• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python feature.corner_subpix函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中skimage.feature.corner_subpix函数的典型用法代码示例。如果您正苦于以下问题:Python corner_subpix函数的具体用法?Python corner_subpix怎么用?Python corner_subpix使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了corner_subpix函数的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_subpix_no_class

def test_subpix_no_class():
    img = np.zeros((50, 50))
    subpix = corner_subpix(img, np.array([[25, 25]]))
    assert_array_equal(subpix[0], (np.nan, np.nan))

    img[25, 25] = 1e-10
    corner = peak_local_max(corner_harris(img), num_peaks=1)
    subpix = corner_subpix(img, np.array([[25, 25]]))
    assert_array_equal(subpix[0], (np.nan, np.nan))
开发者ID:OrkoHunter,项目名称:scikit-image,代码行数:9,代码来源:test_corner.py


示例2: test_subpix

def test_subpix():
    img = np.zeros((50, 50))
    img[:25,:25] = 255
    img[25:,25:] = 255
    corner = peak_local_max(corner_harris(img), num_peaks=1)
    subpix = corner_subpix(img, corner)
    assert_array_equal(subpix[0], (24.5, 24.5))
开发者ID:almarklein,项目名称:scikit-image,代码行数:7,代码来源:test_corner.py


示例3: test_subpix_dot

def test_subpix_dot():
    img = np.zeros((50, 50))
    img[25, 25] = 255
    corner = peak_local_max(corner_harris(img),
                            min_distance=10, threshold_rel=0, num_peaks=1)
    subpix = corner_subpix(img, corner)
    assert_array_equal(subpix[0], (25, 25))
开发者ID:ameya005,项目名称:scikit-image,代码行数:7,代码来源:test_corner.py


示例4: extract_corner_harris

def extract_corner_harris(patch):
    """ Extract four corner points using harris corner detection algorithm

    """
    # Find corner with harris corner detection
    coords = corner_peaks(corner_harris(patch, k=0.1), min_distance=5)
    coords_subpix = corner_subpix(patch, coords, window_size=13)

    # Find the nearest point for each corner
    dim = patch.shape
    corners = [(0, 0), (dim[0], 0), (dim[0], dim[1]), (0, dim[1])]

    dest_points = [[] for x in range(4)]
    for i in xrange(4):
        dest_points[i] = search_closest_points(corners[i], coords_subpix)

    # Check for error
    try:
        epsilon = 1e-10
        for i in xrange(4):
            for j in xrange(i + 1, 4):
                if calc_distance(dest_points[i], dest_points[j]) < epsilon:
                    print 'Error point'
                    return []
    except TypeError:
        return []

    # Reverse y,x position to x,y
    for i in xrange(4):
        dest_points[i][1], dest_points[i][0] = dest_points[i][0], dest_points[i][1]

    return dest_points
开发者ID:mitbal,项目名称:pemilu,代码行数:32,代码来源:extract.py


示例5: corners

def corners(provider):
    """
    number of corners
    """

    gray = provider.as_gray()

    # TODO custom parameters would give arise to exceptions of mis-matched shapes
    coords = corner_peaks(corner_harris(gray))#, min_distance=5)
    coords_subpix = corner_subpix(gray, coords)#, window_size=13)

    return len(coords_subpix)
开发者ID:cuppster,项目名称:imagefeatures,代码行数:12,代码来源:basic.py


示例6: test_subpix_border

def test_subpix_border():
    img = np.zeros((50, 50))
    img[1:25,1:25] = 255
    img[25:-1,25:-1] = 255
    corner = corner_peaks(corner_harris(img), min_distance=1)
    subpix = corner_subpix(img, corner, window_size=11)
    ref = np.array([[ 0.52040816,  0.52040816],
                    [ 0.52040816, 24.47959184],
                    [24.47959184,  0.52040816],
                    [24.5       , 24.5       ],
                    [24.52040816, 48.47959184],
                    [48.47959184, 24.52040816],
                    [48.47959184, 48.47959184]])
    assert_almost_equal(subpix, ref)
开发者ID:almarklein,项目名称:scikit-image,代码行数:14,代码来源:test_corner.py


示例7: rescale_intensity

img_orig = rescale_intensity(img_orig)
img_orig_gray = rgb2gray(img_orig)

# warp synthetic image
tform = AffineTransform(scale=(0.9, 0.9), rotation=0.2, translation=(20, -10))
img_warped = warp(img_orig, tform.inverse, output_shape=(200, 200))
img_warped_gray = rgb2gray(img_warped)

