• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python data.text函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中skimage.data.text函数的典型用法代码示例。如果您正苦于以下问题:Python text函数的具体用法?Python text怎么用?Python text使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了text函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: main

def main():
    """Load image, apply histogram stretching and cumulative histogram
    equalization. Plot the results."""
    img = data.text()

    height, width = img.shape
    nb_pixels = height * width

    # apply histogram stretching
    gray_min = np.min(img)
    gray_max = np.max(img)
    img_hist_stretched = (img - gray_min) * (255 / (gray_max - gray_min))
    img_hist_stretched = img_hist_stretched.astype(np.uint8)

    # apply cumulative histogram equalization
    img_cumulative = np.zeros(img.shape, dtype=np.uint8)
    hist_cumulative = [0] * 256
    running_sum = 0
    hist, edges = np.histogram(img, 256, (0, 255))
    for i in range(256):
        count = hist[i]
        running_sum += count
        hist_cumulative[i] = running_sum / nb_pixels

    for i in range(256):
        img_cumulative[img == i] = int(256 * hist_cumulative[i])

    # plot
    plot_images_grayscale(
        [img, img_hist_stretched, img_cumulative],
        ["Image", "Histogram stretched to 0-255", "Cumulative Histogram Equalization"]
    )
开发者ID:aleju,项目名称:computer-vision-algorithms,代码行数:32,代码来源:histogram_equalization.py


示例2: test_RGB

def test_RGB():
    img = gaussian(data.text(), 1)
    imgR = np.zeros((img.shape[0], img.shape[1], 3))
    imgG = np.zeros((img.shape[0], img.shape[1], 3))
    imgRGB = np.zeros((img.shape[0], img.shape[1], 3))
    imgR[:, :, 0] = img
    imgG[:, :, 1] = img
    imgRGB[:, :, :] = img[:, :, None]
    x = np.linspace(5, 424, 100)
    y = np.linspace(136, 50, 100)
    init = np.array([x, y]).T
    snake = active_contour(imgR, init, bc='fixed',
            alpha=0.1, beta=1.0, w_line=-5, w_edge=0, gamma=0.1)
    refx = [5, 9, 13, 17, 21, 25, 30, 34, 38, 42]
    refy = [136, 135, 134, 133, 132, 131, 129, 128, 127, 125]
    assert_equal(np.array(snake[:10, 0], dtype=np.int32), refx)
    assert_equal(np.array(snake[:10, 1], dtype=np.int32), refy)
    snake = active_contour(imgG, init, bc='fixed',
            alpha=0.1, beta=1.0, w_line=-5, w_edge=0, gamma=0.1)
    assert_equal(np.array(snake[:10, 0], dtype=np.int32), refx)
    assert_equal(np.array(snake[:10, 1], dtype=np.int32), refy)
    snake = active_contour(imgRGB, init, bc='fixed',
            alpha=0.1, beta=1.0, w_line=-5/3., w_edge=0, gamma=0.1)
    assert_equal(np.array(snake[:10, 0], dtype=np.int32), refx)
    assert_equal(np.array(snake[:10, 1], dtype=np.int32), refy)
开发者ID:TonyMou,项目名称:scikit-image,代码行数:25,代码来源:test_active_contour_model.py


示例3: test_free_reference

def test_free_reference():
    img = data.text()
    x = np.linspace(5, 424, 100)
    y = np.linspace(70, 40, 100)
    init = np.array([x, y]).T
    snake = active_contour(gaussian(img, 3), init, bc='free',
            alpha=0.1, beta=1.0, w_line=-5, w_edge=0, gamma=0.1)
    refx = [10, 13, 16, 19, 23, 26, 29, 32, 36, 39]
    refy = [76, 76, 75, 74, 73, 72, 71, 70, 69, 69]
    assert_equal(np.array(snake[:10, 0], dtype=np.int32), refx)
    assert_equal(np.array(snake[:10, 1], dtype=np.int32), refy)
开发者ID:TonyMou,项目名称:scikit-image,代码行数:11,代码来源:test_active_contour_model.py


示例4: test_fixed_reference

def test_fixed_reference():
    img = data.text()
    x = np.linspace(5, 424, 100)
    y = np.linspace(136, 50, 100)
    init = np.array([x, y]).T
    snake = active_contour(gaussian(img, 1), init, bc='fixed',
            alpha=0.1, beta=1.0, w_line=-5, w_edge=0, gamma=0.1)
    refx = [5, 9, 13, 17, 21, 25, 30, 34, 38, 42]
    refy = [136, 135, 134, 133, 132, 131, 129, 128, 127, 125]
    assert_equal(np.array(snake[:10, 0], dtype=np.int32), refx)
    assert_equal(np.array(snake[:10, 1], dtype=np.int32), refy)
开发者ID:TonyMou,项目名称:scikit-image,代码行数:11,代码来源:test_active_contour_model.py


示例5: test_triangle_float_images

def test_triangle_float_images():
    text = data.text()
    int_bins = text.max() - text.min() + 1
    # Set nbins to match the uint case and threshold as float.
    assert(round(threshold_triangle(
        text.astype(np.float), nbins=int_bins)) == 104)
    # Check that rescaling image to floats in unit interval is equivalent.
    assert(round(threshold_triangle(text / 255., nbins=int_bins) * 255) == 104)
    # Repeat for inverted image.
    assert(round(threshold_triangle(
        np.invert(text).astype(np.float), nbins=int_bins)) == 151)
    assert (round(threshold_triangle(
        np.invert(text) / 255., nbins=int_bins) * 255) == 151)
开发者ID:Gildus,项目名称:scikit-image,代码行数:13,代码来源:test_thresholding.py


示例6: profile

def profile():
    import time
    from iib.simulation import CLContext
    from skimage import io, data, transform
    gs, wgs = 256, 16

    # Load some test data
    r = transform.resize
    sigs = np.empty((gs, gs, 4), np.float32)
    sigs[:, :, 0] = r(data.coins().astype(np.float32) / 255.0, (gs, gs))
    sigs[:, :, 1] = r(data.camera().astype(np.float32) / 255.0, (gs, gs))
    sigs[:, :, 2] = r(data.text().astype(np.float32) / 255.0, (gs, gs))
    sigs[:, :, 3] = r(data.checkerboard().astype(np.float32) / 255.0, (gs, gs))
    sigs[:, :, 2] = r(io.imread("../scoring/corpus/rds/turing_001.png",
                                as_grey=True), (gs, gs))
    sigs[:, :, 3] = io.imread("../scoring/corpus/synthetic/blobs.png",
                              as_grey=True)
    sigs = sigs.reshape(gs*gs*4)

    # Set up OpenCL
    ctx = cl.create_some_context(interactive=False)
    queue = cl.CommandQueue(ctx)
    mf = cl.mem_flags
    ifmt_f = cl.ImageFormat(cl.channel_order.RGBA, cl.channel_type.FLOAT)
    bufi = cl.Image(ctx, mf.READ_ONLY, ifmt_f, (gs, gs))
    cl.enqueue_copy(queue, bufi, sigs, origin=(0, 0), region=(gs, gs))
    clctx = CLContext(ctx, queue, ifmt_f, gs, wgs)

    # Compile the kernels
    feats = cl.Program(ctx, features_cl()).build()
    rdctn = cl.Program(ctx, reduction.reduction_sum_cl()).build()
    blur2 = cl.Program(ctx, convolution.gaussian_cl([np.sqrt(2.0)]*4)).build()
    blur4 = cl.Program(ctx, convolution.gaussian_cl([np.sqrt(4.0)]*4)).build()

    iters = 500
    t0 = time.time()
    for i in range(iters):
        get_features(clctx, feats, rdctn, blur2, blur4, bufi)
    print((time.time() - t0)/iters)
开发者ID:adamgreig,项目名称:iib,代码行数:39,代码来源:features.py


示例7: test_text

def test_text():
    """ Test that "text" image can be loaded. """
    data.text()
开发者ID:Gildus,项目名称:scikit-image,代码行数:3,代码来源:test_data.py


示例8: test_triangle_uint_images

def test_triangle_uint_images():
    assert(threshold_triangle(np.invert(data.text())) == 151)
    assert(threshold_triangle(data.text()) == 104)
    assert(threshold_triangle(data.coins()) == 80)
    assert(threshold_triangle(np.invert(data.coins())) == 175)
开发者ID:Gildus,项目名称:scikit-image,代码行数:5,代码来源:test_thresholding.py


示例9:

from skimage import data, transform

import numpy as np
import matplotlib.pyplot as plt


image = data.text()

plt.imshow(image, cmap=plt.cm.gray)

target = np.array(plt.ginput(4))
source = np.array([(0, 0), (0, 50), (300, 50), (300, 0)])

plt.close()

pt = transform.ProjectiveTransform()
pt.estimate(source, target)

warped = transform.warp(image, pt, output_shape=(50, 300))


f, (ax0, ax1) = plt.subplots(1, 2)
ax0.imshow(image, cmap=plt.cm.gray)
ax1.imshow(warped, cmap=plt.cm.gray)
plt.show()
开发者ID:salmcdonagh,项目名称:python-seminar,代码行数:25,代码来源:warp_text.py


示例10:

    fig = plt.figure(figsize=(7, 7))
    ax = fig.add_subplot(111)
    plt.gray()
    ax.imshow(img)
    ax.plot(init[:, 0], init[:, 1], '--r', lw=3)
    ax.plot(snake[:, 0], snake[:, 1], '-b', lw=3)
    ax.set_xticks([]), ax.set_yticks([])
    ax.axis([0, img.shape[1], img.shape[0], 0])

######################################################################
# Here we initialize a straight line between two points, `(5, 136)` and
# `(424, 50)`, and require that the spline has its end points there by giving
# the boundary condition `bc='fixed'`. We furthermore make the algorithm
# search for dark lines by giving a negative `w_line` value.

img = data.text()

x = np.linspace(5, 424, 100)
y = np.linspace(136, 50, 100)
init = np.array([x, y]).T

if new_scipy:
    snake = active_contour(gaussian(img, 1), init, bc='fixed',
                           alpha=0.1, beta=1.0, w_line=-5, w_edge=0, gamma=0.1)

    fig = plt.figure(figsize=(9, 5))
    ax = fig.add_subplot(111)
    plt.gray()
    ax.imshow(img)
    ax.plot(init[:, 0], init[:, 1], '--r', lw=3)
    ax.plot(snake[:, 0], snake[:, 1], '-b', lw=3)
开发者ID:andreydung,项目名称:scikit-image,代码行数:31,代码来源:plot_active_contours.py


示例11:

"""
This example illustrates the use of the horizontal Sobel filter, to compute
horizontal gradients.
"""

from skimage import data, filter
import matplotlib.pyplot as plt

text = data.text()
hsobel_text = filter.hsobel(text)

plt.figure(figsize=(12, 3))

plt.subplot(121)
plt.imshow(text, cmap='gray', interpolation='nearest')
plt.axis('off')
plt.subplot(122)
plt.imshow(hsobel_text, cmap='jet', interpolation='nearest')
plt.axis('off')
plt.tight_layout()
plt.show()
开发者ID:B-Rich,项目名称:scipy-lecture-notes,代码行数:21,代码来源:plot_sobel.py


示例12: test

def test():
    import matplotlib.pyplot as plt
    from skimage import io, data, transform
    from iib.simulation import CLContext

    gs, wgs = 256, 16

    # Load some test data
    r = transform.resize
    sigs = np.empty((gs, gs, 4), np.float32)
    sigs[:, :, 0] = r(data.coins().astype(np.float32) / 255.0, (gs, gs))
    sigs[:, :, 1] = r(data.camera().astype(np.float32) / 255.0, (gs, gs))
    sigs[:, :, 2] = r(data.text().astype(np.float32) / 255.0, (gs, gs))
    sigs[:, :, 3] = r(data.checkerboard().astype(np.float32) / 255.0, (gs, gs))
    sigs[:, :, 2] = r(io.imread("../scoring/corpus/rds/turing_001.png",
                                as_grey=True), (gs, gs))
    sigs[:, :, 3] = io.imread("../scoring/corpus/synthetic/blobs.png",
                              as_grey=True)
    #sq = np.arange(256).astype(np.float32).reshape((16, 16)) / 255.0
    #sigs[:, :, 0] = np.tile(sq, (16, 16))
    sigs = sigs.reshape(gs*gs*4)

    # Set up OpenCL
    ctx = cl.create_some_context(interactive=False)
    queue = cl.CommandQueue(ctx)
    mf = cl.mem_flags
    ifmt_f = cl.ImageFormat(cl.channel_order.RGBA, cl.channel_type.FLOAT)
    bufi = cl.Image(ctx, mf.READ_ONLY, ifmt_f, (gs, gs))
    cl.enqueue_copy(queue, bufi, sigs, origin=(0, 0), region=(gs, gs))
    clctx = CLContext(ctx, queue, ifmt_f, gs, wgs)

    # Compile the kernels
    feats = cl.Program(ctx, features_cl()).build()
    rdctn = cl.Program(ctx, reduction.reduction_sum_cl()).build()
    blur2 = cl.Program(ctx, convolution.gaussian_cl([np.sqrt(2.0)]*4)).build()
    blur4 = cl.Program(ctx, convolution.gaussian_cl([np.sqrt(4.0)]*4)).build()

    entropy = get_entropy(clctx, feats, rdctn, bufi)
    print("Average entropy:", entropy)

    variance = get_variance(clctx, feats, rdctn, bufi)
    print("Variance:", variance)

    edges = get_edges(clctx, feats, rdctn, blur4, bufi, summarise=False)
    edge_counts = get_edges(clctx, feats, rdctn, blur4, bufi)
    print("Edge pixel counts:", edge_counts)

    blobs = get_blobs(clctx, feats, rdctn, blur2, bufi, summarise=False)

    features = get_features(clctx, feats, rdctn, blur2, blur4, bufi)
    print("Feature vector:")
    print(features)

    # Plot the edges and blobs
    for i in range(4):
        plt.subplot(4, 3, i*3+1)
        img = sigs.reshape((gs, gs, 4))[:, :, i]
        plt.imshow(img, cmap="gray")
        plt.xticks([])
        plt.yticks([])

        plt.subplot(4, 3, i*3+2)
        img = edges.reshape((gs, gs, 4))[:, :, i]
        plt.imshow(img, cmap="gray")
        plt.xticks([])
        plt.yticks([])

        ax = plt.subplot(4, 3, i*3+3)
        img = sigs.reshape((gs, gs, 4))[:, :, i]
        plt.imshow(img, cmap="gray")
        plt.xticks([])
        plt.yticks([])
        for j in range(len(blobs)):
            sblobs = blobs[j]
            s = 2**(j+1)
            r = np.sqrt(2.0) * s
            im = sblobs[:, :, i]
            posns = np.transpose(im.nonzero()) * 2**(j+1)
            for xy in posns:
                circ = plt.Circle((xy[1], xy[0]), r, color="green", fill=False)
                ax.add_patch(circ)
    plt.show()
开发者ID:adamgreig,项目名称:iib,代码行数:82,代码来源:features.py


示例13: plot_harris_points

from matplotlib import pyplot as plt

from skimage import data, img_as_float
from skimage.feature import harris


def plot_harris_points(image, filtered_coords):
    """ plots corners found in image"""

    plt.imshow(image)
    y, x = np.transpose(filtered_coords)
    plt.plot(x, y, 'b.')
    plt.axis('off')

# display results
plt.figure(figsize=(8, 3))
im_lena = img_as_float(data.lena())
im_text = img_as_float(data.text())

filtered_coords = harris(im_lena, min_distance=4)

plt.axes([0, 0, 0.3, 0.95])
plot_harris_points(im_lena, filtered_coords)

filtered_coords = harris(im_text, min_distance=4)

plt.axes([0.2, 0, 0.77, 1])
plot_harris_points(im_text, filtered_coords)

plt.show()
开发者ID:GerardoLopez,项目名称:scikits-image,代码行数:30,代码来源:plot_harris.py


示例14: test_triangle_images

def test_triangle_images():
    assert threshold_triangle(np.invert(data.text())) == 151
    assert threshold_triangle(data.text()) == 104
    assert threshold_triangle(data.coins()) == 80
    assert threshold_triangle(np.invert(data.coins())) == 175
开发者ID:Hiyorimi,项目名称:scikit-image,代码行数:5,代码来源:test_thresholding.py


示例15: autolevel

==================================

Demo of a CollectionViewer for viewing collections of images with the
`autolevel` rank filter connected as a plugin.

"""
from skimage import data
from skimage.filter import rank
from skimage.morphology import disk

from skimage.viewer import CollectionViewer
from skimage.viewer.widgets import Slider
from skimage.viewer.plugins.base import Plugin


# Wrap autolevel function to make the disk size a filter argument.
def autolevel(image, disk_size):
    return rank.autolevel(image, disk(disk_size))


img_collection = [data.camera(), data.coins(), data.text()]

plugin = Plugin(image_filter=autolevel)
plugin += Slider("disk_size", 2, 8, value_type="int")
plugin.name = "Autolevel"

viewer = CollectionViewer(img_collection)
viewer += plugin

viewer.show()
开发者ID:alexeyum,项目名称:scikit-image,代码行数:30,代码来源:collection_plugin.py



注:本文中的skimage.data.text函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python draw.circle函数代码示例发布时间:2022-05-27
下一篇:
Python data.moon函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap