本文整理汇总了Python中skimage.exposure.rescale_intensity函数的典型用法代码示例。如果您正苦于以下问题:Python rescale_intensity函数的具体用法?Python rescale_intensity怎么用?Python rescale_intensity使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了rescale_intensity函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: autolevels
def autolevels(image,minPercent=2,maxPercent=98,funcName='mean',perChannel=False):
'''
Rescale intensity of an image. For RGB images, the new limits are calculated
per channel and then mean or median of these limits are applied to the whole
image (if perChannel option is False).
'''
# dictionary of functions
funcs = {'mean':np.mean,'median':np.median,'min':np.min,'max':np.max}
# calculate percentiles (returns 3 values for RGB pictures or vectors, 1 for grayscale images)
if image.shape[1] == 3:
pMin,pMax = np.percentile(image,(minPercent, maxPercent),axis=0)
else:
pMin,pMax = np.percentile(image,(minPercent, maxPercent),axis=(0,1))
# Apply normalisation
if not perChannel: # finds new min and max using selected function applied to all channels
newMin = funcs[funcName](pMin)
newMax = funcs[funcName](pMax)
auto = exposure.rescale_intensity(image,in_range=(newMin,newMax))
else: # applies a rescale on each channel separately
r_channel = exposure.rescale_intensity(image[:,:,0], in_range=(pMin[0],pMax[0]))
g_channel = exposure.rescale_intensity(image[:,:,1], in_range=(pMin[1],pMax[1]))
b_channel = exposure.rescale_intensity(image[:,:,2], in_range=(pMin[2],pMax[2]))
auto = np.stack((r_channel,g_channel,b_channel),axis=2)
return auto
开发者ID:jobar8,项目名称:graphics,代码行数:28,代码来源:graphics.py
示例2: mod_zedge
def mod_zedge(composite, mod_id, algorithm, **kwargs):
zedge_channel, zedge_channel_created = composite.channels.get_or_create(name="-zedge")
for t in range(composite.series.ts):
print("step02 | processing mod_zedge t{}/{}...".format(t + 1, composite.series.ts), end="\r")
zdiff_mask = composite.masks.get(channel__name__contains=kwargs["channel_unique_override"], t=t).load()
zbf = exposure.rescale_intensity(composite.gons.get(channel__name="-zbf", t=t).load() * 1.0)
zedge = zbf.copy()
binary_mask = zdiff_mask > 0
outside_edge = distance_transform_edt(dilate(edge_image(binary_mask), iterations=4))
outside_edge = 1.0 - exposure.rescale_intensity(outside_edge * 1.0)
zedge *= outside_edge * outside_edge
zedge_gon, zedge_gon_created = composite.gons.get_or_create(
experiment=composite.experiment, series=composite.series, channel=zedge_channel, t=t
)
zedge_gon.set_origin(0, 0, 0, t)
zedge_gon.set_extent(composite.series.rs, composite.series.cs, 1)
zedge_gon.array = zedge.copy()
zedge_gon.save_array(composite.series.experiment.composite_path, composite.templates.get(name="source"))
zedge_gon.save()
开发者ID:apollo-dev,项目名称:apollo,代码行数:25,代码来源:algorithms.py
示例3: edge
def edge():
#plt.switch_backend('MacOSX')
image = io.imread(path + "bibme0.png")
print type(image)
print image.shape
# edge_roberts = roberts(image)
# edge_sobel = sobel(image)
fig = plt.figure(figsize=(14, 7))
ax_each = fig.add_subplot(121, adjustable='box-forced')
ax_hsv = fig.add_subplot(122, sharex=ax_each, sharey=ax_each,
adjustable='box-forced')
# We use 1 - sobel_each(image)
# but this will not work if image is not normalized
ax_each.imshow(rescale_intensity(1 - sobel_gray(image)), cmap=plt.cm.gray)
#ax_each.imshow(sobel_each(image))
ax_each.set_xticks([]), ax_each.set_yticks([])
ax_each.set_title("Sobel filter computed\n on individual RGB channels")
# We use 1 - sobel_hsv(image) but this will not work if image is not normalized
ax_hsv.imshow(rescale_intensity(1 - sobel_gray(image)), cmap=plt.cm.gray)
ax_hsv.set_xticks([]), ax_hsv.set_yticks([])
ax_hsv.set_title("Sobel filter computed\n on (V)alue converted image (HSV)")
fig.savefig(out_path + 'sobel_gray.png')
plt.show()
开发者ID:eason001,项目名称:imBot,代码行数:29,代码来源:imgpro.py
示例4: _write_image
def _write_image(self, img_data, filename, img_format=None, dtype=None):
"""
Output image data to a file, in a given image format.