# extract corners using Harris' corner measure
coords_orig = corner_peaks(corner_harris(img_orig_gray), threshold_rel=0.001,
                           min_distance=5)
coords_warped = corner_peaks(corner_harris(img_warped_gray),
                             threshold_rel=0.001, min_distance=5)

# determine sub-pixel corner position
coords_orig_subpix = corner_subpix(img_orig_gray, coords_orig, window_size=10)
coords_warped_subpix = corner_subpix(img_warped_gray, coords_warped,
                                     window_size=10)


def gaussian_weights(window_ext, sigma=1):
    y, x = np.mgrid[-window_ext:window_ext+1, -window_ext:window_ext+1]
    g = np.zeros(y.shape, dtype=np.double)
    g[:] = np.exp(-0.5 * (x**2 / sigma**2 + y**2 / sigma**2))
    g /= 2 * np.pi * sigma * sigma
    return g


def match_corner(coord, window_ext=5):
    r, c =  np.round(coord)
    window_orig = img_orig[r-window_ext:r+window_ext+1,
开发者ID:bdholt1,项目名称:scikit-image,代码行数:31,代码来源:plot_matching.py


示例8: getMinorMajorRatio

def getMinorMajorRatio(image):
	image = image.copy()
	# Create the thresholded image to eliminate some of the background
	imagethr = np.where(image > np.mean(image),0.,1.0)
	imagethr2 = np.where(image > np.mean(image) - 2*np.std(image),0.,1.0)

	
	#Dilate the image
	imdilated = morphology.dilation(imagethr, np.ones((4,4)))

	# Create the label list
	label_list = measure.label(imdilated)
	label_list2 = imagethr2*label_list
	label_list = imagethr*label_list
	label_list2 = label_list2.astype(int)
	label_list = label_list.astype(int)
	   
	region_list = measure.regionprops(label_list, intensity_image=image)
	region_list2 = measure.regionprops(label_list2, intensity_image=image)
	maxregion,max2ndregion = getLargestRegions(region_list, label_list, imagethr)
	maxregion2,max2ndregion2 = getLargestRegions(region_list2, label_list2, imagethr2)

