axis.
# The value is chosen in order to get a single high accumulator.
# The threshold eliminates low accumulators
result = hough_ellipse(edges, accuracy=20, threshold=250,
min_size=100, max_size=120)
result.sort(order='accumulator')
# Estimated parameters for the ellipse
best = result[-1]
yc = int(best[1])
开发者ID:acfyfe,项目名称:scikit-image,代码行数:30,代码来源:plot_circular_elliptical_hough_transform.py
示例15: import
from skimage.data import coffee, camera
from sklearn_theano.feature_extraction import (
GoogLeNetTransformer, GoogLeNetClassifier)
import numpy as np
from nose import SkipTest
import os
co = coffee().astype(np.float32)
ca = camera().astype(np.float32)[:, :, np.newaxis] * np.ones((1, 1, 3),
dtype='float32')
def test_googlenet_transformer():
"""smoke test for googlenet transformer"""
if os.environ.get('CI', None) is not None:
raise SkipTest("Skipping heavy data loading on CI")
t = GoogLeNetTransformer()
t.transform(co)
t.transform(ca)
def test_googlenet_classifier():
"""smoke test for googlenet classifier"""
if os.environ.get('CI', None) is not None:
raise SkipTest("Skipping heavy data loading on CI")
c = GoogLeNetClassifier()
c.predict(co)
c.predict(ca)
开发者ID:Faruk-Ahmed,项目名称:sklearn-theano,代码行数:30,代码来源:test_googlenet.py
示例16: coffee
#!/usr/bin/env python
"""Get superpixels of an image."""
from skimage.segmentation import slic, quickshift # , felzenszwalb
from skimage.segmentation import mark_boundaries
from skimage.data import coffee
import matplotlib.pyplot as plt
import Image
import numpy
img = coffee()
drip = ("/home/moose/GitHub/MediSeg/DATA/Segmentation_Rigid_Training/"
"Training/OP4/Raw/")
for i in range(10, 40):
im = Image.open(drip + "img_%i_raw.png" % i)
img = numpy.array(im)
w, h, d = original_shape = tuple(img.shape)
segments = slic(img,
n_segments=50,
compactness=20)
b1 = mark_boundaries(img, segments, color=(1, 1, 0))
segments = quickshift(img, ratio=0.5, max_dist=10, sigma=0.0)
b2 = mark_boundaries(img, segments, color=(1, 1, 0))
segments = quickshift(img, ratio=0.5, max_dist=10, sigma=0.1)
开发者ID:TensorVision,项目名称:MediSeg,代码行数:31,代码来源:get_superpixels.py
示例17: test_random_enhance_color
def test_random_enhance_color():
image = data.coffee()
enhanced = random_enhance_color(image,_seed=42, _color_id=0)
assert (image[...,0] != enhanced[...,0]).any()
assert (image.shape == enhanced.shape)
assert (image.sum() < enhanced.sum())
开发者ID:psteinb,项目名称:20150925-scads,代码行数:6,代码来源:test_bootstrap_utils.py
示例18: color_complements
def color_complements():
# 补色
image=data.coffee()
invert=255-image
io.imshow(invert)
io.show()
开发者ID:xingnix,项目名称:learning,代码行数:6,代码来源:colorimage.py
示例19: test_coffee
def test_coffee():
""" Test that "coffee" image can be loaded. """
data.coffee()
开发者ID:Gildus,项目名称:scikit-image,代码行数:3,代码来源:test_data.py
示例20: hog
import matplotlib.pyplot as plt
from skimage.feature import hog
from skimage import data, color, exposure
image = color.rgb2gray(data.coffee())
fd, hog_image = hog(image, orientations=8, pixels_per_cell=(16, 16),
cells_per_block=(1, 1), visualise=True)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
ax1.axis('off')
ax1.imshow(image, cmap=plt.cm.gray)
ax1.set_title('Input image')
# Rescale histogram for better display
hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 0.02))
ax2.axis('off')
ax2.imshow(hog_image_rescaled, cmap=plt.cm.gray)
ax2.set_title('Histogram of Oriented Gradients')
plt.show()
开发者ID:nityas,项目名称:6869-finalproject,代码行数:24,代码来源:hog.py
注:本文中的skimage.data.coffee函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论