Assumes that the output directory exists (must be checked before).
@param img_data :: image data in the usual numpy representation
@param filename :: file name, including directory and extension
@param img_format :: image file format
@param dtype :: can be used to force a pixel type, otherwise the type
of the input data is used
Returns:: name of the file saved
"""
if not img_format:
img_format = self.default_out_format
filename = filename + '.' + img_format
if dtype and img_data.dtype != dtype:
img_data = np.array(img_data, dtype=dtype)
if img_format == 'tiff' and _USING_PLUGIN_TIFFFILE:
img_data = exposure.rescale_intensity(img_data, out_range='uint16')
skio.imsave(filename, img_data, plugin='tifffile')
else:
img_data = exposure.rescale_intensity(img_data, out_range='uint16')
skio.imsave(filename, img_data)
return filename
开发者ID:spaceyatom,项目名称:mantid,代码行数:28,代码来源:energy_bands_aggregator.py
示例5: rgb2he2
def rgb2he2(img):
# This implementation follows http://web.hku.hk/~ccsigma/color-deconv/color-deconv.html
assert (img.ndim == 3)
assert (img.shape[2] == 3)
height, width, _ = img.shape
img = -np.log((img + 1.0) / img.max())
# the following lines are replaced with the final result,
# to speed up computations
#
# he = np.array([0.550, 0.758, 0.351]); he /= norm(he)
# eo = np.array([0.398, 0.634, 0.600]); eo /= norm(eo)
# bg = np.array([0.754, 0.077, 0.652]); bg /= norm(bg)
#
# M = np.hstack((he.reshape(3,1), eo.reshape(3,1), bg.reshape(3,1)))
# D = alg.inv(M)
#
D = np.array([[ 1.92129515, 1.00941672, -2.34107612],
[-2.34500192, 0.47155124, 2.65616872],
[ 1.21495282, -0.99544467, 0.2459345 ]])
rgb = img.swapaxes(2, 0).reshape((3, height*width))
heb = np.dot(D, rgb)
res_img = heb.reshape((3, width, height)).swapaxes(0, 2)
return rescale_intensity(res_img[:,:,0], out_range=(0,1)), \
rescale_intensity(res_img[:,:,1], out_range=(0,1)), \
rescale_intensity(res_img[:,:,2], out_range=(0,1))
开发者ID:gitter-badger,项目名称:WSItk,代码行数:31,代码来源:he.py
示例6: handle
def handle(self, *args, **options):
# vars
experiment_name = options['expt']
series_name = options['series']
t = options['t']
if experiment_name!='' and series_name!='':
experiment = Experiment.objects.get(name=experiment_name)
series = experiment.series.get(name=series_name)
# select composite
composite = series.composites.get()
zmean = exposure.rescale_intensity(composite.gons.get(channel__name='-zmean', t=t).load() * 1.0)
zmod = exposure.rescale_intensity(composite.gons.get(channel__name='-zmod', t=t).load() * 1.0)
zdiff = np.zeros(zmean.shape)
for unique in np.unique(zmod):
print(unique, len(np.unique(zmod)))
zdiff[zmod==unique] = np.mean(zmean[zmod==unique]) / np.sum(zmean)
plt.imshow(zdiff, cmap='Greys_r')
plt.show()
# imsave('zdiff.tiff', zdiff)
else:
print('Please enter an experiment')
开发者ID:apollo-dev,项目名称:img-base,代码行数:28,代码来源:test_zdiff.py
示例7: juntarcanais
def juntarcanais(c1, c2):
h = exposure.rescale_intensity(c1, out_range=(0, 1))
d = exposure.rescale_intensity(c2, out_range=(0, 1))
zdh = np.dstack((np.zeros_like(h), d, h))
return zdh
开发者ID:ssscassio,项目名称:PathoSpotter,代码行数:8,代码来源:extrairmagenta.py
示例8: handle
def handle(self, *args, **options):
# vars
experiment_name = options['expt']
series_name = options['series']
t = options['t']
R = 1
delta_z = -8
# sigma = 5
if experiment_name!='' and series_name!='':
experiment = Experiment.objects.get(name=experiment_name)
series = experiment.series.get(name=series_name)
# select composite
composite = series.composites.get()
# load gfp
gfp_gon = composite.gons.get(t=t, channel__name='0')
gfp_start = exposure.rescale_intensity(gfp_gon.load() * 1.0)
print('loaded gfp...')