	# guard against cases where the segmentation fails by providing zeros
	ratio = 0.0
	fillratio = 0.0
	largeeigen = 0.0
	smalleigen = 0.0
	eigenratio = 0.0
	solidity = 0.0
	perimratio = 0.0
	arearatio = 0.0
	orientation = 0.0
	centroid = (0.0,0.0)
	cornercenter = 0.0
	cornerstd = 0.0
	lrdiff = 0.0
	tbdiff = 0.0
	hu1 = hu2 = hu3 = hu12 = hu13 = hu23 = 0.0
	whu1 = whu2 = whu3 = whu12 = whu13 = whu23 = 0.0
	extent = 0.0
	minintensity = maxintensity = meanintensity = 0.0
	intensityratio1 = intensityratio2 = intensityratio3 = 0.0
	if ((not maxregion is None) and  (maxregion.major_axis_length != 0.0)):
		corners = corner_peaks(corner_harris(maxregion.image), min_distance=5)
		corners_subpix = corner_subpix(maxregion.image, corners, window_size=13)
		cornercentercoords = np.nanmean(corners_subpix, axis=0)
		cornerstdcoords = np.nanstd(corners_subpix, axis=0)
		ratio = 0.0 if maxregion is None else  maxregion.minor_axis_length*1.0 / maxregion.major_axis_length
		largeeigen = 0.0 if maxregion is None else maxregion.inertia_tensor_eigvals[0]
		smalleigen = 0.0 if maxregion is None else maxregion.inertia_tensor_eigvals[1]
		fillratio = 0.0 if (maxregion2 is None or maxregion2.minor_axis_length == 0.0) else maxregion2.filled_area/(maxregion2.minor_axis_length*maxregion2.major_axis_length)
		solidity = 0.0 if maxregion2 is None else maxregion2.solidity
		hu1 = 0.0 if maxregion is None else maxregion.moments_hu[1]
		hu2 = 0.0 if maxregion is None else maxregion.moments_hu[2]
		hu3 = 0.0 if maxregion is None else maxregion.moments_hu[3]
		hu12 = 0.0 if (maxregion is None or hu1==0.0) else hu2/hu1
		hu13 = 0.0 if (maxregion is None or hu1==0.0) else hu3/hu1
		hu23 = 0.0 if (maxregion is None or hu2==0.0) else hu3/hu2
		whu1 = 0.0 if maxregion is None else maxregion.weighted_moments_hu[1]
		whu2 = 0.0 if maxregion is None else maxregion.weighted_moments_hu[2]
		whu3 = 0.0 if maxregion is None else maxregion.weighted_moments_hu[3]
		whu12 = 0.0 if (maxregion is None or whu1==0.0) else whu2/whu1
		whu13 = 0.0 if (maxregion is None or whu1==0.0) else whu3/whu1
		whu23 = 0.0 if (maxregion is None or whu2==0.0) else whu3/whu2
		extent = 0.0 if maxregion is None else maxregion.extent
		minintensity = 0.0 if maxregion is None else maxregion.min_intensity
		meanintensity = 0.0 if maxregion is None else maxregion.mean_intensity
		maxintensity = 0.0 if maxregion is None else maxregion.max_intensity
		intensityratio1 = 0.0 if (maxregion is None or maxintensity==0.0) else meanintensity/maxintensity
		intensityratio2 = 0.0 if (maxregion is None or maxintensity==0.0) else minintensity/maxintensity
		intensityratio3 = 0.0 if (maxregion is None or meanintensity==0.0) else minintensity/meanintensity
		perimratio = 0.0 if (maxregion is None or maxregion.minor_axis_length==0.0) else maxregion.perimeter/(maxregion.minor_axis_length*4.0+maxregion.major_axis_length*4.0)
		eigenratio = 0.0 if largeeigen == 0.0 else smalleigen/largeeigen
		orientation = 0.0 if maxregion is None else maxregion.orientation
		centroid = (0.0,0.0) if maxregion is None else maxregion.centroid
		cornercentercoords = np.absolute(cornercentercoords - centroid) if maxregion.major_axis_length==0.0 else np.absolute(cornercentercoords - centroid)/maxregion.major_axis_length
		cornercenter = np.linalg.norm(cornercentercoords)
		if maxregion.major_axis_length!=0.0: cornerstdcoords = np.absolute(cornerstdcoords)/maxregion.major_axis_length
		cornerstd = np.linalg.norm(cornerstdcoords)
		left = np.sum(maxregion.image[:,maxregion.image.shape[1]/2:])
		if maxregion.image.shape[1] % 2 == 0:
			right = np.sum(maxregion.image[:,:maxregion.image.shape[1]/2])
		else:
			right = np.sum(maxregion.image[:,:maxregion.image.shape[1]/2+1])
		lrdiff = np.abs((right-left)/(right+left)) 
		top = np.sum(maxregion.image[maxregion.image.shape[0]/2:,:])
		if maxregion.image.shape[0] % 2 == 0:
			bottom = np.sum(maxregion.image[:maxregion.image.shape[0]/2,:])
		else:
			bottom = np.sum(maxregion.image[:maxregion.image.shape[0]/2+1,:])
		tbdiff = np.abs((top-bottom)/(top+bottom)) 
	else:
		cornercentercoords = (0.0,0.0)
		cornerstdcoords = (0.0,0.0)
	if ((not maxregion is None) and (not max2ndregion is None)):
		arearatio = max2ndregion.area/maxregion.area
	#print perimratio
	if np.isnan(cornercenter):
		cornercenter = 0.0
	if sum(np.isnan(cornercentercoords)) > 0.0:
#.........这里部分代码省略.........
开发者ID:thekannman,项目名称:kaggle,代码行数:101,代码来源:example_new15_1_3_1.py


示例9: direction

# HARRIS CORNER DETECTION
# corner detection is based upon the change of the position vector with respect 
# to arc length. 
# approximates the autocorrelation function in the direction (u, v). A measure of
# curvature is given by the minimum value  obtained by considering the shifts (u, v)
# in the four main directions. That is, by (1,0), (0,−1), (0,1) and (−1,0). The minimum is chosen
# because it agrees with the following two observations. First, if the pixel is in an edge defining a
# straight line, is small for a shift along the edge and large for a shift perpendicular to
# the edge. In this case, we should choose the small value since the curvature of the edge is small.
# Secondly, if the edge defines a corner, then all the shifts produce a large value. Thus, if we also
# chose the minimum, this value indicates high curvature.

