• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python io.imread函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中skimage.io.imread函数的典型用法代码示例。如果您正苦于以下问题:Python imread函数的具体用法?Python imread怎么用?Python imread使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了imread函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: compute_mean_image

def compute_mean_image(training_data_path, testing_data_path, save_flag=True, save_file=''):
    print('computing mean images')
    folder = os.listdir(training_data_path)
    trainNum = len(folder)
    init_flag = True
    for f in folder:
        img = skimage.img_as_float( skio.imread(training_data_path+f) )
        if init_flag:
            mean_image = img
            init_flag = False
        else:
            mean_image += img
    
    folder = os.listdir(testing_data_path)
    testNum = len(folder)
    for f in folder:
        img = skimage.img_as_float( skio.imread(testing_data_path+f) )
        mean_image += img
    
    mean_image /= (trainNum + testNum)
    
    
    if len(mean_image.shape) == 2:
        '''if gray, (h, w) to (1, h, w)'''
        tmp = np.zeros((1, mean_image.shape[0], mean_image.shape[1]))
        tmp[0, ...] = mean_image
        mean_image = tmp
    else:
        '''if color, swap (h, w, ch) to (ch, h, w)'''
        mean_image = mean_image.swapaxes(1,2)
        mean_image = mean_image.swapaxes(0,1)
    if save_flag:
        with open(save_file, 'wb') as f:
            np.save(f, mean_image)
    return mean_image
开发者ID:fucusy,项目名称:kaggle-state-farm-distracted-driver-detection,代码行数:35,代码来源:data_tools.py


示例2: extract_features

def extract_features():
    des_type = 'HOG'

    # If feature directories don't exist, create them
    if not os.path.isdir(pos_feat_ph):
        os.makedirs(pos_feat_ph)

    # If feature directories don't exist, create them
    if not os.path.isdir(neg_feat_ph):
        os.makedirs(neg_feat_ph)

    print "Calculating the descriptors for the positive samples and saving them"
    for im_path in glob.glob(os.path.join(pos_im_path, "*")):
        #print im_path
        
        im = imread(im_path, as_grey=True)
        if des_type == "HOG":
            fd = hog(im, orientations, pixels_per_cell, cells_per_block, visualize, normalize)
        fd_name = os.path.split(im_path)[1].split(".")[0] + ".feat"
        fd_path = os.path.join(pos_feat_ph, fd_name)
        joblib.dump(fd, fd_path)
    print "Positive features saved in {}".format(pos_feat_ph)

    print "Calculating the descriptors for the negative samples and saving them"
    for im_path in glob.glob(os.path.join(neg_im_path, "*")):
        im = imread(im_path, as_grey=True)
        if des_type == "HOG":
            fd = hog(im,  orientations, pixels_per_cell, cells_per_block, visualize, normalize)
        fd_name = os.path.split(im_path)[1].split(".")[0] + ".feat"
        fd_path = os.path.join(neg_feat_ph, fd_name)
    
        joblib.dump(fd, fd_path)
    print "Negative features saved in {}".format(neg_feat_ph)

    print "Completed calculating features from training images"
开发者ID:BUPTLdy,项目名称:object-detector,代码行数:35,代码来源:extract_features.py


示例3: run_simple

    def run_simple(self):
        u'''Simple prediction'''
        if len(self.datapath) >= 2:
            # Use only two previous images
            af_img = io.imread(self.datapath[0])
            bf_img = io.imread(self.datapath[1])
            
            #af_img = io.imread(r'./viptrafficof_02.png')
            #bf_img = io.imread(r'./viptrafficof_03.png')

            # Convert to gray image
            af_gray = color.rgb2gray(af_img)
            bf_gray = color.rgb2gray(bf_img)

            # Calculate density flow
            # Small -> WHY?
            flow = cv2.calcOpticalFlowFarneback(bf_gray, af_gray, \
                0.5, 6, 20, 10, 5, 1.2, 0)
            print  flow.shape, flow[:, :, 0].min(), flow[:, :, 1].max()  
            self.before = bf_gray
            self.after = af_gray
            #self.result = self.current
            self.result = transform(af_img, flow)
            