# load bf
bf_gon = composite.gons.get(t=t, channel__name='1')
bf = exposure.rescale_intensity(bf_gon.load() * 1.0)
print('loaded bf...')
for sigma in [0, 5, 10, 20]:
gfp = gf(gfp_start, sigma=sigma) # <<< SMOOTHING
for level in range(gfp.shape[2]):
print('level {} {}...'.format(R, level))
gfp[:,:,level] = convolve(gfp[:,:,level], np.ones((R,R)))
# initialise images
Z = np.zeros(composite.series.shape(d=2), dtype=int)
Zmean = np.zeros(composite.series.shape(d=2))
Zbf = np.zeros(composite.series.shape(d=2))
Z = np.argmax(gfp, axis=2) + delta_z
# outliers
Z[Z<0] = 0
Z[Z>composite.series.zs-1] = composite.series.zs-1
for level in range(bf.shape[2]):
print('level {}...'.format(level))
bf_level = bf[:,:,level]
Zbf[Z==level] = bf_level[Z==level]
Zmean = 1 - np.mean(gfp, axis=2) / np.max(gfp, axis=2)
imsave('zbf_R-{}_sigma-{}_delta_z{}.png'.format(R, sigma, delta_z), Zbf)
# plt.imshow(Zbf, cmap='Greys_r')
# plt.show()
else:
print('Please enter an experiment')
开发者ID:apollo-dev,项目名称:img-base,代码行数:58,代码来源:test_zmod.py
示例9: equalize_adapthist
def equalize_adapthist(image, ntiles_x=8, ntiles_y=8, clip_limit=0.01,
nbins=256):
"""Contrast Limited Adaptive Histogram Equalization.
Parameters
----------
image : array-like
Input image.
ntiles_x : int, optional
Number of tile regions in the X direction. Ranges between 2 and 16.
ntiles_y : int, optional
Number of tile regions in the Y direction. Ranges between 2 and 16.
clip_limit : float: optional
Clipping limit, normalized between 0 and 1 (higher values give more
contrast).
nbins : int, optional
Number of gray bins for histogram ("dynamic range").
Returns
-------
out : ndarray
Equalized image.
Notes
-----
* The algorithm relies on an image whose rows and columns are even
multiples of the number of tiles, so the extra rows and columns are left
at their original values, thus preserving the input image shape.
* For color images, the following steps are performed:
- The image is converted to LAB color space
- The CLAHE algorithm is run on the L channel
- The image is converted back to RGB space and returned
* For RGBA images, the original alpha channel is removed.
References
----------
.. [1] http://tog.acm.org/resources/GraphicsGems/gems.html#gemsvi
.. [2] https://en.wikipedia.org/wiki/CLAHE#CLAHE
"""
args = [None, ntiles_x, ntiles_y, clip_limit * nbins, nbins]
if image.ndim > 2:
lab_img = color.rgb2lab(skimage.img_as_float(image))
l_chan = lab_img[:, :, 0]
l_chan /= np.max(np.abs(l_chan))
l_chan = skimage.img_as_uint(l_chan)
args[0] = rescale_intensity(l_chan, out_range=(0, NR_OF_GREY - 1))
new_l = _clahe(*args).astype(float)
new_l = rescale_intensity(new_l, out_range=(0, 100))
lab_img[:new_l.shape[0], :new_l.shape[1], 0] = new_l
image = color.lab2rgb(lab_img)
image = rescale_intensity(image, out_range=(0, 1))
else:
image = skimage.img_as_uint(image)
args[0] = rescale_intensity(image, out_range=(0, NR_OF_GREY - 1))
out = _clahe(*args)
image[:out.shape[0], :out.shape[1]] = out
image = rescale_intensity(image)
return image
开发者ID:4rozenwolves,项目名称:scikit-image,代码行数:58,代码来源:_adapthist.py
示例10: _color_correction
def _color_correction(self, band, band_id, low, coverage):
self.output("Color correcting band %s" % band_id, normal=True, color='green', indent=1)
p_low, cloud_cut_low = self._percent_cut(band, low, 100 - (coverage * 3 / 4))
temp = numpy.zeros(numpy.shape(band), dtype=numpy.uint16)
cloud_divide = 65000 - coverage * 100
mask = numpy.logical_and(band < cloud_cut_low, band > 0)