from skimage import data
import matplotlib.pyplot as plt
from skimage.feature import corner_harris, corner_subpix, corner_peaks
from skimage.transform import warp, AffineTransform


tform = AffineTransform(scale=(1.3, 1.1), rotation=0, shear=0,translation=(0,0))#
image = warp(data.coins(), tform.inverse, output_shape=(500, 500))

coords = corner_peaks(corner_harris(image), min_distance=5)
coords_subpix = corner_subpix(image, coords, window_size=13)

plt.gray()
plt.imshow(image, interpolation='nearest')
plt.plot(coords_subpix[:, 1], coords_subpix[:, 0], '+r', markersize=15, mew=5)
plt.plot(coords[:, 1], coords[:, 0], '.b', markersize=7)
plt.axis('off')
plt.show()
开发者ID:Ashutosh-vyas,项目名称:ImageProcessing,代码行数:30,代码来源:seg_corner_harris.py


示例10: getMinorMajorRatio

def getMinorMajorRatio(image, features = features):
	features = features.copy()
	image = image.copy()
	# Create the thresholded image to eliminate some of the background
	imagethr = np.where(image > np.mean(image),0.,1.0)
	imagethr2 = np.where(image > np.mean(image) - 2*np.std(image),0.,1.0)

	#Dilate the image
	imdilated = morphology.dilation(imagethr, np.ones((4,4)))

	# Create the label list
	label_list = measure.label(imdilated)
	label_list2 = imagethr2*label_list
	label_list = imagethr*label_list
	label_list2 = label_list2.astype(int)
	label_list = label_list.astype(int)
	   
	region_list = measure.regionprops(label_list, intensity_image=image)
	region_list2 = measure.regionprops(label_list2, intensity_image=image)
	maxregion,max2ndregion = getLargestRegions(region_list, label_list, imagethr)
	maxregion2,max2ndregion2 = getLargestRegions(region_list2, label_list2, imagethr2)

	# guard against cases where the segmentation fails by providing zeros
	if not maxregion is None:
		features['area'] = maxregion.area
		features['bbox'] = maxregion.bbox
		features['convex_area'] = maxregion.convex_area
		features['eccentricity'] = maxregion.eccentricity
		features['equivalent_diameter'] = maxregion.equivalent_diameter
		features['euler_number'] = maxregion.euler_number
		features['filled_area'] = maxregion.filled_area
		features['major_axis'] = maxregion.major_axis_length
		features['minor_axis'] = maxregion.minor_axis_length
		features['moments'] = maxregion.moments.flatten()
		features['moments_central'] = maxregion.moments_central.flatten()
		features['moments_normalized'] = maxregion.moments_normalized.flatten()[np.array([2,3,5,6,7,8,9,10,11,12,13,14,15])]
		features['perimeter'] = maxregion.perimeter
		features['wcentroid'] = maxregion.weighted_centroid
		features['weighted_moments'] = maxregion.weighted_moments.flatten()
		features['weighted_moments_central'] = maxregion.weighted_moments_central.flatten()
		features['weighted_moments_normalized'] = maxregion.weighted_moments_normalized.flatten()[np.array([2,3,5,6,7,8,9,10,11,12,13,14,15])]

		corners = corner_peaks(corner_harris(maxregion.image), min_distance=5)
		corners_subpix = corner_subpix(maxregion.image, corners, window_size=13)
		features['cornerctrcoords'] = np.nanmean(corners_subpix, axis=0)
		features['cornerstdcoords'] = np.nanstd(corners_subpix, axis=0)
		features['eigenvals'] = maxregion.inertia_tensor_eigvals
		features['hu'] = maxregion.moments_hu
		if not features['hu'][0] == 0.0:
			features['huratios'][0] = features['hu'][1]/features['hu'][0]
			features['huratios'][1] = features['hu'][2]/features['hu'][0]
		if not features['hu'][1] == 0.0:
			features['huratios'][2] = features['hu'][2]/features['hu'][1]
		features['whu'] = maxregion.weighted_moments_hu
		if not features['whu'][0] == 0.0:
			features['whuratios'][0] = features['whu'][1]/features['whu'][0]
			features['whuratios'][1] = features['whu'][2]/features['whu'][0]
		if not features['whu'][1] == 0.0:
			features['whuratios'][2] = features['whu'][2]/features['whu'][1]
		features['extent'] = maxregion.extent
		features['minintensity'] = maxregion.min_intensity
		features['meanintensity'] = maxregion.mean_intensity
		features['maxintensity'] = maxregion.max_intensity
		if not features['maxintensity'] == 0.0:
			features['intensityratios'][0] = features['meanintensity']/features['maxintensity']
			features['intensityratios'][1] = features['minintensity']/features['maxintensity']
		if not features['meanintensity'] == 0.0:
			features['intensityratios'][2] = features['minintensity']/features['meanintensity']
		if not maxregion.minor_axis_length == 0.0:
			features['perimratio'] = maxregion.perimeter/(maxregion.minor_axis_length*4.0+maxregion.major_axis_length*4.0)
		if not features['eigenvals'][0] == 0.0:
			features['eigenratio'] = features['eigenvals'][1]/features['eigenvals'][0]
		features['orientation'] = maxregion.orientation
		features['centroid'] = maxregion.centroid
		features['wcentroiddiff'] = np.absolute(features['centroid']-np.asarray(maxregion.weighted_centroid))/maxregion.major_axis_length
		features['cornerctrcoords'] = np.absolute(features['cornerctrcoords'] - features['centroid']) if maxregion.major_axis_length==0.0 else np.absolute(features['cornerctrcoords'] - features['centroid'])/maxregion.major_axis_length
		features['cornerctr'] = np.linalg.norm(features['cornerctrcoords'])
		if not maxregion.major_axis_length == 0.0:
			features['axisratio'] = maxregion.minor_axis_length / maxregion.major_axis_length
			features['cornerstdcoords'] = np.absolute(features['cornerstdcoords'])/maxregion.major_axis_length
		features['cornerstd'] = np.linalg.norm(features['cornerstdcoords'])
		left = np.sum(maxregion.image[:,maxregion.image.shape[1]/2:])
		if maxregion.image.shape[1] % 2 == 0:
			right = np.sum(maxregion.image[:,:maxregion.image.shape[1]/2])
		else:
			right = np.sum(maxregion.image[:,:maxregion.image.shape[1]/2+1])
		features['lrdiff'] = np.abs((right-left)/(right+left)) 
		top = np.sum(maxregion.image[maxregion.image.shape[0]/2:,:])
		if maxregion.image.shape[0] % 2 == 0:
			bottom = np.sum(maxregion.image[:maxregion.image.shape[0]/2,:])
		else:
			bottom = np.sum(maxregion.image[:maxregion.image.shape[0]/2+1,:])
		features['tbdiff'] = np.abs((top-bottom)/(top+bottom)) 
		if not max2ndregion is None:
			features['arearatio'] = max2ndregion.area/maxregion.area
	if not maxregion2 is None:
		if not maxregion2.minor_axis_length == 0.0:
			features['fillratio'] = maxregion2.filled_area/(maxregion2.minor_axis_length*maxregion2.major_axis_length)
		features['solidity'] = maxregion2.solidity
	if np.isnan(features['cornerctr']):
#.........这里部分代码省略.........
开发者ID:thekannman,项目名称:kaggle,代码行数:101,代码来源:example_new_15_1_22_1.py


示例11: int

        image[230 + i:280 + i, 60 + i:110 + i] = 1

t = time.time()

if int(arg1) > 1:
    generate_squares()
else:
    generate_squares_niave()

print "took", time.time() - t

print "finding corners"
t = time.time()
coords = corner_peaks(corner_harris(image), min_distance=5)
print "took", time.time() - t

print "getting subpix"
t = time.time()

coords_subpix = corner_subpix(image, coords, 13, 0.99)

print "took", time.time() - t

print "plotting"
plt.gray()
plt.imshow(image, interpolation='nearest')
plt.plot(coords[:, 1], coords[:, 0], '.b', markersize=3)
plt.plot(coords_subpix[:, 1], coords_subpix[:, 0], '+r', markersize=15)
plt.axis((0, 500, 500, 0))
plt.show()
开发者ID:asmeurer,项目名称:numba-test,代码行数:30,代码来源:test.py


示例12: getMinorMajorRatio


#.........这里部分代码省略.........
    label_list2 = label_list2.astype(int)
    label_list = label_list.astype(int)

    region_list = measure.regionprops(label_list, intensity_image=image)
    region_list2 = measure.regionprops(label_list2, intensity_image=image)
    maxregion, max2ndregion = getLargestRegions(region_list, label_list, imagethr)
    maxregion2, max2ndregion2 = getLargestRegions(region_list2, label_list2, imagethr2)

    # guard against cases where the segmentation fails by providing zeros
    if not maxregion is None:
        features["area"] = maxregion.area
        features["bbox"] = maxregion.bbox
        features["convex_area"] = maxregion.convex_area
        features["eccentricity"] = maxregion.eccentricity
        features["equivalent_diameter"] = maxregion.equivalent_diameter
        features["euler_number"] = maxregion.euler_number
        features["filled_area"] = maxregion.filled_area
        features["major_axis"] = maxregion.major_axis_length
        features["minor_axis"] = maxregion.minor_axis_length
        features["moments"] = maxregion.moments.flatten()
        features["moments_central"] = maxregion.moments_central.flatten()
        features["moments_normalized"] = maxregion.moments_normalized.flatten()[
            np.array([2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])
        ]
        features["perimeter"] = maxregion.perimeter
        features["wcentroid"] = maxregion.weighted_centroid
        features["weighted_moments"] = maxregion.weighted_moments.flatten()
        features["weighted_moments_central"] = maxregion.weighted_moments_central.flatten()
        features["weighted_moments_normalized"] = maxregion.weighted_moments_normalized.flatten()[
            np.array([2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])
        ]

        corners = corner_peaks(corner_harris(maxregion.image), min_distance=5)
        corners_subpix = corner_subpix(maxregion.image, corners, window_size=13)
        features["cornerctrcoords"] = np.nanmean(corners_subpix, axis=0)
        features["cornerstdcoords"] = np.nanstd(corners_subpix, axis=0)
        features["eigenvals"] = maxregion.inertia_tensor_eigvals
        features["hu"] = maxregion.moments_hu
        if not features["hu"][0] == 0.0:
            features["huratios"][0] = features["hu"][1] / features["hu"][0]
            features["huratios"][1] = features["hu"][2] / features["hu"][0]
        if not features["hu"][1] == 0.0:
            features["huratios"][2] = features["hu"][2] / features["hu"][1]
        features["whu"] = maxregion.weighted_moments_hu
        if not features["whu"][0] == 0.0:
            features["whuratios"][0] = features["whu"][1] / features["whu"][0]
            features["whuratios"][1] = features["whu"][2] / features["whu"][0]
        if not features["whu"][1] == 0.0:
            features["whuratios"][2] = features["whu"][2] / features["whu"][1]
        features["extent"] = maxregion.extent
        features["minintensity"] = maxregion.min_intensity
        features["meanintensity"] = maxregion.mean_intensity
        features["maxintensity"] = maxregion.max_intensity
        if not features["maxintensity"] == 0.0:
            features["intensityratios"][0] = features["meanintensity"] / features["maxintensity"]
            features["intensityratios"][1] = features["minintensity"] / features["maxintensity"]
        if not features["meanintensity"] == 0.0:
            features["intensityratios"][2] = features["minintensity"] / features["meanintensity"]
        if not maxregion.minor_axis_length == 0.0:
            features["perimratio"] = maxregion.perimeter / (
                maxregion.minor_axis_length * 4.0 + maxregion.major_axis_length * 4.0
            )
        if not features["eigenvals"][0] == 0.0:
            features["eigenratio"] = features["eigenvals"][1] / features["eigenvals"][0]
            # print features['eigenratio']
        features["orientation"] = maxregion.orientation
开发者ID:thekannman,项目名称:kaggle,代码行数:67,代码来源:example_new15_1_18_1.py


示例13: corner_peaks

from skimage.feature import corner_harris, corner_subpix, corner_peaks
from matplotlib import pyplot as plt

tmp = np.copy(arr_thresh[:, :, 0])
coords = corner_peaks(corner_harris(tmp), min_distance = 10)
coords_subpix = corner_subpix(tmp, coords, window_size = 13)

fig, ax = plt.subplots()
ax.imshow(tmp, interpolation='nearest', cmap=plt.cm.gray)
ax.plot(coords[:, 1], coords[:, 0], '.b', markersize=3)
ax.plot(coords_subpix[:, 1], coords_subpix[:, 0], '+r', markersize=15)
plt.show()

开发者ID:sssruhan1,项目名称:xray,代码行数:12,代码来源:_corner_detect.py



注:本文中的skimage.feature.corner_subpix函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python feature.greycomatrix函数代码示例发布时间:2022-05-27
下一篇:
Python feature.corner_shi_tomasi函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap