• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python morphology.remove_small_objects函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中skimage.morphology.remove_small_objects函数的典型用法代码示例。如果您正苦于以下问题:Python remove_small_objects函数的具体用法?Python remove_small_objects怎么用?Python remove_small_objects使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了remove_small_objects函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: get_rough_detection

 def get_rough_detection(self, img, bigsize=40.0, smallsize=4.0, thresh = 0):
     diff = self.difference_of_gaussian(-img, bigsize, smallsize)
     diff[diff>thresh] = 1
     
     se = morphology.square(4)
     ero = morphology.erosion(diff, se)
     
     labimage = label(ero)
     #rec = morphology.reconstruction(ero, img, method='dilation').astype(np.dtype('uint8'))
     
     # connectivity=1 corresponds to 4-connectivity.
     morphology.remove_small_objects(labimage, min_size=600, connectivity=1, in_place=True)
     #res = np.zeros(img.shape)
     ero[labimage==0] = 0
     ero = 1 - ero
     labimage = label(ero)
     morphology.remove_small_objects(labimage, min_size=400, connectivity=1, in_place=True)
     ero[labimage==0] = 0
     res = 1 - ero
     res[res>0] = 255
     
     #temp = 255 - temp
     #temp = morphology.remove_small_objects(temp, min_size=400, connectivity=1, in_place=True)
     #res = 255 - temp
     
     return res
开发者ID:PeterJackNaylor,项目名称:PhD_Fabien,代码行数:26,代码来源:segmentation_test.py


示例2: polylinesFromBinImage

def polylinesFromBinImage(img, minimum_cluster_size=6,
                          remove_small_obj_size=3,
                          reconnect_size=3,
                          max_n_contours=None, max_len_contour=None,
                          copy=True):
    '''
    return a list of arrays of un-branching contours

    img -> (boolean) array 

    optional:
    ---------
    minimum_cluster_size -> minimum number of pixels connected together to build a contour

    ##search_kernel_size -> TODO
    ##min_search_kernel_moment -> TODO

    numeric:
    -------------
    max_n_contours -> maximum number of possible contours in img
    max_len_contour -> maximum contour length

    '''
    assert minimum_cluster_size > 1
    assert reconnect_size % 2, 'ksize needs to be odd'

    # assert search_kernel_size == 0 or search_kernel_size > 2 and search_kernel_size%2, 'kernel size needs to be odd'
    # assume array size parameters, is not given:
    if max_n_contours is None:
        max_n_contours = max(img.shape)
    if max_len_contour is None:
        max_len_contour = sum(img.shape[:2])
    # array containing coord. of all contours:
    contours = np.zeros(shape=(max_n_contours, max_len_contour, 2),
                        dtype=np.uint16)  # if not search_kernel_size else np.float32)

    if img.dtype != np.bool:
        img = img.astype(bool)
    elif copy:
        img = img.copy()

    if remove_small_obj_size:
        remove_small_objects(img, remove_small_obj_size,
                             connectivity=2, in_place=True)
    if reconnect_size:
        # remove gaps
        maximum_filter(img, reconnect_size, output=img)
        # reduce contour width to 1
        img = skeletonize(img)

    n_contours = _populateContoursArray(img, contours, minimum_cluster_size)
    contours = contours[:n_contours]

    l = []
    for c in contours:
        ind = np.zeros(shape=len(c), dtype=bool)
        _getValidInd(c, ind)
        # remove all empty spaces:
        l.append(c[ind])
    return l
开发者ID:radjkarl,项目名称:imgProcessor,代码行数:60,代码来源:polylinesFromBinImage.py


示例3: predict

	def predict(self, times, frames, output_times):
		nout = len(output_times)
		nf = len(frames)

		last_idx = np.argmax(times)
		zt = frames[last_idx] < self.thresh
		skmorph.remove_small_objects(zt, min_size=self.min_size, in_place=True)
		d = morphology.distance_transform_edt(np.invert(zt))
		return np.tile(d, (nout,1,1))
开发者ID:ecgeil,项目名称:radar,代码行数:9,代码来源:distance.py


示例4: build_skeleton

def build_skeleton(frame):
    """
    build a corner tree, skeletonize, dilate
    """
    tree = trees.tree_corners(frame)
    tree = morphology.skeletonize(tree)
    # tree = morphology.binary_dilation(tree)
    morphology.remove_small_objects(tree, min_size=20, connectivity=2, in_place=True)
    tree = morphology.binary_dilation(tree)
    return tree
开发者ID:grayhem,项目名称:inspection_port,代码行数:10,代码来源:primitives.py


示例5: distance_trend

def distance_trend(times, frames, threshold=25, min_size=12):
	nf = len(frames)
	zt = filters.gaussian_filter(frames,1.5) > threshold
	d_outer = np.zeros((nf,) + frames[0].shape)
	d_inner = np.zeros((nf,) + frames[0].shape)

	for i in range(nf):
		skmorph.remove_small_objects(zt, min_size=min_size, in_place=True)
		d_outer[i] = morphology.distance_transform_edt(np.invert(zt[i]))
		d_inner[i] = morphology.distance_transform_edt(zt[i])

	return d_outer, d_inner
开发者ID:ecgeil,项目名称:radar,代码行数:12,代码来源:distance.py


示例6: nuclei_regions

def nuclei_regions(comp_map):
    """
    NUCLEI_REGIONS: extract "support regions" for nuclei. This function
    expects as input a "tissue components map" (as returned, for example,
    by segm.tissue_components) where values of 1 indicate pixels having
    a color corresponding to nuclei.
    It returns a set of compact support regions corresponding to the
    nuclei.


    :param comp_map: numpy.ndarray
       A mask identifying different tissue components, as obtained
       by classification in RGB space. The value 0

       See segm.tissue.tissue_components()

    :return:
    """
    # Deprecated:...
    # img_hem, _ = rgb2he(img0, normalize=True)

    # img_hem = denoise_tv_bregman(img_hem, HE_OPTS['bregm'])

    # Get a mask of nuclei regions by unsupervised clustering:
    # Vector Quantization: background, mid-intensity Hem and high intensity Hem
    # -train the quantizer for 3 levels
    # vq = KMeans(n_clusters=3)
    # vq.fit(img_hem.reshape((-1,1)))
    # -the level of interest is the brightest:
    # k = np.argsort(vq.cluster_centers_.squeeze())[2]
    # mask_hem = (vq.labels_ == k).reshape(img_hem.shape)
    # ...end deprecated

    # Final mask:
    mask = (comp_map == 1)   # use the components classified by color

    # mask = morph.closing(mask, selem=HE_OPTS['strel1'])
    # mask = morph.opening(mask, selem=HE_OPTS['strel1'])
    # morph.remove_small_objects(mask, in_place=True)
    # mask = (mask > 0)

    mask = mahotas.close_holes(mask)
    morph.remove_small_objects(mask, in_place=True)

    dst  = mahotas.stretch(mahotas.distance(mask))
    Bc=np.ones((9,9))
    lmax = mahotas.regmax(dst, Bc=Bc)
    spots, _ = mahotas.label(lmax, Bc=Bc)
    regions = mahotas.cwatershed(lmax.max() - lmax, spots) * mask

    return regions
# end NUCLEI_REGIONS
开发者ID:gitter-badger,项目名称:WSItk,代码行数:52,代码来源:nuclei.py


示例7: stk_to_rois

def stk_to_rois(stk, threshold, min_size, max_window=8, downscale_factor=2):
    thresholded_stk = stk > threshold
    thresholded_stk = remove_small_objects(thresholded_stk, min_size)
    distance = ndi.distance_transform_edt(thresholded_stk)
    cropped_stk = stk.copy()
    cropped_stk[np.logical_not(thresholded_stk)] = 0
    combined_stk = cropped_stk + distance/distance.max()
    local_max = peak_local_max(combined_stk, indices=False, 
                               footprint=np.ones((max_window, max_window)), 
                               labels=thresholded_stk)
    markers = ndi.label(local_max)[0]
    labels = watershed(-combined_stk, markers, mask=thresholded_stk)
    new_markers = markers.copy()
    for i in set(labels.flatten()):
        if i == 0: continue
        if np.sum(labels==i) < min_size:
            new_markers[markers==i] = 0
    labels = watershed(-combined_stk, new_markers, mask=thresholded_stk)
    labels_set = set(labels.flatten())
    rois = []
    for label in labels_set:
        if label == 0: continue
        if np.sum((labels==label).astype(int)) < min_size: continue
        nroi = np.zeros((stk.shape[0], stk.shape[1]))
        cx,cy = np.where(labels==label)
        cx,cy = int(cx.mean()), int(cy.mean())
        x,y = np.ogrid[0:nroi.shape[0], 0:nroi.shape[1]]
        r = 4
        mask =  (cx-x)**2 + (cy-y)**2 <= r*r
        nroi[mask] = 1
        #nroi[labels==label] = 1
        rois.append(zoom(nroi, downscale_factor, order=0))
    rois = np.array(rois)
    return rois, thresholded_stk, labels
开发者ID:cyrilzhang,项目名称:livemau5,代码行数:34,代码来源:nn_all.py


示例8: segment_roi

def segment_roi(roi):
    # step 1. phase congruency (edge detection)
    Mm = phasecong_Mm(roi)
    # step 2. hysteresis thresholding (of edges)
    B = hysthresh(Mm,HT_T1,HT_T2)
    # step 3. trim pixels off border
    B[B[:,1]==0,0]=0
    B[B[:,-2]==0,-1]=0
    B[0,B[1,:]==0]=0
    B[-1,B[-2,:]==0]=0
    # step 4. threshold to find dark areas
    dark = dark_threshold(roi, DARK_THRESHOLD_ADJUSTMENT)
    # step 5. add dark areas back to blob
    B = B | dark
    # step 6. binary closing
    B = binary_closing(B,SE3)
    # step 7. binary dilation
    B = binary_dilation(B,SE2)
    # step 8. thinning
    B = bwmorph_thin(B,3)
    # step 9. fill holes
    B = binary_fill_holes(B)
    # step 10. remove blobs smaller than BLOB_MIN
    B = remove_small_objects(B,BLOB_MIN,connectivity=2)
    # done.
    return B
开发者ID:joefutrelle,项目名称:oii,代码行数:26,代码来源:segmentation.py


示例9: get_bg_mask

def get_bg_mask(img):
    
    #if img.ndim == 3:
    #    bg_mask = img.any(axis=-1)
    #    bg_mask = np.invert(bg_mask) # consistent with np.ma, True if masked

    #    # make multichannel (is it really this hard?)
    #    bg_mask = np.repeat(bg_mask[:,:,np.newaxis], 3, axis=2) 
    #
    #else:
    #    bg_mask = (img != 0)
    #    bg_mask = np.invert(bg_mask) # see above

    #bound = segmentation.find_boundaries(bg_mask, mode='inner', background=1)
    #bg_mask[bound] = 1
    #min_size = img.shape[0] * img.shape[1] // 4 
    #holes = morphology.remove_small_holes(bg_mask, min_size=min_size)
    #bg_mask[holes] = 1
    
    bg_mask = segmentation.find_boundaries(img)
    bg_mask = morphology.remove_small_objects(bg_mask)
    bg_mask = morphology.remove_small_holes(bg_mask)

    bg_mask = np.invert(bg_mask)
    return bg_mask
开发者ID:wukm,项目名称:cakepy,代码行数:25,代码来源:get_base2.py


示例10: load_cell_image

    def load_cell_image(self, sensitivity = 5., min_cell_size = 4000):
        '''Load cell image and add cells to self'''

        pic_nuclei = self.get_source_pic_nuclei()
        self.shape = pic_nuclei.shape

        nuclei = find_nuclei(pic_nuclei, sensitivity, min_cell_size)

        self.cell_detect_params = (sensitivity, min_cell_size)

        labels = measure_label(nuclei)

        labelcount = np.bincount(labels.ravel())

        bg = np.argmax(labelcount)

        labels += 1

        labels[labels == bg + 1] = 0

        labels = remove_small_objects(labels, min_cell_size)

        self.nuclei = labels

        self.create_cells_from_nuclei(pic_nuclei)

        self.rescale_nuclei()
开发者ID:varnivey,项目名称:darfi,代码行数:27,代码来源:pic_an.py


示例11: pred_f

def pred_f(image, stepSize=stepSize, windowSize=windowSize, param=param, 
           marge=None, marge_cut_off=0, ClearSmallObjects=20, list_f=list_f):
    caffe.set_mode_cpu()
    cn_1 = "FCN_0.01_0.99_0.0005"
    wd_1 = "/share/data40T_v2/Peter/pretrained_models"
    net_1 = GetNet(cn_1, wd_1)
    cn_2 = "DeconvNet_0.01_0.99_0.0005"
    net_2 = GetNet(cn_2, wd_1)
    prob_image, bin_image, thresh = pred_image_from_two_nets(image, net_1, net_2, stepSize, windowSize, 
                                                               param=param, marge=marge, method="avg", 
                                                               ClearBorder="Reconstruction")

    segmentation_mask = DynamicWatershedAlias(prob_image, param)
    segmentation_mask = remove_small_objects(segmentation_mask, ClearSmallObjects)
    table = bin_analyser(image, segmentation_mask, list_f, marge_cut_off)
    segmentation_mask[segmentation_mask > 0] = 1.


    contours = dilation(segmentation_mask, disk(2)) - \
        erosion(segmentation_mask, disk(2))
    x, y = np.where(contours == 1)
    image[x, y] = np.array([0, 0, 0])


    segmentation_mask = img_as_ubyte(segmentation_mask)
    segmentation_mask[segmentation_mask > 0] = 255
    if marge_cut_off != 0:
         c = marge_cut_off
         image = image[c:-c, c:-c]
         segmentation_mask = segmentation_mask[c:-c, c:-c]
         prob_image = prob_image[c:-c, c:-c]
    return image, table, segmentation_mask, prob_image
开发者ID:PeterJackNaylor,项目名称:PhD_Fabien,代码行数:32,代码来源:DistributedVersion.py


示例12: cleanImage

def cleanImage(img, min_size, scale_factor, img_otsu=None, saver=lambda n,x: x):
    img, exposure_data = normalize_exposure2(img)
    img = saver("01-exposure", img)
    img_otsu = ski.filter.threshold_otsu(img) if not img_otsu else img_otsu
    print('otsu:',img_otsu, ski.filter.threshold_otsu(img))

    img = saver("02-zoom", scipy.ndimage.zoom(img, scale_factor, order=3))
    print("shape after zoom:", img.shape)
#     img_pil = PIL.Image.fromarray(img).resize((np.array(img.shape)*scale_factor).tolist()[:2], resample=PIL.Image.BICUBIC)
#     img = saver("02-zoom", PIL2array(img_pil))
    print("img:",img.shape,img.dtype)

    img_cleaned = saver("03-bw", (img > img_otsu))
#     img_cleaned = saver("03-bw", (img > 0.2))

    dbg = DebugData()

    img_cleaned = morphology.binary_erosion(img_cleaned,morphology.disk(int(2*scale_factor)))
    img_cleaned = saver("04-erosion", img_cleaned, dbg=dbg)

    img_cleaned = morphology.remove_small_objects(img_cleaned, min_size=int(min_size*scale_factor), connectivity=2)
    img_cleaned = saver("05-remove", img_cleaned)


    cleaned_sum = np.sum(img_cleaned)
    print("img_cleaned size:",cleaned_sum)
#     if cleaned_sum < 1000 or cleaned_sum > 300000:
#         display(Image(str(dbg.saved_path)))
#         raise Exception("Image not cleaned correctly"+str(locals()))

    return img_cleaned, exposure_data
开发者ID:manasdas17,项目名称:scilab-2,代码行数:31,代码来源:image_measurements_auto.py


示例13: blobs

def blobs(image, remove_mb = None, val = 160, size = 100):
    """ Convolve a kernel on the image and a gaussian filter to highligh blobs. Find blobs using the
    Difference of Gaussian. Remove from the list of blobs the blobs that are at the membrane.
    return 3 different list
    """

    thresh = threshold_otsu(image)

    #Find all the blobs in the image using Difference of Gaussian
    blobs_in_image = feature.blob_dog(image, min_sigma=0.01,
                        max_sigma=3, threshold=thresh)
    blob_list = []
    for blob in blobs_in_image:
        y, x, r = blob
        blob_list.append((y, x))



    if remove_mb == None:
        blob_in_image_after_binary = set(blob_list)

    else:
        #Create a mask to remove blobs that are at the membrane and surrounded
        #by bright big object
        binary = image >= val*thresh/100
        binary = dilation(binary, square(3))
        binary = remove_small_objects(binary, min_size=size)
        # Create a list of coordinate with the binary image
        coor_binary = np.nonzero(binary)
        list_blob_masked = zip(*coor_binary)
        #Substract the list of coordinate from the binary image to the list of blobs
        blob_in_image_after_binary = (set(blob_list) - set (list_blob_masked))

    return blob_in_image_after_binary
开发者ID:cespenel,项目名称:image_processing,代码行数:34,代码来源:blobs_per_cell.py