temp[mask] = rescale_intensity(band[mask], in_range=(p_low, cloud_cut_low), out_range=(256, cloud_divide))
temp[band >= cloud_cut_low] = rescale_intensity(band[band >= cloud_cut_low], out_range=(cloud_divide, 65535))
return temp
开发者ID:spgriffin,项目名称:landsat-util,代码行数:9,代码来源:image.py
示例11: equalize_adapthist
def equalize_adapthist(image, ntiles_x=8, ntiles_y=8, clip_limit=0.01,
nbins=256):
args = [None, ntiles_x, ntiles_y, clip_limit * nbins, nbins]
image = skimage.img_as_uint(image)
args[0] = rescale_intensity(image, out_range=(0, NR_OF_GREY - 1))
out = _clahe(*args)
image[:out.shape[0], :out.shape[1]] = out
image = rescale_intensity(image)
return image
开发者ID:karthik,项目名称:scikitimage,代码行数:9,代码来源:Pre-Process_Full.py
示例12: equalize_adapthist
def equalize_adapthist(image, ntiles_x=8, ntiles_y=8, clip_limit=0.01,
nbins=256):
"""Contrast Limited Adaptive Histogram Equalization (CLAHE).
An algorithm for local contrast enhancement, that uses histograms computed
over different tile regions of the image. Local details can therefore be
enhanced even in regions that are darker or lighter than most of the image.
Parameters
----------
image : array-like
Input image.
ntiles_x : int, optional
Number of tile regions in the X direction. Ranges between 1 and 16.
ntiles_y : int, optional
Number of tile regions in the Y direction. Ranges between 1 and 16.
clip_limit : float: optional
Clipping limit, normalized between 0 and 1 (higher values give more
contrast).
nbins : int, optional
Number of gray bins for histogram ("dynamic range").
Returns
-------
out : ndarray
Equalized image.
See Also
--------
equalize_hist, rescale_intensity
Notes
-----
* For color images, the following steps are performed:
- The image is converted to HSV color space
- The CLAHE algorithm is run on the V (Value) channel
- The image is converted back to RGB space and returned
* For RGBA images, the original alpha channel is removed.
* The CLAHE algorithm relies on image blocks of equal size. This may
result in extra border pixels that would not be handled. In that case,
we pad the image with a repeat of the border pixels, apply the
algorithm, and then trim the image to original size.
References
----------
.. [1] http://tog.acm.org/resources/GraphicsGems/gems.html#gemsvi
.. [2] https://en.wikipedia.org/wiki/CLAHE#CLAHE
"""
image = skimage.img_as_uint(image)
image = rescale_intensity(image, out_range=(0, NR_OF_GREY - 1))
out = _clahe(image, ntiles_x, ntiles_y, clip_limit * nbins, nbins)
image[:out.shape[0], :out.shape[1]] = out
image = skimage.img_as_float(image)
return rescale_intensity(image)
开发者ID:JeanKossaifi,项目名称:scikit-image,代码行数:54,代码来源:_adapthist.py
示例13: _get_scalebar
def _get_scalebar(self):
"""Get the length in pixels of the image scale bar"""
box=(0,419,519,520) #row where scalebar exists
im=self.crop_image(box=box, copy=True)
im=skimage.img_as_float(im)
im=exposure.rescale_intensity(im,in_range=(0.49,0.5)) #saturate black and white pixels
im=exposure.rescale_intensity(im) #make sure they're black and white
im=np.diff(im[0]) #1d numpy array, differences
lim=[np.where(im>0.9)[0][0],
np.where(im<-0.9)[0][0]] #first occurance of both cases
assert len(lim)==2, 'Couldn\'t find scalebar'
return lim[1]-lim[0]
开发者ID:gb119,项目名称:kermit,代码行数:12,代码来源:core.py
示例14: watershed
def watershed(image):
""" the watershed algorithm """
if len(image.shape) != 2:
raise TypeError("The input image must be gray-scale ")
h, w = image.shape
image = cv2.equalizeHist(image)
image = denoise_bilateral(image, sigma_range=0.1, sigma_spatial=10)
image = rescale_intensity(image)
