• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python feature.greycoprops函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中skimage.feature.greycoprops函数的典型用法代码示例。如果您正苦于以下问题:Python greycoprops函数的具体用法?Python greycoprops怎么用?Python greycoprops使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了greycoprops函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_uniform_properties

 def test_uniform_properties(self):
     im = np.ones((4, 4), dtype=np.uint8)
     result = greycomatrix(im, [1, 2, 8], [0, np.pi / 2], 4, normed=True,
                           symmetric=True)
     for prop in ['contrast', 'dissimilarity', 'homogeneity',
                  'energy', 'correlation', 'ASM']:
         greycoprops(result, prop)
开发者ID:TheArindham,项目名称:scikit-image,代码行数:7,代码来源:test_texture.py


示例2: compute_feats

def compute_feats(image, distances, angles):
    """
    compute the texture feature by grey level co-occurrence matrices
    :param image: is just numpy array
    :param distances: List of pixel pair distance offsets
    :param angles: List of pixel pair angles in radians for the offsets
    :return: [[diss1, corr1], [diss2, corr2], [diss3, corr3], [diss4, corr4]... ] stand for dissimilarity and correlation attribute of co-occurrence matrix  by different input parameters combinations [[dis1, ang1], [dis1, ang2],[dis2, ang1],[dis2, ang2]]. So there are totally len(distances) * len(angles) pairs of return features, wrapped by pandas.Series
    """
    glcm = greycomatrix(image, distances, angles, 256, symmetric=True, normed=True)
    dissimilarities = greycoprops(glcm, 'dissimilarity').flat
    correlations = greycoprops(glcm, 'correlation').flat
    energy = greycoprops(glcm, 'energy').flat

    data = []
    label_l2 = []
    for idx, (d, c, e) in enumerate(zip(dissimilarities, correlations, energy)):
        data.append(d)
        label_l2.append(feature_name_dissimilarity.format(idx))

        data.append(c)
        label_l2.append(feature_name_correlation.format(idx))

        data.append(e)
        label_l2.append(feature_name_energy.format(idx))

    label_l1 = [feature_method_name] * len(data)
    index = pd.MultiIndex.from_tuples(list(zip(label_l1, label_l2)), names=['method', 'attr'])

    return pd.Series(data, index)
开发者ID:erdincay,项目名称:ScoreGrass,代码行数:29,代码来源:GLCM.py


示例3: texture_prop

			def texture_prop(region,patch_size = 2):
				_mean_min = region_props[0][region]-patch_size;
				_mean_max = region_props[0][region]+patch_size;
				glcm = greycomatrix(gray_frame[_mean_min[0]:_mean_max[0],_mean_min[1]:_mean_max[1]],
							[3], [0], 256, symmetric=True, normed=True)
				_dis = greycoprops(glcm, 'dissimilarity')[0, 0];
				_cor = greycoprops(glcm, 'correlation')[0, 0];
				return (_dis,_cor);
开发者ID:sudhargk,项目名称:video-annotator,代码行数:8,代码来源:__init__.py


示例4: GLCM_features

def GLCM_features(img):
    gray = rgb2gray(img)
    gmatr = greycomatrix(gray, [1], [0, np.pi/4, np.pi/2, 3*np.pi/4])
    contrast = greycoprops(gmatr, 'contrast')
    correlation = greycoprops(gmatr, 'correlation')
    energy = greycoprops(gmatr, 'energy')
    homogeneity = greycoprops(gmatr, 'homogeneity')
    return [contrast, correlation, energy, homogeneity]
开发者ID:HackKPV,项目名称:GimmeEmotionData,代码行数:8,代码来源:texture_features.py


示例5: parallel_me

def parallel_me(Z, dissim, correl, contrast, energy, mn):
    try:
       glcm = greycomatrix(Z, [5], [0], 256, symmetric=True, normed=True)
       if (greycoprops(glcm, 'dissimilarity')[0, 0] < dissim) and (greycoprops(glcm, 'correlation')[0, 0] < correl) and (greycoprops(glcm, 'contrast')[0, 0] < contrast) and (greycoprops(glcm, 'energy')[0, 0] > energy) and (np.mean(Z)<mn):
          return 1
       else:
          return 0
    except:
       return 0
开发者ID:dbuscombe-usgs,项目名称:PyHum,代码行数:9,代码来源:_pyhum_rmshadows.py


示例6: get_textural_features

def get_textural_features(img):
    img = img_as_ubyte(rgb2gray(img))
    glcm = greycomatrix(img, [1], [0], 256, symmetric=True, normed=True)
    dissimilarity = greycoprops(glcm, 'dissimilarity')[0, 0]
    correlation = greycoprops(glcm, 'correlation')[0, 0]
    homogeneity = greycoprops(glcm, 'homogeneity')[0, 0]
    energy = greycoprops(glcm, 'energy')[0, 0]
    feature = np.array([dissimilarity, correlation, homogeneity, energy])
    return feature
开发者ID:oduwa,项目名称:Wheat-Count,代码行数:9,代码来源:build_classifier.py


示例7: getSuperPixelTexture

def getSuperPixelTexture(superpixels, image):
    texture = []
    numSuperpixels = np.max(superpixels) + 1
    greyImage = np.around(color.rgb2gray(image) * 255, 0)
    for i in xrange(0,numSuperpixels):
    	indices = np.where(superpixels == i)
        glcm = greycomatrix([greyImage[indices]], [5], [0], 256, symmetric=True, normed=True)
        dissimilarity = greycoprops(glcm, 'dissimilarity')[0, 0]
        correlation = greycoprops(glcm, 'correlation')[0, 0]
        texture.append([dissimilarity, correlation])
    return np.array(texture)
开发者ID:patriciocordova,项目名称:road-estimation,代码行数:11,代码来源:feature_extraction.py


示例8: glcm_fe

def glcm_fe(f):
    # 1 pixel, 6 pixesls, 20 pixels
    grey = np.array(Image.open(f), 'uint8')
    glcm = feature.greycomatrix(grey,[1,6,20],[np.pi])
    cont = feature.greycoprops(glcm, 'contrast')
    enrg = feature.greycoprops(glcm, 'energy')
    hmgn = feature.greycoprops(glcm, 'homogeneity')
    corr = feature.greycoprops(glcm, 'correlation')
    for i in cont[:,0]: print i,
    for i in enrg[:,0]: print "%.3f" % i,
    for i in hmgn[:,0]: print "%.3f" % i,
    for i in corr[:,0]:
        if np.isnan(i): i = 1
        print "%.6f" % i,
开发者ID:grochmal,项目名称:capybara,代码行数:14,代码来源:glcm.py


示例9: calc_texture

 def calc_texture(inputs):
     inputs = np.reshape(a=inputs, newshape=[ksize, ksize])
     inputs = inputs.astype(np.uint8)
     # Greycomatrix takes image, distance offset, angles (in radians), symmetric, and normed
     # http://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.greycomatrix
     glcm = greycomatrix(inputs, [offset], [0], 256, symmetric=True, normed=True)
     diss = greycoprops(glcm, texture_method)[0, 0]
     return diss
开发者ID:danforthcenter,项目名称:plantcv,代码行数:8,代码来源:threshold_methods.py


示例10: plot_residuals

def plot_residuals():
    numberOfImages = 12
    residuals = []
    featureList = np.zeros((numberOfImages, FEATURE_SIZE))
    model = train()

    # Get feautures
    for i in range(1, numberOfImages):
        # Load image
        filename = "../Wheat_Images/{:03d}.jpg".format(i);
        img = misc.imread(filename);
        img_gray = img_as_ubyte(rgb2gray(img));
        glcm = greycomatrix(img_gray, [5], [0], 256, symmetric=True, normed=True)
        dissimilarity = greycoprops(glcm, 'dissimilarity')[0, 0]
        correlation = greycoprops(glcm, 'correlation')[0, 0]
        homogeneity = greycoprops(glcm, 'homogeneity')[0, 0]
        energy = greycoprops(glcm, 'energy')[0, 0]
        feature = np.array([dissimilarity, correlation, homogeneity, energy])
        featureList[i-1] = feature

    # Apply model to data
    predictions = model.predict(featureList)

    # Compute residuals
    for i in range(len(predictions)):
        e = predictions[i] - COUNTS[i]
        residuals.append(e)

    # Plot residual graph
    plt.figure(1)
    plt.scatter(predictions, residuals,  color='blue')
    plt.axhline(0, color='black')
    plt.xlabel('Predictions')
    plt.ylabel('Residuals')

    # Plot accuracy graph (ie predicted vs actual)
    plt.figure(2)
    plt.scatter(predictions, COUNTS,  color='blue')
    plt.plot(range(-500, 2500, 250), range(-500, 2500, 250), color='black', linestyle='dotted')
    plt.xlim(xmin=0)
    plt.ylim(ymin=0)
    plt.xlabel('Predicted')
    plt.ylabel('Actual')

    plt.show()
开发者ID:oduwa,项目名称:Wheat-Count,代码行数:45,代码来源:glcm.py


示例11: glcm

def glcm(imagem,mask,grayLevels,d):
    imagem = cv2.equalizeHist(imagem)
    imagem = categorizar(imagem,8)
    imagem = cv2.bitwise_and(imagem,mask)
    matrix0 = greycomatrix(imagem, [d], [0], levels=grayLevels)
    matrix1 = greycomatrix(imagem, [d], [np.pi/4], levels=grayLevels)
    matrix2 = greycomatrix(imagem, [d], [np.pi/2], levels=grayLevels)
    matrix3 = greycomatrix(imagem, [d], [3*np.pi/4], levels=grayLevels)
    matrix = (matrix0+matrix1+matrix2+matrix3)/4 #isotropic glcm
    if mask != []:
        matrix[0,0,0,0] = 0 #remove 0->0 (mask)
    props = np.zeros((5))
    props[0] = greycoprops(matrix,'contrast')
    props[1] = greycoprops(matrix,'dissimilarity')
    props[2] = greycoprops(matrix,'homogeneity')
    props[3] = greycoprops(matrix,'energy')
    props[4] = greycoprops(matrix,'ASM')
    return props
开发者ID:flavio86,项目名称:useR,代码行数:18,代码来源:glcm.py


示例12: texture_moving_window

def texture_moving_window(input_band_list,window_dimension,index,quantization_factor):
    
    '''Compute the desired spectral feature from each window
    
    :param input_band_list: list of 2darrays (list of numpy arrays)
    :param window_dimension: dimension of the processing window (integer)
    :param index: string with index to compute (contrast, energy, homogeneity, correlation, dissimilarity, ASM) (string)
    :param quantization_factor: number of levels to consider (suggested 64) (integer)
    :returns:  list of 2darrays corresponding to computed index per-band (list of numpy arrays)
    :raises: AttributeError, KeyError
    
    Author: Daniele De Vecchi - Mostapha Harb
    Last modified: 19/03/2014
    '''
    
    #TODO: Please explain better what this function does. I assume it calculates GLCM derived features from a moving window.
    #TODO: Always provide full list of options in function description (e.g. which features are supported here?)
    #TODO: Output should be array. Only dissimilarity and only 3 bands? 
    
    band_list_q = linear_quantization(input_band_list,quantization_factor)
    output_list = []
    
               
    feat1 = 0.0
    
    rows,cols=input_band_list[0].shape
    output_ft_1 = np.zeros((len(input_band_list),rows,cols)).astype(np.float32)
    
    print input_band_list[0].shape
    if (rows%window_dimension)!=0:
        rows_w = rows-1
    else:
        rows_w = rows
    if (cols%window_dimension)!=0:
        cols_w = cols-1
    else:
        cols_w = cols
    print rows,cols
#
#    rows_w = 10
    for i in range(0,rows_w):
        print str(i+1)+' of '+str(rows_w)
        for j in range(0,cols_w):
            for b in range(0,len(input_band_list)):
                data_glcm_1 = band_list_q[0][i:i+window_dimension,j:j+window_dimension] #extract the data for the glcm
            
                if (i+window_dimension<rows_w) and (j+window_dimension<cols_w):
                    glcm1 = greycomatrix(data_glcm_1, [1], [0, np.pi/4, np.pi/2, np.pi*(3/4)], levels=quantization_factor, symmetric=False, normed=True)
                    feat1 = greycoprops(glcm1, index)[0][0]
                    index_row = i+1 #window moving step
                    index_col = j+1 #window moving step
                    
                    output_ft_1[b][index_row][index_col]=float(feat1) #stack to store the results for different bands
    for b in range(0,len(input_band_list)):
        output_list.append(output_ft_1[b][:][:])
    
    return output_list
开发者ID:SENSUM-project,项目名称:sensum_rs,代码行数:57,代码来源:features.py


示例13: get_features

def get_features(img):
    grey_m = greycomatrix(img, [5], [0, np.pi/4, np.pi/2, 3*np.pi/4], levels=256)
    # grey_props = ['contrast', 'dissimilarity', 'homogeneity', 'ASM', 'energy', 'correlation']
    grey_props = ['contrast', 'dissimilarity', 'homogeneity', 'ASM', 'energy']
    grey_feas = []
    for prop in grey_props:
        grey_fea = greycoprops(grey_m, prop)
        grey_feas.extend(list(grey_fea))
    return grey_props, grey_feas
开发者ID:brianchan1024,项目名称:cervical_img_clf,代码行数:9,代码来源:glcm_features.py


示例14: train

def train():
    '''
    Builds linear regression from wheat images using GLCM properties.

    Returns:
        linear regression model
    '''
    if(Helper.unserialize(LIN_REGRESSION_MODEL_NAME) == None):
        numberOfImages = 12;

    # TODO: AUTOMATICALLY GET NUMBER OF IMAGES
    # Get number of images. Remeber to divide by 2 as for every relevant image,
    # theres also the comparison image.
    # if ".DS_Store" in os.listdir("Wheat_ROIs"):
    #     numberOfImages = (len(os.listdir("Wheat_ROIs")) - 1)/2;
    # else:
    #     numberOfImages = len(os.listdir("Wheat_ROIs"))/2;

    featureList = np.zeros((numberOfImages, FEATURE_SIZE))

    # For each ROI image in folder
    for i in range(1, numberOfImages+1):
        # Load image
        filename = "../Wheat_Images/{:03d}.jpg".format(i);
        img = misc.imread(filename);
        img_gray = img_as_ubyte(rgb2gray(img));

        glcm = greycomatrix(img_gray, [5], [0], 256, symmetric=True, normed=True)
        dissimilarity = greycoprops(glcm, 'dissimilarity')[0, 0]
        correlation = greycoprops(glcm, 'correlation')[0, 0]
        homogeneity = greycoprops(glcm, 'homogeneity')[0, 0]
        energy = greycoprops(glcm, 'energy')[0, 0]
        feature = np.array([dissimilarity, correlation, homogeneity, energy])
        featureList[i-1] = feature
        #print("{} = {}A + {}B + {}C + {}D".format(filename, dissimilarity, correlation, homogeneity, energy))
        #print(feature)

    # Build regression model
    regression_model = linear_model.LinearRegression()
    regression_model.fit(featureList, COUNTS[:numberOfImages])
    Helper.serialize(LIN_REGRESSION_MODEL_NAME, regression_model)
    print("COEFF: {}\nINTERCEPT: {}".format(regression_model.coef_, regression_model.intercept_))
    print("SCORE: {}".format(regression_model.score(featureList, COUNTS[:numberOfImages])))
    return regression_model
开发者ID:oduwa,项目名称:Wheat-Count,代码行数:44,代码来源:glcm.py


示例15: __call__

 def __call__(self):
     global res
     check = 1
     print str(self.i+1)+' of '+str(self.rows_w)
     for j in range(0,self.cols_w):
         data_glcm_1 = self.band_list_q[0][self.i:self.i+self.window_dimension,j:j+self.window_dimension] #extract the data for the glcm
         data_glcm_2 = self.band_list_q[1][self.i:self.i+self.window_dimension,j:j+self.window_dimension] #extract the data for the glcm
         data_glcm_3 = self.band_list_q[2][self.i:self.i+self.window_dimension,j:j+self.window_dimension] #extract the data for the glcm
         if (self.i+self.window_dimension<self.rows_w) and (j+self.window_dimension<self.cols_w):
             glcm1 = greycomatrix(data_glcm_1, [1], [0, np.pi/4, np.pi/2, np.pi*(3/4)], levels=self.quantization_factor, symmetric=False, normed=True)
             feat1 = greycoprops(glcm1, self.index)[0][0]
             glcm2 = greycomatrix(data_glcm_2, [1], [0, np.pi/4, np.pi/2, np.pi*(3/4)], levels=self.quantization_factor, symmetric=False, normed=True)
             feat2 = greycoprops(glcm2, self.index)[0][0]
             glcm3 = greycomatrix(data_glcm_3, [1], [0, np.pi/4, np.pi/2, np.pi*(3/4)], levels=self.quantization_factor, symmetric=False, normed=True)
             feat3 = greycoprops(glcm3, self.index)[0][0]
             index_row = self.i+1
             index_col = j+1
             if (check):
                 res = []
                 check = 0
             tmp1 = np.array([0,index_row,index_col,feat1])
             tmp2 = np.array([1,index_row,index_col,feat2])
             tmp3 = np.array([2,index_row,index_col,feat3])
             res = np.append(res,tmp1)
             res = np.append(res,tmp2)
             res = np.append(res,tmp3)
         '''
         for b in range(0,len(self.input_band_list)):
             data_glcm_1 = self.band_list_q[b][self.i:self.i+self.window_dimension,j:j+self.window_dimension] #extract the data for the glcm
             if (self.i+self.window_dimension<self.rows_w) and (j+self.window_dimension<self.cols_w):
                 glcm1 = greycomatrix(data_glcm_1, [1], [0, np.pi/4, np.pi/2, np.pi*(3/4)], levels=self.quantization_factor, symmetric=False, normed=True)
                 feat1 = greycoprops(glcm1, self.index)[0][0]
                 index_row = self.i+1 #window moving step
                 index_col = j+1 #window moving step
                 #FIX IT NOOB
                 if (check):
                     res = []
                     check = 0
                 tmp = np.array([b,index_row,index_col,feat1])
                 res = np.append(res,tmp)
         '''
     if (check):
         res = np.zeros(1)
     return res
开发者ID:SENSUM-project,项目名称:sensum_rs,代码行数:44,代码来源:features.py


示例16: homogeneity_fun

 def homogeneity_fun(outRaster):
     """
     create Homogeneity using the GLCM function 
     of Skimage
     """
     if len(outRaster.shape) == 1:
         outRaster = np.reshape(outRaster, (-1, sizeWindow))
         
     glcm = greycomatrix(outRaster, [1], [0], symmetric = True, normed = True)
     return greycoprops(glcm, 'homogeneity')[0,0]
开发者ID:JavierLopatin,项目名称:Python-Remote-Sensing-Scripts,代码行数:10,代码来源:RS_functions.py


示例17: dissimilarity_fun

def  dissimilarity_fun(outRaster):
    """
    create dissimilarity_fun using the GLCM function 
    of Skimage
    """
    if len(outRaster.shape) == 1:
        outRaster = np.reshape(outRaster, (-1, sizeWindow))
        
    glcm = greycomatrix(outRaster, [1], [0],  symmetric = True, normed = True)
    return greycoprops(glcm, 'dissimilarity').sum()
开发者ID:KIT-IfGG,项目名称:Python-Remote-Sensing-Scripts,代码行数:10,代码来源:GLCM.py


示例18: load_xy

def load_xy(dataset, nb_crops_max, nb_augmentations):
    X = []
    y = []

    examples = get_crops_with_labels(dataset, nb_crops_max, nb_augmentations,
                                     nb_crops_per_image=NB_CROPS_PER_IMAGE,
                                     model_image_height=MODEL_IMAGE_HEIGHT,
                                     model_image_width=MODEL_IMAGE_WIDTH,
                                     crop_height=CROP_HEIGHT, crop_width=CROP_WIDTH)

    for i, (crop, face_factor) in enumerate(examples):
        if i % 100 == 0:
            print("Crop %d of %d" % (i+1, nb_crops_max))

        distances = [1, 2, 3, 4, 5, 7, 11]
        angles = [0*np.pi, 0.25*np.pi, 0.5*np.pi, 0.75*np.pi, 1.0*np.pi, 1.25*np.pi, 1.5*np.pi, 1.75*np.pi]
        glcm = greycomatrix(crop, distances, angles, 256, symmetric=True, normed=True)
        dissimilarities = greycoprops(glcm, 'dissimilarity')
        energies = greycoprops(glcm, 'energy')
        correlations = greycoprops(glcm, 'correlation')

        nb_matrices = len(distances) * len(angles)
        all_values = np.zeros((3*nb_matrices))
        all_values[0:nb_matrices] = dissimilarities.flatten()
        all_values[nb_matrices:nb_matrices*2] = energies.flatten()
        all_values[nb_matrices*2:nb_matrices*3] = correlations.flatten()

        is_cat = True if face_factor >= CAT_FRACTION_THRESHOLD else False
        #if is_cat or random.random() < 0.25:
        X.append(all_values)
        y.append(1 if is_cat else 0)

    # all entries in X/Y same length
    assert len(set([len(row) for row in X])) == 1
    #assert len(set([len(row) for row in y])) == 1

    X = np.array(X, dtype=np.float32)
    y = np.array(y, dtype=np.float32)

    X = scale_linear_bycolumn(X)

    return X, y
开发者ID:aleju,项目名称:cat-face-locator,代码行数:42,代码来源:train_texture_svm.py


示例19: haralick

 def haralick(self, img, ndistances, min_distance, dist_diff, nangles,
              levels, symmetric, normed, features):
     img -= np.min(img)
     img /= np.max(img)
     img_ = np.round(img*(levels-1)).astype(int)
     distances = np.arange(ndistances)*dist_diff + min_distance
     angles = np.linspace(0, np.pi, num=nangles, endpoint=False)
     M = greycomatrix(img_, distances=distances, angles=angles,
                      levels=levels, symmetric=symmetric, normed=normed)
     f = [greycoprops(M, prop=prop) for prop in features]
     return np.ravel(f)
开发者ID:andersbll,项目名称:texture_benchmarks,代码行数:11,代码来源:features.py


示例20: GLCM

def GLCM(im):
    """Calculate the grey level co-occurrence matrices and output values for 
    contrast, dissimilarity, homogeneity, energy, correlation, and ASM in a list"""
    
    newIm = im.convert('L') #Conver to a grey scale image
    glcm = greycomatrix(newIm, [5], [0]) #calcualte the glcm  
    
    #Compute all of the grey co occurrence features. 
    contrast = greycoprops(glcm, 'contrast')[0][0]
    if numpy.isnan(contrast): #Make sure that no value is recorded as NAN. 
        contrast = 0 #if it is replace with 0. 
    dissim = greycoprops(glcm, 'dissimilarity')[0][0]
    if numpy.isnan(dissim): 
        dissim = 0
    homog = greycoprops(glcm, 'homogeneity')[0][0]
    if numpy.isnan(homog): 
        homog = 0
    energy = greycoprops(glcm, 'energy')[0][0]
    if numpy.isnan(energy): 
        energy = 0
    corr = greycoprops(glcm, 'correlation')[0][0]
    if numpy.isnan(corr): 
        corr = 0
    ASM = greycoprops(glcm, 'ASM')[0][0]
    if numpy.isnan(ASM): 
        ASM = 0
    return numpy.concatenate(([contrast], [dissim], [homog], [energy], [corr], [ASM]), 0) #concatenate into one list along axis 0 and return 
开发者ID:cassieburgess,项目名称:Flower-Classification,代码行数:27,代码来源:ImageProcess.py



注:本文中的skimage.feature.greycoprops函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python feature.hog函数代码示例发布时间:2022-05-27
下一篇:
Python feature.greycomatrix函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap