本文整理汇总了Python中skimage.measure.compare_psnr函数的典型用法代码示例。如果您正苦于以下问题:Python compare_psnr函数的具体用法?Python compare_psnr怎么用?Python compare_psnr使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了compare_psnr函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_wavelet_denoising
def test_wavelet_denoising():
rstate = np.random.RandomState(1234)
# version with one odd-sized dimension
astro_gray_odd = astro_gray[:, :-1]
astro_odd = astro[:, :-1]
for img, multichannel in [(astro_gray, False), (astro_gray_odd, False),
(astro_odd, True)]:
sigma = 0.1
noisy = img + sigma * rstate.randn(*(img.shape))
noisy = np.clip(noisy, 0, 1)
# Verify that SNR is improved when true sigma is used
denoised = restoration.denoise_wavelet(noisy, sigma=sigma,
multichannel=multichannel)
psnr_noisy = compare_psnr(img, noisy)
psnr_denoised = compare_psnr(img, denoised)
assert_(psnr_denoised > psnr_noisy)
# Verify that SNR is improved with internally estimated sigma
denoised = restoration.denoise_wavelet(noisy,
multichannel=multichannel)
psnr_noisy = compare_psnr(img, noisy)
psnr_denoised = compare_psnr(img, denoised)
assert_(psnr_denoised > psnr_noisy)
# Test changing noise_std (higher threshold, so less energy in signal)
res1 = restoration.denoise_wavelet(noisy, sigma=2*sigma,
multichannel=multichannel)
res2 = restoration.denoise_wavelet(noisy, sigma=sigma,
multichannel=multichannel)
assert_(np.sum(res1**2) <= np.sum(res2**2))
开发者ID:noahstier,项目名称:scikit-image,代码行数:33,代码来源:test_denoise.py
示例2: test_wavelet_denoising_levels
def test_wavelet_denoising_levels():
rstate = np.random.RandomState(1234)
ndim = 2
N = 256
wavelet = 'db1'
# Generate a very simple test image
img = 0.2*np.ones((N, )*ndim)
img[[slice(5, 13), ] * ndim] = 0.8
sigma = 0.1
noisy = img + sigma * rstate.randn(*(img.shape))
noisy = np.clip(noisy, 0, 1)
denoised = restoration.denoise_wavelet(noisy, wavelet=wavelet)
denoised_1 = restoration.denoise_wavelet(noisy, wavelet=wavelet,
wavelet_levels=1)
psnr_noisy = compare_psnr(img, noisy)
psnr_denoised = compare_psnr(img, denoised)
psnr_denoised_1 = compare_psnr(img, denoised_1)
# multi-level case should outperform single level case
assert_(psnr_denoised > psnr_denoised_1 > psnr_noisy)
# invalid number of wavelet levels results in a ValueError
max_level = pywt.dwt_max_level(np.min(img.shape),
pywt.Wavelet(wavelet).dec_len)
assert_raises(ValueError, restoration.denoise_wavelet, noisy,
wavelet=wavelet, wavelet_levels=max_level+1)
assert_raises(ValueError, restoration.denoise_wavelet, noisy,
wavelet=wavelet, wavelet_levels=-1)
开发者ID:ameya005,项目名称:scikit-image,代码行数:30,代码来源:test_denoise.py
示例3: test_wavelet_threshold
def test_wavelet_threshold():
rstate = np.random.RandomState(1234)
img = astro_gray
sigma = 0.1
noisy = img + sigma * rstate.randn(*(img.shape))
noisy = np.clip(noisy, 0, 1)
# employ a single, user-specified threshold instead of BayesShrink sigmas
with expected_warnings([PYWAVELET_ND_INDEXING_WARNING]):
denoised = _wavelet_threshold(noisy, wavelet='db1', method=None,
threshold=sigma)
psnr_noisy = compare_psnr(img, noisy)
psnr_denoised = compare_psnr(img, denoised)
assert_(psnr_denoised > psnr_noisy)
# either method or threshold must be defined
with testing.raises(ValueError):
_wavelet_threshold(noisy, wavelet='db1', method=None, threshold=None)
# warns if a threshold is provided in a case where it would be ignored
with expected_warnings(["Thresholding method ",
PYWAVELET_ND_INDEXING_WARNING]):
_wavelet_threshold(noisy, wavelet='db1', method='BayesShrink',
threshold=sigma)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:25,代码来源:test_denoise.py
示例4: test_wavelet_denoising
def test_wavelet_denoising():
for img, multichannel in [(astro_gray, False), (astro, True)]:
sigma = 0.1
noisy = img + sigma * np.random.randn(*(img.shape))
noisy = np.clip(noisy, 0, 1)
# Verify that SNR is improved when true sigma is used
denoised = restoration.denoise_wavelet(noisy, sigma=sigma,
multichannel=multichannel)
psnr_noisy = compare_psnr(img, noisy)
psnr_denoised = compare_psnr(img, denoised)
assert psnr_denoised > psnr_noisy
# Verify that SNR is improved with internally estimated sigma
denoised = restoration.denoise_wavelet(noisy,
multichannel=multichannel)
psnr_noisy = compare_psnr(img, noisy)
psnr_denoised = compare_psnr(img, denoised)
assert psnr_denoised > psnr_noisy
# Test changing noise_std (higher threshold, so less energy in signal)
res1 = restoration.denoise_wavelet(noisy, sigma=2*sigma,
multichannel=multichannel)
res2 = restoration.denoise_wavelet(noisy, sigma=sigma,
multichannel=multichannel)
assert (res1.sum()**2 <= res2.sum()**2)
开发者ID:dfcollin,项目名称:scikit-image,代码行数:26,代码来源:test_denoise.py
示例5: test_wavelet_denoising_nd
def test_wavelet_denoising_nd():
rstate = np.random.RandomState(1234)
for method in ['VisuShrink', 'BayesShrink']:
for ndim in range(1, 5):
# Generate a very simple test image
if ndim < 3:
img = 0.2*np.ones((128, )*ndim)
else:
img = 0.2*np.ones((16, )*ndim)
img[(slice(5, 13), ) * ndim] = 0.8
sigma = 0.1
noisy = img + sigma * rstate.randn(*(img.shape))
noisy = np.clip(noisy, 0, 1)
# Mark H. 2018.08:
# The issue arises because when ndim in [1, 2]
# ``waverecn`` calls ``_match_coeff_dims``
# Which includes a numpy 1.15 deprecation.
# for larger number of dimensions _match_coeff_dims isn't called
# for some reason.
anticipated_warnings = (PYWAVELET_ND_INDEXING_WARNING
if ndim < 3 else None)
with expected_warnings([anticipated_warnings]):
# Verify that SNR is improved with internally estimated sigma
denoised = restoration.denoise_wavelet(noisy, method=method)
psnr_noisy = compare_psnr(img, noisy)
psnr_denoised = compare_psnr(img, denoised)
assert_(psnr_denoised > psnr_noisy)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:29,代码来源:test_denoise.py
示例6: test_PSNR_dynamic_range_and_data_range
def test_PSNR_dynamic_range_and_data_range():
# Tests deprecation of "dynamic_range" in favor of "data_range"
out1 = compare_psnr(cam/255., cam_noisy/255., data_range=1)
with expected_warnings(
'`dynamic_range` has been deprecated in favor of '
'`data_range`. The `dynamic_range` keyword argument '
'will be removed in v0.14'):
out2 = compare_psnr(cam/255., cam_noisy/255., dynamic_range=1)
assert_equal(out1, out2)
开发者ID:andreydung,项目名称:scikit-image,代码行数:9,代码来源:test_simple_metrics.py
示例7: test_denoise_nl_means_multichannel
def test_denoise_nl_means_multichannel():
# for true 3D data, 3D denoising is better than denoising as 2D+channels
img = np.zeros((13, 10, 8))
img[6, 4:6, 2:-2] = 1.
sigma = 0.3
imgn = img + sigma * np.random.randn(*img.shape)
denoised_wrong_multichannel = restoration.denoise_nl_means(
imgn, 3, 4, 0.6 * sigma, fast_mode=True, multichannel=True)
denoised_ok_multichannel = restoration.denoise_nl_means(
imgn, 3, 4, 0.6 * sigma, fast_mode=True, multichannel=False)
psnr_wrong = compare_psnr(img, denoised_wrong_multichannel)
psnr_ok = compare_psnr(img, denoised_ok_multichannel)
assert_(psnr_ok > psnr_wrong)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:13,代码来源:test_denoise.py
示例8: test_wavelet_threshold
def test_wavelet_threshold():
rstate = np.random.RandomState(1234)
img = astro_gray
sigma = 0.1
noisy = img + sigma * rstate.randn(*(img.shape))
noisy = np.clip(noisy, 0, 1)
# employ a single, uniform threshold instead of BayesShrink sigmas
denoised = _wavelet_threshold(noisy, wavelet='db1', threshold=sigma)
psnr_noisy = compare_psnr(img, noisy)
psnr_denoised = compare_psnr(img, denoised)
assert_(psnr_denoised > psnr_noisy)
开发者ID:ameya005,项目名称:scikit-image,代码行数:13,代码来源:test_denoise.py
示例9: test_wavelet_denoising
def test_wavelet_denoising():
rstate = np.random.RandomState(1234)
# version with one odd-sized dimension
astro_gray_odd = astro_gray[:, :-1]
astro_odd = astro[:, :-1]
for img, multichannel, convert2ycbcr in [(astro_gray, False, False),
(astro_gray_odd, False, False),
(astro_odd, True, False),
(astro_odd, True, True)]:
sigma = 0.1
noisy = img + sigma * rstate.randn(*(img.shape))
noisy = np.clip(noisy, 0, 1)
# Verify that SNR is improved when true sigma is used
with expected_warnings([PYWAVELET_ND_INDEXING_WARNING]):
denoised = restoration.denoise_wavelet(noisy, sigma=sigma,
multichannel=multichannel,
convert2ycbcr=convert2ycbcr)
psnr_noisy = compare_psnr(img, noisy)
psnr_denoised = compare_psnr(img, denoised)
assert_(psnr_denoised > psnr_noisy)
# Verify that SNR is improved with internally estimated sigma
with expected_warnings([PYWAVELET_ND_INDEXING_WARNING]):
denoised = restoration.denoise_wavelet(noisy,
multichannel=multichannel,
convert2ycbcr=convert2ycbcr)
psnr_noisy = compare_psnr(img, noisy)
psnr_denoised = compare_psnr(img, denoised)
assert_(psnr_denoised > psnr_noisy)
# SNR is improved less with 1 wavelet level than with the default.
denoised_1 = restoration.denoise_wavelet(noisy,
multichannel=multichannel,
wavelet_levels=1,
convert2ycbcr=convert2ycbcr)
psnr_denoised_1 = compare_psnr(img, denoised_1)
assert_(psnr_denoised > psnr_denoised_1)
assert_(psnr_denoised_1 > psnr_noisy)
# Test changing noise_std (higher threshold, so less energy in signal)
with expected_warnings([PYWAVELET_ND_INDEXING_WARNING]):
res1 = restoration.denoise_wavelet(noisy, sigma=2 * sigma,
multichannel=multichannel)
with expected_warnings([PYWAVELET_ND_INDEXING_WARNING]):
res2 = restoration.denoise_wavelet(noisy, sigma=sigma,
multichannel=multichannel)
assert_(np.sum(res1**2) <= np.sum(res2**2))
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:50,代码来源:test_denoise.py
示例10: test_wavelet_denoising_nd
def test_wavelet_denoising_nd():
for ndim in range(1, 5):
# Generate a very simple test image
img = 0.2*np.ones((16, )*ndim)
img[[slice(5, 13), ] * ndim] = 0.8
sigma = 0.1
noisy = img + sigma * np.random.randn(*(img.shape))
noisy = np.clip(noisy, 0, 1)
# Verify that SNR is improved with internally estimated sigma
denoised = restoration.denoise_wavelet(noisy)
psnr_noisy = compare_psnr(img, noisy)
psnr_denoised = compare_psnr(img, denoised)
assert psnr_denoised > psnr_noisy
开发者ID:dfcollin,项目名称:scikit-image,代码行数:15,代码来源:test_denoise.py
示例11: test_PSNR_float
def test_PSNR_float():
p_uint8 = compare_psnr(cam, cam_noisy)
p_float64 = compare_psnr(cam / 255., cam_noisy / 255.,
data_range=1)
assert_almost_equal(p_uint8, p_float64, decimal=5)
# mixed precision inputs
p_mixed = compare_psnr(cam / 255., np.float32(cam_noisy / 255.),
data_range=1)
assert_almost_equal(p_mixed, p_float64, decimal=5)
# mismatched dtype results in a warning if data_range is unspecified
with expected_warnings(['Inputs have mismatched dtype']):
p_mixed = compare_psnr(cam / 255., np.float32(cam_noisy / 255.))
assert_almost_equal(p_mixed, p_float64, decimal=5)
开发者ID:Cadair,项目名称:scikit-image,代码行数:15,代码来源:test_simple_metrics.py
示例12: test_denoise_nl_means_3d
def test_denoise_nl_means_3d():
img = np.zeros((12, 12, 8))
img[5:-5, 5:-5, 2:-2] = 1.
sigma = 0.3
imgn = img + sigma * np.random.randn(*img.shape)
psnr_noisy = compare_psnr(img, imgn)
for s in [sigma, 0]:
denoised = restoration.denoise_nl_means(imgn, 3, 4, h=0.75 * sigma,
fast_mode=True,
multichannel=False, sigma=s)
# make sure noise is reduced
assert_(compare_psnr(img, denoised) > psnr_noisy)
denoised = restoration.denoise_nl_means(imgn, 3, 4, h=0.75 * sigma,
fast_mode=False,
multichannel=False, sigma=s)
# make sure noise is reduced
assert_(compare_psnr(img, denoised) > psnr_noisy)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:17,代码来源:test_denoise.py
示例13: test_wavelet_denoising_levels
def test_wavelet_denoising_levels():
rstate = np.random.RandomState(1234)
ndim = 2
N = 256
wavelet = 'db1'
# Generate a very simple test image
img = 0.2*np.ones((N, )*ndim)
img[(slice(5, 13), ) * ndim] = 0.8
sigma = 0.1
noisy = img + sigma * rstate.randn(*(img.shape))
noisy = np.clip(noisy, 0, 1)
with expected_warnings([PYWAVELET_ND_INDEXING_WARNING]):
denoised = restoration.denoise_wavelet(noisy, wavelet=wavelet)
denoised_1 = restoration.denoise_wavelet(noisy, wavelet=wavelet,
wavelet_levels=1)
psnr_noisy = compare_psnr(img, noisy)
psnr_denoised = compare_psnr(img, denoised)
psnr_denoised_1 = compare_psnr(img, denoised_1)
# multi-level case should outperform single level case
assert_(psnr_denoised > psnr_denoised_1 > psnr_noisy)
# invalid number of wavelet levels results in a ValueError or UserWarning
max_level = pywt.dwt_max_level(np.min(img.shape),
pywt.Wavelet(wavelet).dec_len)
if Version(pywt.__version__) < '1.0.0':
# exceeding max_level raises a ValueError in PyWavelets 0.4-0.5.2
with testing.raises(ValueError):
with expected_warnings([PYWAVELET_ND_INDEXING_WARNING]):
restoration.denoise_wavelet(
noisy, wavelet=wavelet, wavelet_levels=max_level + 1)
else:
# exceeding max_level raises a UserWarning in PyWavelets >= 1.0.0
with expected_warnings([
'all coefficients will experience boundary effects']):
restoration.denoise_wavelet(
noisy, wavelet=wavelet, wavelet_levels=max_level + 1)
with testing.raises(ValueError):
with expected_warnings([PYWAVELET_ND_INDEXING_WARNING]):
restoration.denoise_wavelet(
noisy,
wavelet=wavelet, wavelet_levels=-1)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:45,代码来源:test_denoise.py
示例14: test
def test(model):
print('Start to test on {}'.format(args.test_dir))
out_dir = save_dir + args.test_dir.split('/')[-1] + '/'
if not os.path.exists(out_dir):
os.mkdir(out_dir)
name = []
psnr = []
ssim = []
file_list = glob.glob('{}/*.png'.format(args.test_dir))
for file in file_list:
# read image
img_clean = np.array(Image.open(file), dtype='float32') / 255.0
img_test = img_clean + np.random.normal(0, args.sigma/255.0, img_clean.shape)
img_test = img_test.astype('float32')
# predict
x_test = img_test.reshape(1, img_test.shape[0], img_test.shape[1], 1)
y_predict = model.predict(x_test)
# calculate numeric metrics
img_out = y_predict.reshape(img_clean.shape)
img_out = np.clip(img_out, 0, 1)
psnr_noise, psnr_denoised = compare_psnr(img_clean, img_test), compare_psnr(img_clean, img_out)
ssim_noise, ssim_denoised = compare_ssim(img_clean, img_test), compare_ssim(img_clean, img_out)
psnr.append(psnr_denoised)
ssim.append(ssim_denoised)
# save images
filename = file.split('/')[-1].split('.')[0] # get the name of image file
name.append(filename)
img_test = Image.fromarray((img_test*255).astype('uint8'))
img_test.save(out_dir+filename+'_sigma'+'{}_psnr{:.2f}.png'.format(args.sigma, psnr_noise))
img_out = Image.fromarray((img_out*255).astype('uint8'))
img_out.save(out_dir+filename+'_psnr{:.2f}.png'.format(psnr_denoised))
psnr_avg = sum(psnr)/len(psnr)
ssim_avg = sum(ssim)/len(ssim)
name.append('Average')
psnr.append(psnr_avg)
ssim.append(ssim_avg)
print('Average PSNR = {0:.2f}, SSIM = {1:.2f}'.format(psnr_avg, ssim_avg))
pd.DataFrame({'name':np.array(name), 'psnr':np.array(psnr), 'ssim':np.array(ssim)}).to_csv(out_dir+'/metrics.csv', index=True)
开发者ID:bennjaminn64,项目名称:DnCNN-keras,代码行数:42,代码来源:main.py
示例15: test_wavelet_denoising_nd
def test_wavelet_denoising_nd():
rstate = np.random.RandomState(1234)
for method in ['VisuShrink', 'BayesShrink']:
for ndim in range(1, 5):
# Generate a very simple test image
if ndim < 3:
img = 0.2*np.ones((128, )*ndim)
else:
img = 0.2*np.ones((16, )*ndim)
img[[slice(5, 13), ] * ndim] = 0.8
sigma = 0.1
noisy = img + sigma * rstate.randn(*(img.shape))
noisy = np.clip(noisy, 0, 1)
# Verify that SNR is improved with internally estimated sigma
denoised = restoration.denoise_wavelet(noisy, method=method)
psnr_noisy = compare_psnr(img, noisy)
psnr_denoised = compare_psnr(img, denoised)
assert_(psnr_denoised > psnr_noisy)
开发者ID:Cadair,项目名称:scikit-image,代码行数:20,代码来源:test_denoise.py
示例16: test_denoise_nl_means_2d_multichannel
def test_denoise_nl_means_2d_multichannel():
# reduce image size because nl means is slow
img = np.copy(astro[:50, :50])
img = np.concatenate((img, ) * 2, ) # 6 channels
# add some random noise
sigma = 0.1
imgn = img + sigma * np.random.standard_normal(img.shape)
imgn = np.clip(imgn, 0, 1)
for fast_mode in [True, False]:
for s in [sigma, 0]:
for n_channels in [2, 3, 6]:
psnr_noisy = compare_psnr(img[..., :n_channels],
imgn[..., :n_channels])
denoised = restoration.denoise_nl_means(imgn[..., :n_channels],
3, 5, h=0.75 * sigma,
fast_mode=fast_mode,
multichannel=True,
sigma=s)
psnr_denoised = compare_psnr(denoised[..., :n_channels],
img[..., :n_channels])
# make sure noise is reduced
assert_(psnr_denoised > psnr_noisy)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:23,代码来源:test_denoise.py
示例17: get_denoise_metrics
def get_denoise_metrics(input, output, report):
image_file_name1 = input
image_file_name2 = output
image_name1 = io.imread(image_file_name1)
image_name2 = io.imread(image_file_name2)
# estimate the standard deiviation of the images
std_1 = numpy.std(numpy.std(numpy.array(image_name1)))
std_2 = numpy.std(numpy.std(numpy.array(image_name2)))
print("std is %2.10f" % std_1)
# print ("Standard deviation of the images are"%(std_1,std_2))
# estimate the peak signal to noise ratio (PSNR) between the image
peak_signal_to_noise_ratio = measure.compare_psnr(image_name1, image_name2)
print("Peak signal to noise ratio is %s" % peak_signal_to_noise_ratio)
# estimate the mean square error between the images
mse = measure.compare_mse(image_name1, image_name2)
print("Mean square error between the images is %s" % mse)
# estimate the normalised root mean square error between the images
rmse = measure.compare_nrmse(image_name1, image_name2)
print("Normalised root mean square error between the images is %s" % rmse)
resp = open(report, 'w')
resp.write("std1 is %2.10f \n" % std_1)
resp.write("std2 is %2.10f \n" % std_2)
resp.write(
"Peak signal to noise ratio is %s \n" %
peak_signal_to_noise_ratio)
resp.write("Mean square error between the images is %s \n" % mse)
resp.write(
"Normalised root mean squre error between the images is %s \n" %
rmse)
resp.close()
开发者ID:echopen,项目名称:kit-soft,代码行数:45,代码来源:image_metrics.py
示例18: run_metrics
def run_metrics(image_file_name1,image_file_name2 ):
image_name1 = io.imread(image_file_name1)
image_name2 = io.imread(image_file_name2)
peak_signal_to_noise_ratio = measure.compare_psnr (image_name1,image_name2)
print ("PSNR Peak signal to noise ratio is %s"%peak_signal_to_noise_ratio)
mse = measure.compare_mse(image_name1,image_name2)
print ("MSE Mean square error between the images is %s"%mse)
rmse = measure.compare_nrmse(image_name1,image_name2)
print ("RMSE Normalised root mean square error between the images is %s"%rmse)
ssim = measure.compare_ssim(image_name1,image_name2, multichannel=True)
print ("SSIM Structural Similarity Index is %s"%ssim)
#[M3,M4] = minkowski_distance(image_name1,image_name2)
#print ("Minkowski distance is %s %s"%(M3,M4))
#AD = average_difference(image_name1,image_name2)
#print ("AD Average difference is %s"%AD)
#SC = structural_content(image_name1,image_name2)
#print ("SC Structural Content is %s"%SC)
#NK = normalised_cross_correlation(image_name1,image_name2)
#print ("NK normalised cross correlation is %s"%NK)
#MD = maximum_difference(image_name1,image_name2)
#print ("Maximum difference is %s"%MD)
return {'peaktonoise':peak_signal_to_noise_ratio ,'mse': mse, 'rmse': rmse, 'ssim':ssim,'score':peak_signal_to_noise_ratio}
开发者ID:echopen,项目名称:kit-soft,代码行数:22,代码来源:metrics.py
示例19: test_PSNR_vs_IPOL
def test_PSNR_vs_IPOL():
# Tests vs. imdiff result from the following IPOL article and code:
# http://www.ipol.im/pub/art/2011/g_lmii/
p_IPOL = 22.4497
p = compare_psnr(cam, cam_noisy)
assert_almost_equal(p, p_IPOL, decimal=4)
开发者ID:andreydung,项目名称:scikit-image,代码行数:6,代码来源:test_simple_metrics.py
示例20: print
print image_name1.shape
print image_name2.shape
#estimate the standard deiviation of the images
std_1 = numpy.std (numpy.std (numpy.array(image_name1)))
std_2 = numpy.std (numpy.std (numpy.array(image_name2)))
print ("std is %2.10f"%std_1)
#print ("Standard deviation of the images are"%(std_1,std_2))
#estimate the peak signal to noise ratio (PSNR) between the image
peak_signal_to_noise_ratio = measure.compare_psnr (image_name1,image_name2)
print ("Peak signal to noise ratio is %s"%peak_signal_to_noise_ratio)
# estimate the mean square error between the images
mse = measure.compare_mse(image_name1,image_name2)
print ("Mean square error between the images is %s"%mse)
# estimate the normalised root mean square error between the images
rmse = measure.compare_nrmse(image_name1,image_name2)
ssim = measure.compare_ssim(image_name1,image_name2)
print ("Normalised root mean squre error between the images is %s"%rmse)
开发者ID:benchoufi,项目名称:kit-soft,代码行数:30,代码来源:image_metrics.py
注:本文中的skimage.measure.compare_psnr函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论