image = img_as_ubyte(image)
image = rescale_intensity(image)
# com.debug_im(image)
_, thres = cv2.threshold(image, 80, 255, cv2.THRESH_BINARY_INV)
distance = ndi.distance_transform_edt(thres)
local_maxi = peak_local_max(distance, indices=False,
labels=thres,
min_distance=5)
# com.debug_im(thres)
# implt = plt.imshow(-distance, cmap=plt.cm.jet, interpolation='nearest')
# plt.show()
markers = ndi.label(local_maxi, np.ones((3, 3)))[0]
labels = ws(-distance, markers, mask=thres)
labels = np.uint8(labels)
# result = np.round(255.0 / np.amax(labels) * labels).astype(np.uint8)
# com.debug_im(result)
segments = []
for idx in range(1, np.amax(labels) + 1):
indices = np.where(labels == idx)
left = np.amin(indices[1])
right = np.amax(indices[1])
top = np.amin(indices[0])
down = np.amax(indices[0])
# region = labels[top:down, left:right]
# m = (region > 0) & (region != idx)
# region[m] = 0
# region[region >= 1] = 1
region = image[top:down, left:right]
cont = Contour(mask=region)
cont.lt = [left, top]
cont.rb = [right, down]
segments.append(cont)
return segments
开发者ID:dangkhoasdc,项目名称:CellCounter,代码行数:50,代码来源:watershed.py
示例15: proc_mbi
def proc_mbi(imgarray):
# Normalize image:
img = img_as_float(imgarray,force_copy=True)
# Image equalization (Contrast stretching):
p2,p98 = np.percentile(img, (2,98))
img = exposure.rescale_intensity(img, in_range=(p2, p98), out_range=(0, 1))
# Gamma correction:
#img = exposure.adjust_gamma(img, 0.5)
# Or Sigmoid correction:
img = exposure.adjust_sigmoid(img)
print "Init Morph Proc..."
sizes = range(2,40,5)
angles = [0,18,36,54,72,90,108,126,144,162]
szimg = img.shape
all_thr = np.zeros((len(sizes),szimg[0], szimg[1])).astype('float64')
all_dmp = np.zeros((len(sizes) - 1,szimg[0], szimg[1])).astype('float64')
idx = 0
for sz in sizes:
print sz
builds_by_size = np.zeros(szimg).astype('float64')
for ang in angles:
print ang
stel = ia870.iaseline(sz, ang)
oprec = opening_by_reconstruction(img, stel)
thr = np.absolute(img-oprec)
builds_by_size += thr
all_thr[idx,:,:] = (builds_by_size / len(angles))
if idx>0:
all_dmp[idx-1,:,:] = all_thr[idx,:,:] - all_thr[idx-1,:,:]
idx += 1
mbi = np.mean(all_dmp, axis=0)
return mbi
开发者ID:jorgeop27,项目名称:geospatial_analysis_toolbox,代码行数:34,代码来源:mbi.py
示例16: warp_rect
def warp_rect(self, u_cont):
pts = u_cont.reshape(4, 2)
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
rect *= self.ratio
(tl, tr, br, bl) = rect
width_a = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
width_b = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
height_a = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
height_b = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
max_w = max(int(width_a), int(width_b))
max_h = max(int(height_a), int(height_b))
dst = np.array([
[0, 0], [max_w - 1, 0], [max_w - 1, max_h - 1], [0, max_h - 1]],
dtype="float32")
m = cv2.getPerspectiveTransform(rect, dst)
warp = cv2.warpPerspective(self.orig, m, (max_w, max_h))
warp = exposure.rescale_intensity(warp, out_range=(0, 255))
bop = 15
light = 15
return cv2.copyMakeBorder(warp, bop, bop, light, light, cv2.BORDER_CONSTANT, (255, 255, 0))
开发者ID:frc5431,项目名称:2016StrongholdAll,代码行数:32,代码来源:image_proc_3.py
示例17: print_hog_image
def print_hog_image(image):
"""
image is expected to be in it's original format
function prints hog image
"""
print image.shape
image = color.rgb2gray(image)
fd, hog_image = hog(image, orientations=8, pixels_per_cell=(4, 4),
cells_per_block=(1, 1), visualise=True, normalise=True)
print "finished hog..."