示例14: label_nuclei

def label_nuclei(binary, min_size):
    '''Label, watershed and remove small objects'''

    distance = medial_axis(binary, return_distance=True)[1]

    distance_blured = gaussian_filter(distance, 5)

    local_maxi = peak_local_max(distance_blured, indices=False, labels=binary, min_distance = 30)

    markers = measure_label(local_maxi)

#    markers[~binary] = -1

#    labels_rw = segmentation.random_walker(binary, markers)

#    labels_rw[labels_rw == -1] = 0

#    labels_rw = segmentation.relabel_sequential(labels_rw)

    labels_ws = watershed(-distance, markers, mask=binary)

    labels_large = remove_small_objects(labels_ws,min_size)

    labels_clean_border = clear_border(labels_large)

    labels_from_one = relabel_sequential(labels_clean_border)

#    plt.imshow(ndimage.morphology.binary_dilation(markers))
#    plt.show()

    return labels_from_one[0]
开发者ID:SimaGuseva,项目名称:darfi,代码行数:31,代码来源:pic_an_calc.py


示例15: func

 def func(frame):
     frame = frame.astype(bool)
     binary = remove_small_objects(frame, smooth_size)
     #binary = ndi.binary_fill_holes(binary)
     #opened = binary_opening(frame, disk(smooth_size))
     #opened = opened & frame
     return binary
开发者ID:merlinzone,项目名称:MEHI,代码行数:7,代码来源:segmentation.py


示例16: segment_cells

def segment_cells(frame, mask=None):
    """
    Compute the initial segmentation based on ridge detection + watershed.
    This works reasonably well, but is not robust enough to use by itself.
    """
    
    blurred = filters.gaussian_filter(frame, 2)
    ridges = enhance_ridges(frame)
    
    # threshold ridge image
    thresh = filters.threshold_otsu(ridges)
    thresh_factor = 0.6
    prominent_ridges = ridges > thresh_factor*thresh
    prominent_ridges = morphology.remove_small_objects(prominent_ridges, min_size=256)
    prominent_ridges = morphology.binary_closing(prominent_ridges)
    prominent_ridges = morphology.binary_dilation(prominent_ridges)
    
    # skeletonize
    ridge_skeleton = morphology.medial_axis(prominent_ridges)
    ridge_skeleton = morphology.binary_dilation(ridge_skeleton)
    ridge_skeleton *= mask
    ridge_skeleton -= mask
    
    # label
    cell_label_im = measure.label(ridge_skeleton)
    
    # morphological closing to fill in the cracks
    for cell_num in range(1, cell_label_im.max()+1):
        cell_mask = cell_label_im==cell_num
        cell_mask = morphology.binary_closing(cell_mask, disk(3))
        cell_label_im[cell_mask] = cell_num
    
    return cell_label_im 
开发者ID:brikeats,项目名称:Cell-Tracking,代码行数:33,代码来源:track_cell.py


示例17: main

def main():
    plt.figure(figsize=(25, 24))
    planes = ['samolot00.jpg', 'samolot01.jpg', 'samolot03.jpg', 'samolot04.jpg', 'samolot05.jpg','samolot07.jpg',
              'samolot08.jpg', 'samolot09.jpg', 'samolot10.jpg', 'samolot11.jpg', 'samolot12.jpg', 'samolot13.jpg',
              'samolot14.jpg', 'samolot15.jpg', 'samolot16.jpg', 'samolot17.jpg', 'samolot18.jpg', 'samolot20.jpg']
    i = 1
    for file in planes:
        img = data.imread(file, as_grey=True)
        img2 = data.imread(file)
        ax = plt.subplot(6, 3, i)
        ax.axis('off')
        img **= 0.4
        img = filter.canny(img, sigma=3.0)
        img = morphology.dilation(img, morphology.disk(4))
        img = ndimage.binary_fill_holes(img)
        img = morphology.remove_small_objects(img, 1000)
        contours = measure.find_contours(img, 0.8)
        ax.imshow(img2, aspect='auto')
        for n, contour in enumerate(contours):
            ax.plot(contour[:, 1], contour[:, 0], linewidth=1.5)
            center = (sum(contour[:, 1])/len(contour[:, 1]), sum(contour[:, 0])/len(contour[:, 0]))
            ax.scatter(center[0], center[1], color='white')
        i += 1

    plt.savefig('zad2.pdf')
开发者ID:gracz21,项目名称:KCK,代码行数:25,代码来源:Zad_2.py


示例18: load_scenes

def load_scenes(filename):
    zipped_scenes = []
    print 'Working on: ' + filename
    img = data.imread('scenes/' + filename, as_grey=True)
    tmp = img
    tmp = filter.canny(tmp, sigma=2.0)
    tmp = ndimage.binary_fill_holes(tmp)
    #tmp = morphology.dilation(tmp, morphology.disk(2))
    tmp = morphology.remove_small_objects(tmp, 2000)
    contours = measure.find_contours(tmp, 0.8)
    ymin, xmin = contours[0].min(axis=0)
    ymax, xmax = contours[0].max(axis=0)
    if xmax - xmin > ymax - ymin:
        xdest = 1000
        ydest = 670
    else:
        xdest = 670
        ydest = 1000
    src = np.array(((0, 0), (0, ydest), (xdest, ydest), (xdest, 0)))
    dst = np.array(((xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)))
    tform3 = tf.ProjectiveTransform()
    tform3.estimate(src, dst)
    warped = tf.warp(img, tform3, output_shape=(ydest, xdest))
    tmp = filter.canny(warped, sigma=2.0)
    tmp = morphology.dilation(tmp, morphology.disk(2))
    descriptor_extractor.detect_and_extract(tmp)
    obj_key = descriptor_extractor.keypoints
    scen_desc = descriptor_extractor.descriptors
    zipped_scenes.append([warped, scen_desc, obj_key, filename])
    return zipped_scenes
开发者ID:gracz21,项目名称:KCK,代码行数:30,代码来源:image.py


示例19: extract_yellow

def extract_yellow(rgb, depth, T_w_k):
    """
    extract red points and grey points and downsample
    """
        
    hsv = cv2.cvtColor(rgb, cv2.COLOR_BGR2HSV)
    h = hsv[:,:,0]
    s = hsv[:,:,1]
    v = hsv[:,:,2]

    hh = h[220:300, 550:580]
    ss = s[220:300, 550:580]
    vv = v[220:300, 550:580]

    r = rgb[220:300, 550:580, :]
    #cv2.imshow("r", r)
    #cv2.waitKey()


    #IPython.embed()




    h_mask = (h>0) & (h<40)
    s_mask = (s>20) & (s<90)
    v_mask = (v>200) & (v<255)
    yellow_mask = h_mask & s_mask & v_mask
    
    valid_mask = depth > 0
    
    xyz_k = clouds.depth_to_xyz(depth, berkeley_pr2.f)
    xyz_w = xyz_k.dot(T_w_k[:3,:3].T) + T_w_k[:3,3][None,None,:]
    
    z = xyz_w[:,:,2]   
    z0 = xyz_k[:,:,2]

    height_mask = xyz_w[:,:,2] > .50 # TODO pass in parameter
    
    good_mask = yellow_mask & height_mask
    good_mask =   skim.remove_small_objects(good_mask,min_size=64)

    if DEBUG_PLOTS:
        #cv2.imshow("z0",z0/z0.max())
        #cv2.imshow("z",z/z.max())
        cv2.imshow("hue", h_mask.astype('uint8')*255)
        cv2.imshow("sat", s_mask.astype('uint8')*255)
        cv2.imshow("val", v_mask.astype('uint8')*255)
        #cv2.imshow("yellow", yellow_mask.astype('uint8')*255)
        cv2.imshow("final",good_mask.astype('uint8')*255)
        #cv2.imshow("small", small)
        cv2.imshow("rgb", rgb)
        cv2.waitKey()
            
        
    

    good_xyz = xyz_w[good_mask]
    
    return clouds.downsample(good_xyz, .0125)
开发者ID:warriorarmentaix,项目名称:rapprentice,代码行数:60,代码来源:cloud_proc_funcs.py


示例20: morphOps

 def morphOps( imgIn, sizeSE, sizeCC ):
     imgOut = imgIn.astype(bool) #boolean image
     imgOut = ~imgOut #img negative
     imgOut = morphology.remove_small_objects( imgOut, sizeCC ) #cclargest
     SE = morphology.selem.disk( sizeSE ) #structuring element
     imgOut = morphology.closing(imgOut, SE)
     return imgOut
开发者ID:vsimonis,项目名称:worm1,代码行数:7,代码来源:imgProc.py



注:本文中的skimage.morphology.remove_small_objects函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python morphology.skeletonize函数代码示例发布时间:2022-05-27
下一篇:
Python morphology.reconstruction函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap