本文整理汇总了Python中skimage.data.lena函数的典型用法代码示例。如果您正苦于以下问题:Python lena函数的具体用法?Python lena怎么用?Python lena使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了lena函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_tv_denoise_2d
def test_tv_denoise_2d(self):
"""
Apply the TV denoising algorithm on the lena image provided
by scipy
"""
# lena image
lena = color.rgb2gray(data.lena())[:256, :256]
# add noise to lena
lena += 0.5 * lena.std() * np.random.randn(*lena.shape)
# clip noise so that it does not exceed allowed range for float images.
lena = np.clip(lena, 0, 1)
# denoise
denoised_lena = filter.tv_denoise(lena, weight=60.0)
# which dtype?
assert denoised_lena.dtype in [np.float, np.float32, np.float64]
from scipy import ndimage
grad = ndimage.morphological_gradient(lena, size=((3, 3)))
grad_denoised = ndimage.morphological_gradient(
denoised_lena, size=((3, 3)))
# test if the total variation has decreased
assert np.sqrt(
(grad_denoised ** 2).sum()) < np.sqrt((grad ** 2).sum()) / 2
denoised_lena_int = filter.tv_denoise(img_as_uint(lena),
weight=60.0, keep_type=True)
assert denoised_lena_int.dtype is np.dtype('uint16')
开发者ID:amueller,项目名称:scikit-image,代码行数:25,代码来源:test_tv_denoise.py
示例2: test_daisy_normalization
def test_daisy_normalization():
img = img_as_float(data.lena()[:64, :64].mean(axis=2))
descs = daisy(img, normalization='l1')
for i in range(descs.shape[0]):
for j in range(descs.shape[1]):
assert_almost_equal(np.sum(descs[i, j, :]), 1)
descs_ = daisy(img)
assert_almost_equal(descs, descs_)
descs = daisy(img, normalization='l2')
for i in range(descs.shape[0]):
for j in range(descs.shape[1]):
assert_almost_equal(sqrt(np.sum(descs[i, j, :] ** 2)), 1)
orientations = 8
descs = daisy(img, orientations=orientations, normalization='daisy')
desc_dims = descs.shape[2]
for i in range(descs.shape[0]):
for j in range(descs.shape[1]):
for k in range(0, desc_dims, orientations):
assert_almost_equal(sqrt(np.sum(
descs[i, j, k:k + orientations] ** 2)), 1)
img = np.zeros((50, 50))
descs = daisy(img, normalization='off')
for i in range(descs.shape[0]):
for j in range(descs.shape[1]):
assert_almost_equal(np.sum(descs[i, j, :]), 0)
assert_raises(ValueError, daisy, img, normalization='does_not_exist')
开发者ID:alfonsodiecko,项目名称:PYTHON_DIST,代码行数:31,代码来源:test_daisy.py
示例3: test_rotated_lena
def test_rotated_lena():
"""
The harris filter should yield the same results with an image and it's
rotation.
"""
im = img_as_float(data.lena().mean(axis=2))
im_rotated = im.T
# Moravec
results = peak_local_max(corner_moravec(im))
results_rotated = peak_local_max(corner_moravec(im_rotated))
assert (np.sort(results[:, 0]) == np.sort(results_rotated[:, 1])).all()
assert (np.sort(results[:, 1]) == np.sort(results_rotated[:, 0])).all()
# Harris
results = peak_local_max(corner_harris(im))
results_rotated = peak_local_max(corner_harris(im_rotated))
assert (np.sort(results[:, 0]) == np.sort(results_rotated[:, 1])).all()
assert (np.sort(results[:, 1]) == np.sort(results_rotated[:, 0])).all()
# Shi-Tomasi
results = peak_local_max(corner_shi_tomasi(im))
results_rotated = peak_local_max(corner_shi_tomasi(im_rotated))
assert (np.sort(results[:, 0]) == np.sort(results_rotated[:, 1])).all()
assert (np.sort(results[:, 1]) == np.sort(results_rotated[:, 0])).all()
开发者ID:almarklein,项目名称:scikit-image,代码行数:25,代码来源:test_corner.py
示例4: test_fast_homography
def test_fast_homography():
img = rgb2gray(data.lena()).astype(np.uint8)
img = img[:, :100]
theta = np.deg2rad(30)
scale = 0.5
tx, ty = 50, 50
H = np.eye(3)
S = scale * np.sin(theta)
C = scale * np.cos(theta)
H[:2, :2] = [[C, -S], [S, C]]
H[:2, 2] = [tx, ty]
tform = ProjectiveTransform(H)
coords = warp_coords(tform.inverse, (img.shape[0], img.shape[1]))
for order in range(4):
for mode in ('constant', 'reflect', 'wrap', 'nearest'):
p0 = map_coordinates(img, coords, mode=mode, order=order)
p1 = warp(img, tform, mode=mode, order=order)
# import matplotlib.pyplot as plt
# f, (ax0, ax1, ax2, ax3) = plt.subplots(1, 4)
# ax0.imshow(img)
# ax1.imshow(p0, cmap=plt.cm.gray)
# ax2.imshow(p1, cmap=plt.cm.gray)
# ax3.imshow(np.abs(p0 - p1), cmap=plt.cm.gray)
# plt.show()
d = np.mean(np.abs(p0 - p1))
assert d < 0.001
开发者ID:aeweiwi,项目名称:scikit-image,代码行数:33,代码来源:test_warps.py
示例5: test_theano_overfeat_against_binary
def test_theano_overfeat_against_binary():
layer_correspondence = dict(
normal=dict(
large=[(0, 0, None), (1, 2, None), (2, 3, None), (3, 5, None),
(4, 6, None), (5, 9, None), (6, 12, None), (7, 15, None),
(8, 18, None), (9, 19, None), (10, 21, None),
(11, 23, None), (12, 24, None)],
small=[(0, 0, None), (1, 2, None), (2, 3, None), (3, 5, None),
(4, 6, None), (5, 9, None), (6, 12, None), (7, 15, None),
(8, 16, None), (9, 18, None), (10, 20, None),
(11, 21, None)]),
detailed=dict(
large=[(i, i, None) for i in range(25)],
small=[(i, i, None) for i in range(22)]
)
)
rng = np.random.RandomState(42)
image = (rng.rand(320, 320, 3) * 255).astype(np.uint8)
from skimage.data import lena
image = lena()
for detailed, correspondences in layer_correspondence.items():
for net_size, correspondence in correspondences.items():
for theano_layer, binary_layer, cropping in correspondence:
_check_overfeat_layer(image, theano_layer, binary_layer,
net_size == 'large',
detailed == 'detailed',
cropping=cropping)
开发者ID:Faruk-Ahmed,项目名称:sklearn-theano,代码行数:29,代码来源:test_overfeat.py
示例6: test_lena
def test_lena():
from skimage import data
from skimage import color
from skimage.transform import resize
in_shape = (200, 200)
n_imgs = 1
lena = resize(color.rgb2gray(data.lena()), in_shape).astype(np.float32)
lena -= lena.min()
lena /= lena.max()
imgs = lena.reshape((n_imgs,) + in_shape)
model = cnnr.models.fg11_ht_l3_1_description
extractor = cnnr.BatchExtractor(in_shape, model)
feat_set, _ = extractor.extract(imgs)
assert feat_set.shape == (n_imgs, 10, 10, 256)
feat_set.shape = n_imgs, -1
test_chunk_computed = feat_set[0, 12798:12802]
test_chunk_expected = np.array([0.03845372, 0.02469639, 0.01009409, 0.02500059], dtype=np.float32)
assert_allclose(test_chunk_computed, test_chunk_expected, rtol=RTOL, atol=ATOL)
开发者ID:luca-bondi,项目名称:convnet-rfw,代码行数:28,代码来源:test_extractor.py
示例7: test_corner_orientations_lena
def test_corner_orientations_lena():
img = rgb2gray(data.lena())
corners = corner_peaks(corner_fast(img, 11, 0.35))
expected = np.array([-1.9195897 , -3.03159624, -1.05991162, -2.89573739,
-2.61607644, 2.98660159])
actual = corner_orientations(img, corners, octagon(3, 2))
assert_almost_equal(actual, expected)
开发者ID:AlexG31,项目名称:scikit-image,代码行数:7,代码来源:test_corner.py
示例8: test_fast_homography
def test_fast_homography():
img = rgb2gray(data.lena()).astype(np.uint8)
img = img[:, :100]
theta = np.deg2rad(30)
scale = 0.5
tx, ty = 50, 50
H = np.eye(3)
S = scale * np.sin(theta)
C = scale * np.cos(theta)
H[:2, :2] = [[C, -S], [S, C]]
H[:2, 2] = [tx, ty]
for mode in ('constant', 'mirror', 'wrap'):
p0 = homography(img, H, mode=mode, order=1)
p1 = fast_homography(img, H, mode=mode)
p1 = np.round(p1)
## import matplotlib.pyplot as plt
## f, (ax0, ax1, ax2, ax3) = plt.subplots(1, 4)
## ax0.imshow(img)
## ax1.imshow(p0, cmap=plt.cm.gray)
## ax2.imshow(p1, cmap=plt.cm.gray)
## ax3.imshow(np.abs(p0 - p1), cmap=plt.cm.gray)
## plt.show()
d = np.mean(np.abs(p0 - p1))
assert d < 0.2
开发者ID:NeilYager,项目名称:scikits-image,代码行数:30,代码来源:test_warps.py
示例9: main
def main():
"""Plot example augmentations for Lena and an image loaded from a file."""
# try on a lena image
image = data.lena()
augmenter = ImageAugmenter(image.shape[0], image.shape[1],
hflip=True, vflip=True,
scale_to_percent=1.3, scale_axis_equally=False,
rotation_deg=25, shear_deg=10,
translation_x_px=5, translation_y_px=5)
augmenter.plot_image(image, 100)
# check loading of images from file and augmenting them
image = misc.imread("chameleon.png")
augmenter = ImageAugmenter(image.shape[1], image.shape[0],
hflip=True, vflip=True,
scale_to_percent=1.3, scale_axis_equally=False,
rotation_deg=25, shear_deg=10,
translation_x_px=5, translation_y_px=5)
augmenter.plot_image(image, 50)
# move the channel from index 2 (3rd position) to index 0 (1st position)
# so (y, x, rgb) becomes (rgb, y, x)
# try if it still works
image = np.rollaxis(image, 2, 0)
augmenter = ImageAugmenter(image.shape[2], image.shape[1],
hflip=True, vflip=True,
scale_to_percent=1.3, scale_axis_equally=False,
rotation_deg=25, shear_deg=10,
translation_x_px=5, translation_y_px=5,
channel_is_first_axis=True)
augmenter.plot_image(image, 50)
开发者ID:aleju,项目名称:ImageAugmenter,代码行数:34,代码来源:CheckPlotImages.py
示例10: test_binary_descriptors_lena_rotation_crosscheck_true
def test_binary_descriptors_lena_rotation_crosscheck_true():
"""Verify matched keypoints and their corresponding masks results between
lena image and its rotated version with the expected keypoint pairs with
cross_check enabled."""
img = data.lena()
img = rgb2gray(img)
tform = tf.SimilarityTransform(scale=1, rotation=0.15, translation=(0, 0))
rotated_img = tf.warp(img, tform)
extractor = BRIEF(descriptor_size=512)
keypoints1 = corner_peaks(corner_harris(img), min_distance=5)
extractor.extract(img, keypoints1)
descriptors1 = extractor.descriptors
keypoints2 = corner_peaks(corner_harris(rotated_img), min_distance=5)
extractor.extract(rotated_img, keypoints2)
descriptors2 = extractor.descriptors
matches = match_descriptors(descriptors1, descriptors2, cross_check=True)
exp_matches1 = np.array([ 0, 1, 2, 4, 6, 7, 9, 10, 11, 12, 13, 15,
16, 17, 19, 20, 21, 24, 26, 27, 28, 29, 30, 35,
36, 38, 39, 40, 42, 44, 45])
exp_matches2 = np.array([33, 0, 35, 1, 3, 2, 6, 4, 9, 11, 10, 7,
8, 5, 14, 13, 15, 16, 17, 18, 19, 21, 22, 24,
23, 26, 27, 25, 28, 29, 30])
assert_equal(matches[:, 0], exp_matches1)
assert_equal(matches[:, 1], exp_matches2)
开发者ID:A-0-,项目名称:scikit-image,代码行数:29,代码来源:test_match.py
示例11: lena
def lena(gray=True, small=True):
im = data.lena()
if small:
im = imresize(im, size=(im.shape[0] / 4, im.shape[1] / 4))
if gray:
im = im.mean(axis=2)
return im
开发者ID:NelleV,项目名称:IMANU,代码行数:7,代码来源:data.py
示例12: plot_lena_overlay
def plot_lena_overlay():
plt.figure()
logo = ScipyLogo((300, 300), 180)
logo.plot_snake_curve()
logo.plot_circle()
img = data.lena()
plt.imshow(img)
开发者ID:Rapternmn,项目名称:scikit-image,代码行数:7,代码来源:scipy_logo.py
示例13: test_histogram_of_oriented_gradients
def test_histogram_of_oriented_gradients():
img = img_as_float(data.lena()[:256, :].mean(axis=2))
fd = feature.hog(img, orientations=9, pixels_per_cell=(8, 8),
cells_per_block=(1, 1))
assert len(fd) == 9 * (256 // 8) * (512 // 8)
开发者ID:A-0-,项目名称:scikit-image,代码行数:7,代码来源:test_hog.py
示例14: test_keypoints_orb_less_than_desired_no_of_keypoints
def test_keypoints_orb_less_than_desired_no_of_keypoints():
img = rgb2gray(lena())
detector_extractor = ORB(n_keypoints=15, fast_n=12,
fast_threshold=0.33, downscale=2, n_scales=2)
detector_extractor.detect(img)
exp_rows = np.array([ 67., 247., 269., 413., 435., 230., 264.,
330., 372.])
exp_cols = np.array([ 157., 146., 111., 70., 180., 136., 336.,
148., 156.])
exp_scales = np.array([ 1., 1., 1., 1., 1., 2., 2., 2., 2.])
exp_orientations = np.array([-105.76503839, -96.28973044, -53.08162354,
-173.4479964 , -175.64733392, -106.07927215,
-163.40016243, 75.80865813, -154.73195911])
exp_response = np.array([ 0.13197835, 0.24931321, 0.44351774,
0.39063076, 0.96770745, 0.04935129,
0.21431068, 0.15826555, 0.42403573])
assert_almost_equal(exp_rows, detector_extractor.keypoints[:, 0])
assert_almost_equal(exp_cols, detector_extractor.keypoints[:, 1])
assert_almost_equal(exp_scales, detector_extractor.scales)
assert_almost_equal(exp_response, detector_extractor.responses)
assert_almost_equal(exp_orientations,
np.rad2deg(detector_extractor.orientations), 5)
detector_extractor.detect_and_extract(img)
assert_almost_equal(exp_rows, detector_extractor.keypoints[:, 0])
assert_almost_equal(exp_cols, detector_extractor.keypoints[:, 1])
开发者ID:A-0-,项目名称:scikit-image,代码行数:31,代码来源:test_orb.py
示例15: test
def test():
img = skimage.img_as_float(data.lena())
img_size = img.shape[:2]
trans = get_transform(20,15,1.05, 0.02, img_size)
img_transformed = transform.warp(img, trans)
obj_func = lambda x: transform_and_compare(img_transformed, img, x)
x0 = np.array([0,0,1, 0])
results = optimize.fmin_bfgs(obj_func, x0)
transform_estimated = get_simple_transform(results)
transform_optimal = transform.AffineTransform(np.linalg.inv(trans._matrix))
params_optimal = np.concatenate([transform_optimal.translation,
transform_optimal.scale[0:1],
[transform_optimal.rotation]])
img_registered = transform.warp(img_transformed,
transform_estimated)
err_original = mean_sq_diff(img_transformed, img)
err_optimal = transform_and_compare(img_transformed, img, params_optimal)
err_actual = transform_and_compare(img_transformed, img, results)
err_relative = err_optimal/err_original
print "Params optimal:", params_optimal
print "Params estimated:", results
print "Error without registration:", err_original
print "Error of optimal registration:", err_optimal
print "Error of estimated transformation %f (%.2f %% of intial)" % (err_actual,
err_relative*100.)
plt.figure()
plt.subplot(121)
plt.imshow(img_transformed)
plt.subplot(122)
plt.imshow(img_registered)
开发者ID:btel,项目名称:imageregistration,代码行数:34,代码来源:registration.py
示例16: test_original_images
def test_original_images(self):
images = self.manager.original_images()
n_images = sum(1 for _ in images)
self.assertEqual(n_images, 1)
lena = data.lena()
for image in images:
self.assertEqual(image.shape, lena.shape)
开发者ID:IshitaTakeshi,项目名称:ClothingRecommenderML,代码行数:8,代码来源:test_dataset.py
示例17: test_is_rgb
def test_is_rgb():
color = data.lena()
gray = data.camera()
assert is_rgb(color)
assert not is_gray(color)
assert is_gray(gray)
assert not is_gray(color)
开发者ID:seberg,项目名称:scikit-image,代码行数:9,代码来源:test_colorconv.py
示例18: test_tv_denoise_float_result_range
def test_tv_denoise_float_result_range(self):
# lena image
lena = color.rgb2gray(data.lena())[:256, :256]
int_lena = np.multiply(lena, 255).astype(np.uint8)
assert np.max(int_lena) > 1
denoised_int_lena = filter.tv_denoise(int_lena, weight=60.0)
# test if the value range of output float data is within [0.0:1.0]
assert denoised_int_lena.dtype == np.float
assert np.max(denoised_int_lena) <= 1.0
assert np.min(denoised_int_lena) >= 0.0
开发者ID:GerardoLopez,项目名称:scikits-image,代码行数:10,代码来源:test_tv_denoise.py
示例19: test_rotated_lena
def test_rotated_lena(self):
"""
The harris filter should yield the same results with an image and it's
rotation.
"""
im = img_as_float(data.lena().mean(axis=2))
results = harris(im)
im_rotated = im.T
results_rotated = harris(im_rotated)
assert (results[:, 0] == results_rotated[:, 1]).all()
开发者ID:rajnishs91,项目名称:scikits-image,代码行数:10,代码来源:test_harris.py
示例20: test_num_peaks
def test_num_peaks():
"""For a bunch of different values of num_peaks, check that
peak_local_max returns exactly the right amount of peaks. Test
is run on Lena in order to produce a sufficient number of corners"""
lena_corners = corner_harris(data.lena())
for i in range(20):
n = np.random.random_integers(20)
results = peak_local_max(lena_corners, num_peaks=n)
assert (results.shape[0] == n)
开发者ID:almarklein,项目名称:scikit-image,代码行数:11,代码来源:test_corner.py
注:本文中的skimage.data.lena函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论