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharex=True, sharey=True)
ax1.axis('off')
ax1.imshow(image, cmap=plt.cm.gray)
ax1.set_title('Input image')
ax1.set_adjustable('box-forced')
# Rescale histogram for better display
hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 0.02))
ax2.axis('off')
ax2.imshow(hog_image_rescaled, cmap=plt.cm.gray)
ax2.set_title('Histogram of Oriented Gradients')
ax1.set_adjustable('box-forced')
plt.show()
开发者ID:phrayezzen,项目名称:COMP540,代码行数:27,代码来源:hogify.py
示例18: embed
def embed(self, img, payload, k = 6, tv_denoising_weight = 4, rescale = True):
if len(payload) > self.max_payload:
raise ValueError("payload too long")
padded = bytearray(payload) + b"\x00" * (self.max_payload - len(payload))
encoded = self.rscodec.encode(padded)
if img.ndim == 2:
output = self._embed(img, encoded, k)
elif img.ndim == 3:
output = numpy.zeros(img.shape, dtype=float)
for i in range(img.shape[2]):
output[:,:,i] = self._embed(img[:,:,i], encoded, k)
#y, cb, cr = rgb_to_ycbcr(img)
#y2 = self._embed(y, encoded, k)
#cb = self._embed(cb, encoded, k)
#cr = self._embed(cr, encoded, k)
#y2 = rescale_intensity(y2, out_range = (numpy.min(y), numpy.max(y)))
#Cb2 = rescale_intensity(Cb2, out_range = (numpy.min(Cb), numpy.max(Cb)))
#Cr2 = rescale_intensity(Cr2, out_range = (numpy.min(Cr), numpy.max(Cr)))
#output = ycbcr_to_rgb(y2, cb, cr)
else:
raise TypeError("img must be a 2d or 3d array")
#if tv_denoising_weight > 0:
# output = tv_denoise(output, tv_denoising_weight)
if rescale:
output = rescale_intensity(output, out_range = (numpy.min(img), numpy.max(img)))
#return toimage(output,cmin=0,cmax=255)
return output
开发者ID:KWMalik,项目名称:tau,代码行数:29,代码来源:watermarker.py
示例19: plot_aop_rgb
def plot_aop_rgb(rgbArray,ext,ls_pct=5,plot_title=''):
''' read in and plot 3 bands of a reflectance array as an RGB image
--------
Parameters
--------
rgbArray: ndarray (m x n x 3)
3-band array of reflectance values, created from stack_rgb
ext: tuple
Extent of reflectance data to be plotted (xMin, xMax, yMin, yMax)
Stored in metadata['spatial extent'] from aop_h5refl2array function
ls_pct: integer or float, optional
linear stretch percent
plot_title: string, optional
image title
Returns
--------
plots RGB image of 3 bands of reflectance data
--------
Examples:
--------
>>> plot_aop_rgb(SERCrgb,
sercMetadata['spatial extent'],
plot_title = 'SERC RGB')'''
pLow, pHigh = np.percentile(rgbArray[~np.isnan(rgbArray)], (ls_pct,100-ls_pct))
img_rescale = exposure.rescale_intensity(rgbArray, in_range=(pLow,pHigh))
plt.imshow(img_rescale,extent=ext)
plt.title(plot_title + '\n Linear ' + str(ls_pct) + '% Contrast Stretch');
ax = plt.gca(); ax.ticklabel_format(useOffset=False, style='plain')
rotatexlabels = plt.setp(ax.get_xticklabels(),rotation=90)
开发者ID:NEONInc,项目名称:NEON-Data-Skills,代码行数:33,代码来源:neon_aop_hyperspectral.py
示例20: saveimage_16bit
def saveimage_16bit(image,
fname='Test.tif',
folder=None,
rescale=True,
dtype=np.uint16,
imager=None):
'''
Saves an images as a 16 bit tiff
'''
# rotate the reverse direction
image = tf.rotate(image, -1 * _imager_rot[imager])
# if scaled to 0,1 then rescale back to 16 bit
if rescale:
# print 'rescaled'
image = rescale_intensity(
image, in_range=(0, 1), out_range=(0, 2**16))
# Ensureing all the values are integers
image = image.astype(dtype)
folder = folder or ''
image = io.imsave(
os.path.join(folder, fname), image)
开发者ID:MK8J,项目名称:PV_analysis,代码行数:26,代码来源:IO.py
注:本文中的skimage.exposure.rescale_intensity函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论