本文整理汇总了Python中skimage.measure.regionprops函数的典型用法代码示例。如果您正苦于以下问题:Python regionprops函数的具体用法?Python regionprops怎么用?Python regionprops使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了regionprops函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: dice
def dice(img,y_true,y_pred):
h, w = img.shape
im_true = y_true.reshape(h, w)
im_pred = y_pred.reshape(h, w)
labels_true = measure.label(im_true)
regions_true = regionprops(labels_true)
labels_pred = measure.label(im_pred)
regions_pred = regionprops(labels_pred)
features = ['coords','area','dice']
df = pd.DataFrame(columns=features)
i=0
for x_pred in regions_pred :
centroid = (np.array(x_pred.centroid)).astype(int)
if im_true[(centroid[0], centroid[1])] == 1:
for x_true in regions_true:
if centroid in x_true.coords:
A = np.zeros((img.shape[0], img.shape[1]))
B = np.zeros((img.shape[0], img.shape[1]))
A[x_pred.coords[:, 0], x_pred.coords[:, 1]] = 1
B[x_true.coords[:, 0], x_true.coords[:, 1]] = 1
intersect = float((sum(sum(B))))
D = intersect/(sum(sum(B))+ sum(sum(A)))
df.loc[i] = [x_pred.coords , x_pred.area, D]
break
i+=1
return df
开发者ID:vherman3,项目名称:AxonSegmentation,代码行数:33,代码来源:segmentation_scoring.py
示例2: extract_cell_stats
def extract_cell_stats(img1_path, img2_path):
# Function reads in the images and labels the cells. The features are
# extracted from these labelled images.
#
# Inputs: img1_path - path to previous image
# img2_path - path to current image
#
# Outputs: out - dict containing the relevant information
#
# TODO: be more accommodating with image types, RGB etc, tifffile warning
# read image data
img1 = skimage.io.imread(img1_path)
img2 = skimage.io.imread(img2_path)
# Image shape
if img1.shape != img2.shape:
warnings.warn('Caution: Comparing image frames of different sizes.')
img_shape = img1.shape
# Label pre-segmented images
l_label, l_cell_total = label(img1, return_num=True)
r_label, r_cell_total = label(img2, return_num=True)
# Collect cell features if cell is of minimum size (not segmented debris)
# TODO: clever way of setting this number
l_cells = [cell for cell in regionprops(l_label) if cell['filled_area'] > 50]
r_cells = [cell for cell in regionprops(r_label) if cell['filled_area'] > 50]
# Output
out = {'img1': l_cells, 'img2': r_cells, 'img_shape': img_shape}
return out
开发者ID:akwesinketia,项目名称:coupled-minimum-cost-flow-track,代码行数:33,代码来源:graph.py
示例3: detect_tc_in_step
def detect_tc_in_step(self, nc, i, ecc_th=0.75):
mask = self.ocean_mask.copy()
uas = nc.variables["uas"][i].squeeze()
vas = nc.variables["vas"][i].squeeze()
wind_speed = numpy.sqrt(uas**2+vas**2)
wind_mask = logical_and(self.ocean_mask, wind_speed > 20.)
temp = nc.variables["ts"][i].squeeze()
temp_mask = logical_and(self.ocean_mask, temp > 298.15)
ps = nc.variables["ps"][i].squeeze()
ps_mask = logical_and(self.ocean_mask, ps < 1005)
mask = logical_or(wind_mask, logical_and(temp_mask, ps_mask))
mask = remove_small_objects(mask, 20)
lbl = label(mask)
props_windspeed = regionprops(lbl, wind_speed)
props_pressure = regionprops(lbl, ps)
centroids = []
for windspeed, pressure in zip(props_windspeed, props_pressure):
max_wind_speed = windspeed["max_intensity"]
min_pressure = pressure["min_intensity"]
if windspeed["eccentricity"] > ecc_th or max_wind_speed<20.:
lbl[lbl == windspeed["label"]]=0
else:
y, x = windspeed["centroid"]
lon = float(self.idx_to_lon(x, y))
lat = float(self.idx_to_lat(x, y))
centroids.append([lon, lat, max_wind_speed, min_pressure])
mask = lbl>0
return mask, centroids
开发者ID:fuentesfranco,项目名称:kyklop,代码行数:28,代码来源:kyklop.py
示例4: clean_by_area
def clean_by_area(self, binary_image):
image = binary_image.copy()
image = ndi.binary_fill_holes(image)
label_image = label(binary_image)
initial_label = regionprops(label_image[0, :, :])[0].label
for z in range(0, image.shape[0]):
regions = regionprops(label_image[z, :, :])
for region in regions:
if region.label != initial_label:
for coords in region.coords:
image[z, coords[0], coords[1]] = 0
for z in range(0, image.shape[0]):
label_image = label(image[z, :, :], connectivity=1)
regions = regionprops(label_image)
if len(regions) > 1:
max_area = np.max([r.area for r in regions])
for region in regions:
if region.centroid[1] > 120 and region.area < max_area:
for coords in region.coords:
image[z, coords[0], coords[1]] = 0
return image
开发者ID:elpisco,项目名称:hip-dysplasia,代码行数:25,代码来源:image_processing.py
示例5: filter_segments
def filter_segments(labels, max_ecc, min_area, max_area, max_detect=None,
circ=None, intensity=None, **extra_args):
""" filter_segments(labels, max_ecc=0.5, min_area=15, max_area=200) -> [Segment]
Returns a list of Particles and masks out labels for
particles not meeting acceptance criteria.
"""
pts = []
strengths = []
centroid = 'Centroid' if intensity is None else 'WeightedCentroid'
if skversion < version('0.10'):
rprops = regionprops(labels, ['Area', 'Eccentricity', centroid], intensity)
else:
rprops = regionprops(labels, intensity)
for rprop in rprops:
area = rprop['area']
if area < min_area or area > max_area:
continue
ecc = rprop['eccentricity']
if ecc > max_ecc:
continue
x, y = rprop[centroid]
if circ:
co, ro = circ
if (x - co[0])**2 + (y - co[1])**2 > ro**2:
continue
pts.append(Segment(x, y, rprop.label, ecc, area))
if max_detect is not None:
strengths.append(rprop['mean_intensity'])
if max_detect is not None:
pts = pts[np.argsort(-strengths)]
return pts[:max_detect]
开发者ID:bigcat9139,项目名称:square-tracking,代码行数:31,代码来源:positions.py
示例6: get_segmented_lungs
def get_segmented_lungs(im, plot=False):
# Step 1: Convert into a binary image.
binary = im < -400
# Step 2: Remove the blobs connected to the border of the image.
cleared = clear_border(binary)
# Step 3: Label the image.
label_image = label(cleared)
# Step 4: Keep the labels with 2 largest areas.
areas = [r.area for r in regionprops(label_image)]
areas.sort()
if len(areas) > 2:
for region in regionprops(label_image):
if region.area < areas[-2]:
for coordinates in region.coords:
label_image[coordinates[0], coordinates[1]] = 0
binary = label_image > 0
# Step 5: Erosion operation with a disk of radius 2. This operation is seperate the lung nodules attached to the blood vessels.
selem = disk(2)
binary = binary_erosion(binary, selem)
# Step 6: Closure operation with a disk of radius 10. This operation is to keep nodules attached to the lung wall.
selem = disk(10) # CHANGE BACK TO 10
binary = binary_closing(binary, selem)
# Step 7: Fill in the small holes inside the binary mask of lungs.
edges = roberts(binary)
binary = ndi.binary_fill_holes(edges)
# Step 8: Superimpose the binary mask on the input image.
get_high_vals = binary == 0
im[get_high_vals] = -2000
return im, binary
开发者ID:ericsolo,项目名称:python,代码行数:29,代码来源:helpers.py
示例7: test_orientation
def test_orientation():
orientation = regionprops(SAMPLE, ['Orientation'])[0]['Orientation']
# determined with MATLAB
assert_almost_equal(orientation, 0.10446844651921)
# test correct quadrant determination
orientation2 = regionprops(SAMPLE.T, ['Orientation'])[0]['Orientation']
assert_almost_equal(orientation2, math.pi / 2 - orientation)
开发者ID:deads,项目名称:scikits-image,代码行数:7,代码来源:test_regionprops.py
示例8: get_segmented_lungs
def get_segmented_lungs(im):
binary = im < -320
cleared = clear_border(binary)
cleared=morph(cleared,5)
label_image = label(cleared)
areas = [r.area for r in regionprops(label_image)]
areas.sort()
if len(areas) > 2:
for region in regionprops(label_image):
if region.area < areas[-2]:
for coordinates in region.coords:
label_image[coordinates[0], coordinates[1]] = 0
binary = label_image > 0
selem = disk(2)
binary = binary_erosion(binary, selem)
selem = disk(10)
binary = binary_closing(binary, selem)
edges = roberts(binary)
binary = ndi.binary_fill_holes(edges)
get_high_vals = binary == 0
im[get_high_vals] = 0
binary = morphology.dilation(binary,np.ones([5,5]))
return binary
开发者ID:skconsulting,项目名称:ild,代码行数:28,代码来源:data_roifull1.py
示例9: get_segmentation_features
def get_segmentation_features(im):
dilwindow = [4, 4]
imthr = np.where(im > np.mean(im), 0.0, 1.0)
imdil = morphology.dilation(imthr, np.ones(dilwindow))
labels = measure.label(imdil)
labels = imthr * labels
labels = labels.astype(int)
regions = measure.regionprops(labels)
numregions = len(regions)
while len(regions) < 1:
dilwindow[0] = dilwindow[0] - 1
dilwindow[1] = dilwindow[1] - 1
if dilwindow == [0, 0]:
regions = None
break
imthr = np.where(im > np.mean(im), 0.0, 1.0)
imdil = morphology.dilation(imthr, np.ones(dilwindow))
labels = measure.label(imdil)
labels = imthr * labels
labels = labels.astype(int)
regions = measure.regionprops(labels)
regionmax = get_largest_region(regions, labels, imthr)
if regionmax is None:
return (np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan)
eccentricity = regionmax.eccentricity
convex_area = regionmax.convex_area
convex_to_total_area = regionmax.convex_area / regionmax.area
extent = regionmax.extent
filled_area = regionmax.filled_area
return (eccentricity, convex_area, convex_to_total_area, extent,
filled_area, numregions)
开发者ID:jimcaine,项目名称:smoteboost,代码行数:32,代码来源:feature_extraction.py
示例10: test_bbox
def test_bbox():
bbox = regionprops(SAMPLE, ['BoundingBox'])[0]['BoundingBox']
assert_array_almost_equal(bbox, (0, 0, SAMPLE.shape[0], SAMPLE.shape[1]))
SAMPLE_mod = SAMPLE.copy()
SAMPLE_mod[:, -1] = 0
bbox = regionprops(SAMPLE_mod, ['BoundingBox'])[0]['BoundingBox']
assert_array_almost_equal(bbox, (0, 0, SAMPLE.shape[0], SAMPLE.shape[1]-1))
开发者ID:GerardoLopez,项目名称:scikits-image,代码行数:8,代码来源:test_regionprops.py
示例11: test_euler_number
def test_euler_number():
en = regionprops(SAMPLE, ['EulerNumber'])[0]['EulerNumber']
assert en == 0
SAMPLE_mod = SAMPLE.copy()
SAMPLE_mod[7, -3] = 0
en = regionprops(SAMPLE_mod, ['EulerNumber'])[0]['EulerNumber']
assert en == -1
开发者ID:GerardoLopez,项目名称:scikits-image,代码行数:8,代码来源:test_regionprops.py
示例12: test_filled_area
def test_filled_area():
area = regionprops(SAMPLE, ['FilledArea'])[0]['FilledArea']
assert area == np.sum(SAMPLE)
SAMPLE_mod = SAMPLE.copy()
SAMPLE_mod[7, -3] = 0
area = regionprops(SAMPLE_mod, ['FilledArea'])[0]['FilledArea']
assert area == np.sum(SAMPLE)
开发者ID:GerardoLopez,项目名称:scikits-image,代码行数:8,代码来源:test_regionprops.py
示例13: _properties2d
def _properties2d(image, dim):
"""
Compute shape property of the input 2D image. Accounts for partial volume information.
:param image: 2D input image in uint8 or float (weighted for partial volume) that has a single object.
:param dim: [px, py]: Physical dimension of the image (in mm). X,Y respectively correspond to AP,RL.
:return:
"""
upscale = 5 # upscale factor for resampling the input image (for better precision)
pad = 3 # padding used for cropping
# Check if slice is empty
if not image.any():
logging.debug('The slice is empty.')
return None
# Normalize between 0 and 1 (also check if slice is empty)
image_norm = (image - image.min()) / (image.max() - image.min())
# Convert to float64
image_norm = image_norm.astype(np.float64)
# Binarize image using threshold at 0. Necessary input for measure.regionprops
image_bin = np.array(image_norm > 0.5, dtype='uint8')
# Get all closed binary regions from the image (normally there is only one)
regions = measure.regionprops(image_bin, intensity_image=image_norm)
# Check number of regions
if len(regions) > 1:
logging.debug('There is more than one object on this slice.')
return None
region = regions[0]
# Get bounding box of the object
minx, miny, maxx, maxy = region.bbox
# Use those bounding box coordinates to crop the image (for faster processing)
image_crop = image_norm[np.clip(minx-pad, 0, image_bin.shape[0]): np.clip(maxx+pad, 0, image_bin.shape[0]),
np.clip(miny-pad, 0, image_bin.shape[1]): np.clip(maxy+pad, 0, image_bin.shape[1])]
# Oversample image to reach sufficient precision when computing shape metrics on the binary mask
image_crop_r = transform.pyramid_expand(image_crop, upscale=upscale, sigma=None, order=1)
# Binarize image using threshold at 0. Necessary input for measure.regionprops
image_crop_r_bin = np.array(image_crop_r > 0.5, dtype='uint8')
# Get all closed binary regions from the image (normally there is only one)
regions = measure.regionprops(image_crop_r_bin, intensity_image=image_crop_r)
region = regions[0]
# Compute area with weighted segmentation and adjust area with physical pixel size
area = np.sum(image_crop_r) * dim[0] * dim[1] / upscale ** 2
# Compute ellipse orientation, rotated by 90deg because image axis are inverted, modulo pi, in deg, and between [0, 90]
orientation = _fix_orientation(region.orientation)
# Find RL and AP diameter based on major/minor axes and cord orientation=
[diameter_AP, diameter_RL] = \
_find_AP_and_RL_diameter(region.major_axis_length, region.minor_axis_length, orientation,
[i / upscale for i in dim])
# TODO: compute major_axis_length/minor_axis_length by summing weighted voxels along axis
# Fill up dictionary
properties = {'area': area,
'diameter_AP': diameter_AP,
'diameter_RL': diameter_RL,
'centroid': region.centroid,
'eccentricity': region.eccentricity,
'orientation': orientation,
'solidity': region.solidity # convexity measure
}
return properties
开发者ID:neuropoly,项目名称:spinalcordtoolbox,代码行数:58,代码来源:process_seg.py
示例14: test_get_boundaries_of_image_3d
def test_get_boundaries_of_image_3d():
# Test if equivalent diameter of the maximum intensity project of edges of the object is same
# as the input sphere, measure.regionprops, 3D perimeter parameter not implemented in skimage
radius = 4
binary = morphology.ball(radius)
boundary = radius_skeleton.get_boundaries_of_image(binary)
maxip = np.amax(boundary, 0)
nose.tools.assert_almost_equal(measure.regionprops(binary)[0].equivalent_diameter,
measure.regionprops(maxip)[0].equivalent_diameter, places=1)
开发者ID:zwlshine,项目名称:vessels-ct-radius,代码行数:9,代码来源:radius_skeleton_tests.py
示例15: bin_analyser
def bin_analyser(RGB_image, bin_image, list_feature, marge=None, pandas_table=False, do_label=True):
bin_image_copy = bin_image.copy()
p = 0
for feat in list_feature:
p += feat.size
if marge is not None and marge != 0:
seed = np.zeros_like(bin_image_copy)
seed[marge:-marge, marge:-marge] = 1
mask = bin_image_copy.copy()
mask[ mask > 0 ] = 1
mask[marge:-marge, marge:-marge] = 1
reconstructed = reconstruction(seed, mask, 'dilation')
bin_image_copy[reconstructed == 0] = 0
if do_label:
bin_image_copy = label(bin_image_copy)
if len(np.unique(bin_image_copy)) != 2:
if len(np.unique(bin_image_copy)) == 1:
if 0 in bin_image_copy:
print "Return blank matrix. Change this shit"
white_npy = np.zeros(shape=(1, p))
if not pandas_table:
return white_npy
else:
names = GetNames(list_feature)
return pd.DataFrame(white_npy, columns=names)
else:
print "Error, must give a bin image."
GrowRegion_N = NeededGrownRegion(list_feature)
img = {0: bin_image_copy}
RegionProp = {0: regionprops(bin_image_copy)}
for val in GrowRegion_N:
if val != 0:
img[val] = GrowRegion(bin_image_copy, val)
RegionProp[val] = regionprops(img[val])
n = len(RegionProp[0])
TABLE = np.zeros(shape=(n,p))
for i in range(n):
offset_ALL = 0
for j, feat in enumerate(list_feature):
tmp_regionprop = RegionProp[feat._return_n_extension()][i]
off_tmp = feat.size
TABLE[i, (j + offset_ALL):(j + offset_ALL + off_tmp)] = feat._apply_region(tmp_regionprop ,RGB_image)
offset_ALL += feat.size - 1
if pandas_table:
names = GetNames(list_feature)
return pd.DataFrame(TABLE, columns=names)
else:
return TABLE
开发者ID:PeterJackNaylor,项目名称:PhD_Fabien,代码行数:56,代码来源:Extractors.py
示例16: rag_solidity
def rag_solidity(labels, connectivity=2):
graph = RAG()
# The footprint is constructed in such a way that the first
# element in the array being passed to _add_edge_filter is
# the central value.
fp = ndi.generate_binary_structure(labels.ndim, connectivity)
for d in range(fp.ndim):
fp = fp.swapaxes(0, d)
fp[0, ...] = 0
fp = fp.swapaxes(0, d)
# For example
# if labels.ndim = 2 and connectivity = 1
# fp = [[0,0,0],
# [0,1,1],
# [0,1,0]]
#
# if labels.ndim = 2 and connectivity = 2
# fp = [[0,0,0],
# [0,1,1],
# [0,1,1]]
ndi.generic_filter(
labels,
function=_add_edge_filter,
footprint=fp,
mode='nearest',
output=np.zeros(labels.shape, dtype=np.uint8),
extra_arguments=(graph,))
regions = regionprops(labels)
regions = {r.label: r for r in regionprops(labels)}
graph.remove_node(0)
for n in graph:
region = regions[n]
graph.node[n].update({'labels': [n],
'solidity': region['solidity'],
'mask': labels == region.label})
for x, y, d in graph.edges_iter(data=True):
new_mask = np.logical_or(graph.node[x]['mask'], graph.node[y]['mask'])
new_solidity = 1. * new_mask.sum() / convex_hull_image(new_mask).sum()
org_solidity = np.mean([graph.node[x]['solidity'],
graph.node[y]['solidity']])
d['weight'] = org_solidity / new_solidity
return graph
开发者ID:wkentaro,项目名称:ros-pkg,代码行数:51,代码来源:rag_solidity.py
示例17: extractSegmentPropertiesRGB
def extractSegmentPropertiesRGB(segments,img):
"""Function to extract 6 properties from each segment of a segmented image.
Returns a numpy array with 6 columns and a row per segment.
[:,1] : Mean red (r) intensity of segment
[:,2] : Mean green (g) intensity of segment
[:,3] : Mean blue (b) intensity of segment
[:,4] : (b-r)/(b+r)
[:,5] : (b-g)/(b+g)
[:,6] : (g-r)/(2b - g -r)
Parameters
----------
segments : ndarray, shape(M, N)
The segmented image
img : ndarray, shape(M, N, 3)
The RGB image that has been segmented.
Returns
-------
properties : ndarray, shape(6, n)
A numpy array.
"""
# Extract feature properties
# Mean RGB intensities
props = measure.regionprops(segments,img[:,:,0], cache=False)
r=[prop.mean_intensity for prop in props]
props = measure.regionprops(segments,img[:,:,1], cache=False)
g=[prop.mean_intensity for prop in props]
props = measure.regionprops(segments,img[:,:,2], cache=False)
b=[prop.mean_intensity for prop in props]
# RGB Ratios
denom = np.add(b,r)
denom[denom==0] = 0.05
Ratio1 = np.divide(np.subtract(b,r) , denom)
denom = np.add(b,g)
denom[denom==0] = 0.05
Ratio2 = np.divide(np.subtract(b,g) , denom)
denom = np.subtract(np.subtract(np.multiply(b,2),g),r)
denom[denom==0] = 0.05
Ratio3 = np.divide(np.subtract(g,r) , denom)
# Stack properties to array
properties = np.column_stack((r,g,b,Ratio1,Ratio2,Ratio3))
return properties
开发者ID:polar-computing,项目名称:SeaIce,代码行数:51,代码来源:segmentUtils.py
示例18: remove_abnormal_samples
def remove_abnormal_samples(seg, sigma=0.9):
'''removes abnormal samples based on sig. deviation from mean centroid,
then removes based on mean size'''
# Get centroids of samples
centroids = []
for idx, lab in enumerate(measure.regionprops(scipy.ndimage.label(seg)[0])):
centroids.append(lab.centroid)
row_vals = [x[0] for x in centroids]
# Get relevant stats of row values
mean = np.mean(row_vals)
std = np.std(row_vals)
hi = mean + sigma*std
lo = mean - sigma*std
# Eliminate sig. deviation from mean
for idx, lab in enumerate(measure.regionprops(scipy.ndimage.label(seg)[0])):
centroid = lab.centroid
if centroid[0] < lo or centroid[0] > hi:
seg = floodfill_fast(
seg,
x=int(centroid[0]),
y=int(centroid[1]),
value=0,
border_color=0,
dtype=np.uint8
)[0]
# Get sizes of samples
areas = []
for idx, lab in enumerate(measure.regionprops(scipy.ndimage.label(seg)[0])):
areas.append(lab.filled_area)
mean = np.mean(areas)
std = np.std(areas)
hi = mean + 3*sigma*std
lo = mean - 3*sigma*std
# Eliminate sig. deviation from mean
for idx, lab in enumerate(measure.regionprops(scipy.ndimage.label(seg)[0])):
area = lab.filled_area
centroid = lab.centroid
if area < lo or area > hi:
seg = floodfill_fast(
seg,
x=int(centroid[0]),
y=int(centroid[1]),
value=0,
border_color=0,
dtype=np.uint8
)[0]
return seg
开发者ID:jjcodes,项目名称:hematuria_spots,代码行数:48,代码来源:urine_blood.py
示例19: computeITCList
def computeITCList(evaluation_mask, resolution, level):
"""Compute the list of labels containing Isolated Tumor Cells (ITC)
Description:
A region is considered ITC if its longest diameter is below 200µm.
As we expanded the annotations by 75µm, the major axis of the object
should be less than 275µm to be considered as ITC (Each pixel is
0.243µm*0.243µm in level 0). Therefore the major axis of the object
in level 5 should be less than 275/(2^5*0.243) = 35.36 pixels.
Args:
evaluation_mask: The evaluation mask
resolution: Pixel resolution of the image at level 0
level: The level at which the evaluation mask was made
Returns:
Isolated_Tumor_Cells: list of labels containing Isolated Tumor Cells
"""
max_label = np.amax(evaluation_mask)
properties = measure.regionprops(evaluation_mask)
Isolated_Tumor_Cells = []
threshold = 275/(resolution * pow(2, level))
for i in range(0, max_label):
if properties[i].major_axis_length < threshold:
Isolated_Tumor_Cells.append(i+1)
return Isolated_Tumor_Cells
开发者ID:linhj184169280,项目名称:CAMELYON16-Challenge,代码行数:26,代码来源:Evaluation_FROC.py
示例20: getImgData
def getImgData(img):
labelPos = np.array((img < 0.9), dtype=int)
# labelNeg = np.array((img >= 0.9),dtype=int)
props = [
"Area",
"Centroid",
"WeightedCentroid",
"WeightedMoments",
"WeightedHuMoments",
"HuMoments",
"EulerNumber",
"Eccentricity",
"EquivDiameter",
"Extent",
"MeanIntensity",
"MinIntensity",
"MaxIntensity",
"Orientation",
"Solidity",
]
# props = ['Centroid','WeightedCentroid']
dataPos = regionprops(labelPos, properties=props, intensity_image=img)[0]
del dataPos["Label"]
# dataNeg = regionprops(labelNeg,properties=props,intensity_image=img)[0]
# del dataNeg['Label']
return dataPos # ,dataNeg
开发者ID:Newmu,项目名称:Stroke-Prediction,代码行数:26,代码来源:explore.py
注:本文中的skimage.measure.regionprops函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论