            # Color code the result for better visualization of optical flow. 
            # Direction corresponds to Hue value of the image. 
            # Magnitude corresponds to Value plane
            
            mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1])
            hsv = np.zeros_like(af_img)
            hsv[...,1] = 255
            hsv[...,0] = ang*180/np.pi/2
            hsv[...,2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
            self.optical = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)        
开发者ID:KodaiISHIJIMA,项目名称:TokyoAmeshPredict,代码行数:34,代码来源:simple_predict.py


示例4: load_images

def load_images(random_state=1234):
    train_df = pd.read_csv("data/train.csv", index_col="id", usecols=[0])
    depths_df = pd.read_csv("data/depths.csv", index_col="id")
    train_df = train_df.join(depths_df)
    test_df = depths_df[~depths_df.index.isin(train_df.index)]
    print(">>> train_df:",train_df.shape)
    print(train_df.head())
    print(">>> test_df:", test_df.shape)
    print(test_df.head())
    train_df["images"] = [gradmag(np.array(imread(path_train_images+"{}.png".format(idx)))) for idx in tqdm(train_df.index)]
    train_df["masks"] = [np.array(load_img(path_train_masks+"{}.png".format(idx),grayscale=True))/255 for idx in tqdm(train_df.index)]
    train_df["coverage"] = train_df.masks.map(np.sum) / pow(img_size_ori, 2)
    train_df["coverage_class"] = train_df.coverage.map(cov_to_class)
    print("*** TRAIN ***")
    print(train_df.head())
    print("*** TEST ***")
    print(test_df.head())
    ids_train, ids_valid, x_train, x_valid, y_train, y_valid, cov_train, cov_test, depth_train, depth_test = train_test_split(
        train_df.index.values,
        np.array(train_df.images.tolist()).reshape(-1, img_size_target, img_size_target, 1),
        np.array(train_df.masks.tolist()).reshape(-1, img_size_target, img_size_target, 1),
        train_df.coverage.values,
        train_df.z.values,
        test_size=0.2,
        stratify=train_df.coverage_class,
        random_state=random_state)
    #Data augmentation
    x_train2 = np.append(x_train, [np.fliplr(x) for x in x_train], axis=0)
    y_train2 = np.append(y_train, [np.fliplr(x) for x in y_train], axis=0)
    print(x_train2.shape)
    print(y_valid.shape)
    x_test = np.array([gradmag(np.array(imread(path_test_images+"{}.png".format(idx)))) for idx in tqdm(test_df.index)]).reshape(-1, img_size_target, img_size_target, 1)
    return x_train2, x_valid, y_train2, y_valid, x_test, test_df.index.values
开发者ID:gtesei,项目名称:fast-furious,代码行数:33,代码来源:unet_start_4_grad.py


示例5: count_bubble

def count_bubble(image_filename, ref_filename, plot_show = 0):
    
    image = io.imread(gv.__DIR__ + gv.__TrainImageDir__ + \
                      image_filename)
    ref_image = io.imread(gv.__DIR__ + gv.__TrainImageDir__ + \
                      ref_filename)

    image_gray = rgb2gray(image)
    ref_gray = rgb2gray(ref_image)

    # Constants
    Window_Size = 5
           
    pre_image = pre.noise_reduction(image_gray,
                                    ref_gray,
                                    Window_Size,
                                    mode = 0)
    seg_image = segmentation(pre_image,'self_design')
    perimeters = perimeter_exaction(seg_image, image, image_filename)
    if(plot_show == 1):
        fig, ax = plt.subplots(1,3)
        ax[0].imshow(image)
        ax[0].set_title('Original')
        ax[1].imshow(seg_image, cmap=plt.cm.gray)
        ax[1].set_title('Segmentation')
        result = io.imread(gv.__DIR__ + gv.cu__image_dir + image_filename)
        ax[2].imshow(result)
        ax[2].set_title('Result')
        plt.show()
       
    return perimeters
开发者ID:liuyifly06,项目名称:bubblecount,代码行数:31,代码来源:curvature.py


示例6: test

def test(classifier, pca):
	building = io.imread("http://www.nps.gov/tps/images/briefs/14-commercial-building.jpg")
	building = transform.resize(building, (200, 200, 3))
	building = color.rgb2gray(building)
	building = building.reshape(1, -1)
	# building = pca.transform(building)
	print building
	print classifier.predict(building)[0]
	print to_cat[str(classifier.predict(building)[0])] + " (expect building)"
	# print classifier.predict_proba(building)

	snow = io.imread("http://farm4.static.flickr.com/3405/3332148397_92d89db2ab.jpg")
	snow = transform.resize(snow, (200, 200, 3))
	snow = color.rgb2gray(snow)
	snow = snow.reshape(1, -1)
	# snow = pca.transform(snow)
	print snow
	print to_cat[str(classifier.predict(snow)[0])] + " (expect snow)"
	# print classifier.predict_proba(snow)


	flower = io.imread("https://upload.wikimedia.org/wikipedia/commons/f/fd/Daisy_flower_green_background.jpg")
	flower = transform.resize(flower, (200, 200, 3))
	flower = color.rgb2gray(flower)
	flower = flower.reshape(1, -1)
	# flower = pca.transform(flower)
	print to_cat[str(classifier.predict(flower)[0])] + " (expect plant)"
开发者ID:zverham,项目名称:svm_classifier,代码行数:27,代码来源:reader.py


示例7: test_multi_page_gif

def test_multi_page_gif():
    img = imread(os.path.join(data_dir, 'no_time_for_that.gif'))
    assert img.shape == (24, 280, 500, 3), img.shape
    img2 = imread(os.path.join(data_dir, 'no_time_for_that.gif'),
                  img_num=5)
    assert img2.shape == (280, 500, 3)
    assert_allclose(img[5], img2)
开发者ID:haohao200609,项目名称:Hybrid,代码行数:7,代码来源:test_pil.py


示例8: put_image

	def put_image(self, image_path):
		# print "Loading the image"
		self.image = io.imread(image_path, as_grey=True)
		self.image = transform.resize(self.image,(50,50))
		self.image_scaled = io.imread(image_path, as_grey=True)
		self.image_scaled = transform.resize(self.image_scaled,(50,50))
		self.image_scaled *= (1/self.image_scaled.max())
开发者ID:AkaZuko,项目名称:TextDetection,代码行数:7,代码来源:test_image.py


示例9: iris_scan_orb

def iris_scan_orb(request):

    from skimage import io
    from skimage.feature import (match_descriptors, ORB)
    from skimage.color import rgb2gray
    from .settings import MEDIA_ROOT

    img1 = rgb2gray(io.imread(MEDIA_ROOT + '/IRIS3.jpg'))  # Query
    img2 = rgb2gray(io.imread(MEDIA_ROOT + '/IRIS6.jpg'))  # Comparing to

    descriptor_extractor = ORB(n_keypoints=200)

    descriptor_extractor.detect_and_extract(img1)
    keypoints1 = descriptor_extractor.keypoints
    descriptors1 = descriptor_extractor.descriptors  # Query Descriptor

    descriptor_extractor.detect_and_extract(img2)
    keypoints2 = descriptor_extractor.keypoints
    descriptors2 = descriptor_extractor.descriptors  # Comparing To Descriptors

    matches12 = match_descriptors(descriptors1, descriptors2, cross_check=True)

    # print("Matched: ", len(matches12), " of ", len(descriptors1))
    percent = len(matches12) / len(descriptors1) * 100

    # print("Percent Match - ", percent, "%")

    """if percent > 80:
        print("Matched!")
    else:
        print("Not Matched!")"""

    return render(request, 'scan.html', {'percent': percent})
开发者ID:rap999a,项目名称:django_iris_scan,代码行数:33,代码来源:views.py


示例10: readTestingFragment

def readTestingFragment(datapath, fragList, imgSize=(1,224,224), meanImage=[]):
    ch, ih, iw = imgSize
    fragLen = len(fragList)
    if ch == 1:
        X = np.zeros((fragLen, 1, ih, iw))
        idx = -1
        print('reading data')
        for f in fragList:
            idx += 1
            # print(f)
            img = skimage.img_as_float(skio.imread(datapath+f) )
#            img -= meanImage
            X[idx, 0, ...] = img
    elif ch == 3:
        X = np.zeros((fragLen, 3, ih, iw))
        idx = -1
        print('reading data')
        for f in fragList:
            idx += 1
            img = skimage.img_as_float(skio.imread(datapath+f) )
            img = img.swapaxes(1, 2)
            img = img.swapaxes(0, 1)
#            img -= meanImage
            X[idx, ...] = img
    X -= np.tile(meanImage, [fragLen, 1, 1, 1])
    return X
开发者ID:fucusy,项目名称:kaggle-state-farm-distracted-driver-detection,代码行数:26,代码来源:DataReader_KERAS.py


示例11: read_input_OLE

def read_input_OLE():
	alphabet=["a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z"]
	#alphabet=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,17,19,20,21,2]
	n=70
	train_data=[]
	train_solutions=[]
	for i in range(n):
		for letter in alphabet:
			train_data.append(np.asarray(flatten_image(imread("chars74k-lite/chars74k-lite/"+letter+"/"+letter+"_"+str(i)+".jpg"))))
			train_data[-1] = np.divide(train_data[-1],255)
			train_solutions.append(ord(letter))
	#
	m=88
	test_data=[]
	test_solutions=[]
	for j in range(n,m):
		for letter in alphabet:
			test_data.append(np.asarray(flatten_image(imread("chars74k-lite/chars74k-lite/"+letter+"/"+letter+"_"+str(j)+".jpg"))))
			test_data[-1] = np.divide(test_data[-1],255)
			test_solutions.append(ord(letter))
	#
	print(len(train_data))
	print(len(train_solutions))
	print(len(test_data))
	print(test_solutions)
	return train_data, train_solutions, test_data, test_solutions
开发者ID:andlon93,项目名称:Optical-Character-Recognition,代码行数:26,代码来源:read_input.py


示例12: readTrainingFragment

def readTrainingFragment(datapath, fragList, imgSize=(1,224,224), meanImage=[], classNum=10):
    ch, ih, iw = imgSize
    fragLen = len(fragList)
    if ch == 1:
        X = np.zeros((fragLen, 1, ih, iw))
        Y = np.zeros((fragLen), dtype=int)
        idx = -1
        print('reading data')
        for f in fragList:
            idx += 1
            # print(f)
            label = np.int(f[0])
            img = skimage.img_as_float(skio.imread(datapath+f) )
#            img -= meanImage
            X[idx, 0, ...] = img
            Y[idx] = label
    elif ch == 3:
        X = np.zeros((fragLen, 3, ih, iw))
        Y = np.zeros((fragLen), dtype=int)
        idx = -1
        print('reading data')
        for f in fragList:
            idx += 1
            label = np.int(f[0])
            img = skimage.img_as_float(skio.imread(datapath+f) )
            img = img.swapaxes(1, 2)
            img = img.swapaxes(0, 1)
#            img -= meanImage
            X[idx, ...] = img
            Y[idx] = label
    X -= np.tile(meanImage, [fragLen, 1, 1, 1])
    Y = np_utils.to_categorical(Y, classNum)
    return X, Y
开发者ID:fucusy,项目名称:kaggle-state-farm-distracted-driver-detection,代码行数:33,代码来源:DataReader_KERAS.py


示例13: computeMeanImage

def computeMeanImage(trainingPath, testingPath, savePath, imgSize):
    ch, ih, iw = imgSize
    meanImage = np.zeros((ch, ih, iw))
    print('computing mean image')
    folder = os.listdir(trainingPath)
    trainNum = 0
    for f in folder:
        if not f[-4:] == '.jpg':
            continue
        img = skimage.img_as_float( skio.imread(trainingPath+f) )
        trainNum += 1
        if ch == 3:
            img = img.swapaxes(1, 2)
            img = img.swapaxes(0, 1)
        meanImage += img
    
    folder = os.listdir(testingPath)
    testNum = 0
    for f in folder:
        if not f[-4:] == '.jpg':
            continue
        img = skimage.img_as_float( skio.imread(testingPath+f) )
        testNum += 1
        if ch == 3:
            img = img.swapaxes(1, 2)
            img = img.swapaxes(0, 1)
        meanImage += img
    meanImage /= (trainNum + testNum)
    with open(savePath, 'wb') as f:
        np.save(f, meanImage)
开发者ID:fucusy,项目名称:kaggle-state-farm-distracted-driver-detection,代码行数:30,代码来源:DataReader_KERAS.py


示例14: load_sequence

    def load_sequence(self, sequence):
        """Load a sequence of images/frames

        Auxiliary function that loads a sequence of frames with
        the corresponding ground truth and their filenames.
        Returns a dict with the images in [0, 1], their corresponding
        labels, their subset (i.e. category, clip, prefix) and their
        filenames.
        """
        from skimage import io
        X = []
        Y = []
        F = []

        for prefix, frame in sequence:
            img = io.imread(os.path.join(self.image_path, frame))
            mask = io.imread(os.path.join(self.mask_path, frame))

            img = img.astype(floatX) / 255.
            mask = mask.astype('int32')

            X.append(img)
            Y.append(mask)
            F.append(frame)

        ret = {}
        ret['data'] = np.array(X)
        ret['labels'] = np.array(Y)
        ret['subset'] = prefix
        ret['filenames'] = np.array(F)
        return ret
开发者ID:david-vazquez,项目名称:dataset_loaders,代码行数:31,代码来源:gatech.py


示例15: load_sequence

    def load_sequence(self, sequence):
        """Load a sequence of images/frames

        Auxiliary function that loads a sequence of frames with
        the corresponding ground truth and their filenames.
        Returns a dict with the images in [0, 1], their corresponding
        labels, their subset (i.e. category, clip, prefix) and their
        filenames.
        """
        from skimage import io
        image_batch, mask_batch, filename_batch = [], [], []

        for prefix, img_name in sequence:

            img = io.imread(os.path.join(self.image_path, img_name + ".bmp"))
            img = img.astype(floatX) / 255.

            mask = np.array(io.imread(os.path.join(self.mask_path,
                                                   img_name + ".tif")))
            mask = mask.astype('int32')

            # Add to minibatch
            image_batch.append(img)
            mask_batch.append(mask)
            filename_batch.append(img_name)

        ret = {}
        ret['data'] = np.array(image_batch)
        ret['labels'] = np.array(mask_batch)
        ret['subset'] = prefix
        ret['filenames'] = np.array(filename_batch)
        return ret
开发者ID:david-vazquez,项目名称:dataset_loaders,代码行数:32,代码来源:polyps912.py


示例16: iris_scan_orb_android

def iris_scan_orb_android(file_name):

    from skimage import io
    from skimage.feature import (match_descriptors, ORB)
    from skimage.color import rgb2gray
    from .settings import MEDIA_ROOT

    img1 = rgb2gray(io.imread(MEDIA_ROOT + '/'+ file_name))  # Query
    img2 = rgb2gray(io.imread(MEDIA_ROOT + '/IRIS9.jpg'))  # Comparing to

    descriptor_extractor = ORB(n_keypoints=200)

    descriptor_extractor.detect_and_extract(img1)
    keypoints1 = descriptor_extractor.keypoints
    descriptors1 = descriptor_extractor.descriptors  # Query Descriptor

    descriptor_extractor.detect_and_extract(img2)
    keypoints2 = descriptor_extractor.keypoints
    descriptors2 = descriptor_extractor.descriptors  # Comparing To Descriptors

    matches12 = match_descriptors(descriptors1, descriptors2, cross_check=True)

    percent = len(matches12) / len(descriptors1) * 100

    return percent
开发者ID:rap999a,项目名称:django_iris_scan,代码行数:25,代码来源:views.py


示例17: main

def main():

	t0 = time.time()

	print "Preparing Inputs..."
	pi.prepareInputs()

	ndsm = io.imread("C:\\bertud_temp\\ndsm.tif")
	classified = io.imread("C:\\bertud_temp\\classified.tif")
	classified = classified[0:len(ndsm),0:len(ndsm[0])]
	slope = io.imread("C:\\bertud_temp\\slope.tif")
	numret = io.imread("C:\\bertud_temp\\numret.tif")

	print "Generating Initial Mask..."
	initialMask = ma.generateInitialMask(ndsm,classified,slope,numret)

	io.imsave("C:\\bertud_temp\\initialMask.tif",initialMask)


	pieces = br.performBoundaryRegularizationV2(initialMask,numProcesses=3)

	finalMask = ma.buildFinalMask(pieces,initialMask)

	io.imsave("C:\\bertud_temp\\finalMask.tif",finalMask)

	# pickle.dump(pieces,open("E:/BertudV2/pieces.pickle","wb"))

	t1 = time.time()

	print "Finished everything in ",round(t1-t0,2),"s."
开发者ID:ivancheesecake,项目名称:Bertud,代码行数:30,代码来源:testingan.py


示例18: compare

def compare(file1, file2):
    image1 = io.imread(file1, as_grey = True)
    image2 = io.imread(file2, as_grey = True)
    image1 = feature.canny(image1)
    image2 = feature.canny(image2)

    return ssim(image1, image2)
开发者ID:tabletenniser,项目名称:thesis,代码行数:7,代码来源:compare_image_edge_detection.py


示例19: compare_png

def compare_png(img1, img2, eps=0.99):
    """check whether img1 and img2 are similar

       we use structural similarity (SSIM) to compare them.

       SSIM generates values between 0 and 1, where 1 represents
       identical images

       If SSIM result is greater eps, then this method returns True.

    """
    im1 = imread(img1)
    im2 = imread(img2)
    if len(im1.shape) == 2 or im1.shape[-1] == 1:
        # only one color channel
        mssim = compare_ssim(im1, im2)
    elif HAVE_MULTICHANNEL_SSIM:
        # multi color channel
        mssim = compare_ssim(im1, im2, multichannel=True)
    else:
        # We have to do multichannel ssim ourselves
        nch = im1.shape[-1]
        mssim = np.empty(nch)
        for chan in range(nch):
            # use copy to generate contiguous array and avoid warning
            ch_result = compare_ssim(
                im1[..., chan].copy(), im2[..., chan].copy())
            mssim[..., chan] = ch_result
        mssim = mssim.mean()
    return mssim > eps
开发者ID:BCCVL,项目名称:org.bccvl.compute,代码行数:30,代码来源:test_R.py


示例20: run_illum

def run_illum(args):
    """Run illumination correction.

    Parameters
    ----------
    args : argparse.Namespace
        The arguments parsed by the argparse library.
    """
    if args.file_list is not None:
        args.images.extend([fn.rstrip() for fn in args.file_list])
    il = pre.find_background_illumination(args.images, args.radius,
                                          args.quantile, args.stretchlim,
                                          args.use_mask, args.mask_offset,
                                          args.mask_close, args.mask_erode)
    if args.verbose:
        print 'illumination field:', type(il), il.dtype, il.min(), il.max()
    if args.save_illumination is not None:
        io.imsave(args.save_illumination, il / il.max())
    base_fns = [pre.basefn(fn) for fn in args.images]
    ims_out = [fn + args.output_suffix for fn in base_fns]
    mask_fns = [fn + '.mask.tif' for fn in base_fns]
    ims = (io.imread(fn) for fn in args.images)
    for im, fout, mask_fn in it.izip(ims, ims_out, mask_fns):
        if os.path.isfile(mask_fn):
            mask = io.imread(mask_fn).astype(bool)
        else:
            mask = np.ones(im.shape, bool)
        im = pre.correct_image_illumination(im, il,
                                            args.stretchlim_output, mask)
        io.imsave(fout, im)
开发者ID:gitter-badger,项目名称:husc,代码行数:30,代码来源:main.py



注:本文中的skimage.io.imread函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python io.imsave函数代码示例发布时间:2022-05-27
下一篇:
Python thresholding.threshold_yen函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap