本文整理汇总了Python中skimage.restoration.denoise_tv_chambolle函数的典型用法代码示例。如果您正苦于以下问题:Python denoise_tv_chambolle函数的具体用法?Python denoise_tv_chambolle怎么用?Python denoise_tv_chambolle使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了denoise_tv_chambolle函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: denoising
def denoising(astro):
noisy = astro + 0.6 * astro.std() * np.random.random(astro.shape)
noisy = np.clip(noisy, 0, 1)
fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(8, 5), sharex=True,
sharey=True, subplot_kw={'adjustable': 'box-forced'})
plt.gray()
ax[0, 0].imshow(noisy)
ax[0, 0].axis('off')
ax[0, 0].set_title('noisy')
ax[0, 1].imshow(denoise_tv_chambolle(noisy, weight=0.1, multichannel=True))
ax[0, 1].axis('off')
ax[0, 1].set_title('TV')
ax[0, 2].imshow(denoise_bilateral(noisy, sigma_range=0.05, sigma_spatial=15))
ax[0, 2].axis('off')
ax[0, 2].set_title('Bilateral')
ax[1, 0].imshow(denoise_tv_chambolle(noisy, weight=0.2, multichannel=True))
ax[1, 0].axis('off')
ax[1, 0].set_title('(more) TV')
ax[1, 1].imshow(denoise_bilateral(noisy, sigma_range=0.1, sigma_spatial=15))
ax[1, 1].axis('off')
ax[1, 1].set_title('(more) Bilateral')
ax[1, 2].imshow(astro)
ax[1, 2].axis('off')
ax[1, 2].set_title('original')
fig.tight_layout()
plt.show()
开发者ID:omidi,项目名称:CellLineageTracking,代码行数:31,代码来源:slic.py
示例2: raw2phasecorr
def raw2phasecorr(arr_list,clip=0): #cv
import cv2
cx = 0.0
cy = 0.0
stb_arr_list=[]
prev_frame = arr_list[0]
prev_image = np.float32(restoration.denoise_tv_chambolle(prev_frame.astype('uint16'), weight=0.1, multichannel=True)) #ref
for frame in arr_list:
image = np.float32(restoration.denoise_tv_chambolle(frame.astype('uint16'), weight=0.1, multichannel=True))
# TODO: set window around phase correlation
dp = cv2.phaseCorrelate(prev_image, image)
cx = cx - dp[0]
cy = cy - dp[1]
xform = np.float32([[1, 0, cx], [0, 1, cy]])
stable_image = cv2.warpAffine(frame.astype('float32'), xform, dsize=(image.shape[1], image.shape[0]))
prev_image = image
#clip sides
ht,wd=np.shape(stable_image)
# clip=0.125 #0.25
lt=int(wd*clip)
rt=int(wd-wd*clip)
up=int(ht*clip)
dw=int(ht-ht*clip)
stable_image_clipped=stable_image[up:dw,lt:rt]
stb_arr_list.append(stable_image_clipped)
return stb_arr_list
开发者ID:rraadd88,项目名称:htsimaging,代码行数:26,代码来源:utils.py
示例3: phasecorr
def phasecorr(imlist,imlist2=None,clip=0): #cv [rowini,rowend,colini,colend]
import cv2
cx = 0.0
cy = 0.0
imlist_stb=[]
if imlist2!=None:
imlist2_stb=[]
imi=0
im_prev = imlist[0]
im_denoised_prev = np.float32(restoration.denoise_tv_chambolle(im_prev.astype('uint16'), weight=0.1, multichannel=True)) #ref
for im in imlist:
im_denoised = np.float32(restoration.denoise_tv_chambolle(im.astype('uint16'), weight=0.1, multichannel=True))
# TODO: set window around phase correlation
dp = cv2.phaseCorrelate(im_denoised_prev, im_denoised)
cx = cx - dp[0]
cy = cy - dp[1]
xform = np.float32([[1, 0, cx], [0, 1, cy]])
im_stb = cv2.warpAffine(im.astype('float32'), xform, dsize=(im_denoised.shape[1], im_denoised.shape[0]))
imlist_stb.append(imclipper(im_stb,clip))
if imlist2!=None:
im2=imlist2[imi]
im2_stb=cv2.warpAffine(im2.astype('float32'), xform, dsize=(im_denoised.shape[1], im_denoised.shape[0]))
imlist2_stb.append(imclipper(im2_stb,clip))
im_denoised_prev = im_denoised
imi+=1
if imlist2!=None:
return imlist_stb,imlist2_stb
else:
return imlist_stb
开发者ID:rraadd88,项目名称:htsimaging,代码行数:32,代码来源:utils.py
示例4: test_denoise_tv_chambolle_multichannel
def test_denoise_tv_chambolle_multichannel():
denoised0 = restoration.denoise_tv_chambolle(astro[..., 0], weight=0.1)
denoised = restoration.denoise_tv_chambolle(astro, weight=0.1,
multichannel=True)
assert_equal(denoised[..., 0], denoised0)
# tile astronaut subset to generate 3D+channels data
astro3 = np.tile(astro[:64, :64, np.newaxis, :], [1, 1, 2, 1])
# modify along tiled dimension to give non-zero gradient on 3rd axis
astro3[:, :, 0, :] = 2*astro3[:, :, 0, :]
denoised0 = restoration.denoise_tv_chambolle(astro3[..., 0], weight=0.1)
denoised = restoration.denoise_tv_chambolle(astro3, weight=0.1,
multichannel=True)
assert_equal(denoised[..., 0], denoised0)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:14,代码来源:test_denoise.py
示例5: blur_predict
def blur_predict(model, X, type="median", filter_size=3, sigma=1.0):
if type == "median":
blured_X = np.array(list(map(lambda x: ndimage.median_filter(x, filter_size),
X)))
elif type == "gaussian":
blured_X = np.array(list(map(lambda x: ndimage.gaussian_filter(x, filter_size),
X)))
elif type == "f_gaussian":
blured_X = np.array(list(map(lambda x: filters.gaussian_filter(x.reshape((28, 28)), sigma=sigma).reshape(784),
X)))
elif type == "tv_chambolle":
blured_X = np.array(list(map(lambda x: restoration.denoise_tv_chambolle(x.reshape((28, 28)), weight=0.2).reshape(784),
X)))
elif type == "tv_bregman":
blured_X = np.array(list(map(lambda x: restoration.denoise_tv_bregman(x.reshape((28, 28)), weight=5.0).reshape(784),
X)))
elif type == "bilateral":
blured_X = np.array(list(map(lambda x: restoration.denoise_bilateral(np.abs(x).reshape((28, 28))).reshape(784),
X)))
elif type == "nl_means":
blured_X = np.array(list(map(lambda x: restoration.nl_means_denoising(x.reshape((28, 28))).reshape(784),
X)))
elif type == "none":
blured_X = X
else:
raise ValueError("unsupported filter type", type)
return predict(model, blured_X)
开发者ID:PetraVidnerova,项目名称:pyGAAdversary,代码行数:31,代码来源:blur_errors.py
示例6: plot_preprocessed_image
def plot_preprocessed_image(self):
"""
plots pre-processed image. The plotted image is the same as obtained at the end
of the get_text_candidates method.
"""
image = restoration.denoise_tv_chambolle(self.image, weight=0.1)
thresh = threshold_otsu(image)
bw = closing(image > thresh, square(2))
cleared = bw.copy()
label_image = measure.label(cleared)
borders = np.logical_xor(bw, cleared)
label_image[borders] = -1
image_label_overlay = label2rgb(label_image, image=image)
fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(12, 12))
ax.imshow(image_label_overlay)
for region in regionprops(label_image):
if region.area < 10:
continue
minr, minc, maxr, maxc = region.bbox
rect = mpatches.Rectangle((minc, minr), maxc - minc, maxr - minr,
fill=False, edgecolor='red', linewidth=2)
ax.add_patch(rect)
plt.show()
开发者ID:kmiddleton,项目名称:ImageTextRecognition,代码行数:29,代码来源:userimageski.py
示例7: denoise_image
def denoise_image(data, type=None):
from skimage.restoration import denoise_tv_chambolle, denoise_bilateral
if type == "tv":
return denoise_tv_chambolle(data, weight=0.2, multichannel=True)
return denoise_bilateral(data, sigma_range=0.1, sigma_spatial=15)
开发者ID:121onto,项目名称:noaa,代码行数:7,代码来源:facial_alignment.py
示例8: detect_edges
def detect_edges(image_array):
""" Detect edges in a given image
Takes a numpy.array representing an image,
apply filters and edge detection and return a numpy.array
Parameters
----------
image_array : ndarray (2D)
Image data to be processed. Detect edges on this 2D array representing the image
Returns
-------
edges : ndarray (2D)
Edges of an image.
"""
#Transform image into grayscale
img = rgb2gray(image_array)
#Remove some noise from the image
img = denoise_tv_chambolle(img, weight=0.55)
#Apply canny
edges = filter.canny(img, sigma=3.2)
#Clear the borders
clear_border(edges, 15)
#Dilate edges to make them more visible and connected
edges = binary_dilation(edges, selem=diamond(3))
return edges
开发者ID:Pat-rice,项目名称:automated_testing_image_classifiers,代码行数:26,代码来源:image_processing.py
示例9: test_denoise_tv_chambolle_weighting
def test_denoise_tv_chambolle_weighting():
# make sure a specified weight gives consistent results regardless of
# the number of input image dimensions
rstate = np.random.RandomState(1234)
img2d = astro_gray.copy()
img2d += 0.15 * rstate.standard_normal(img2d.shape)
img2d = np.clip(img2d, 0, 1)
# generate 4D image by tiling
img4d = np.tile(img2d[..., None, None], (1, 1, 2, 2))
w = 0.2
denoised_2d = restoration.denoise_tv_chambolle(img2d, weight=w)
denoised_4d = restoration.denoise_tv_chambolle(img4d, weight=w)
assert_(measure.compare_ssim(denoised_2d,
denoised_4d[:, :, 0, 0]) > 0.99)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:16,代码来源:test_denoise.py
示例10: compute
def compute(self, src):
image = img_as_ubyte(src)
# denoise image
denoised = denoise_tv_chambolle(image, weight=0.05)
denoised_equalize= exposure.equalize_hist(denoised)
# find continuous region (low gradient) --> markers
markers = rank.gradient(denoised_equalize, disk(5)) < 10
markers = ndi.label(markers)[0]
# local gradient
gradient = rank.gradient(denoised, disk(2))
# labels
labels = watershed(gradient, markers)
# display results
fig, axes = plt.subplots(2,3)
axes[0, 0].imshow(image)#, cmap=plt.cm.spectral, interpolation='nearest')
axes[0, 1].imshow(denoised, cmap=plt.cm.spectral, interpolation='nearest')
axes[0, 2].imshow(markers, cmap=plt.cm.spectral, interpolation='nearest')
axes[1, 0].imshow(gradient, cmap=plt.cm.spectral, interpolation='nearest')
axes[1, 1].imshow(labels, cmap=plt.cm.spectral, interpolation='nearest', alpha=.7)
plt.show()
开发者ID:roboticslab-uc3m,项目名称:textiles,代码行数:25,代码来源:GarmentAnalysis.py
示例11: preProcessing
def preProcessing(imGrayLevel):
#Escopo de algumas Operações básicas utilizadas no pré-processamento:
#..............................................
h = ia.iahistogram(imGrayLevel) #Equalização...
n = imGrayLevel.size
T = 255./n * np.cumsum(h)
T = T.astype(uint8)
#..............................................
T1 = np.arange(256) # função identidade
T2 = ia.ianormalize(np.log(T1+30)) # logaritmica - realce partes escuras
#T5 = ia.ianormalize(T1/50) # reduz o número de níveis de cinza
#..................................................
ax1.imshow(imRGB)
ax1.set_title('rgb')
ax2.imshow(imGrayLevel, vmin=0, vmax=255, cmap=plt.cm.gray)
ax2.set_title('gray level')
imGrayLevel = denoise_tv_chambolle(imGrayLevel, weight=0.1, multichannel=True)
imGrayLevel = img_as_ubyte(imGrayLevel)#Conversão de Float para UINT-8
ax3.imshow(imGrayLevel, vmin=0, vmax=255, cmap=plt.cm.gray) #Filtro de suavização de textura
ax3.set_title('tv signal filter')
realceNucleos = T2[T[imGrayLevel]] #Realce de partes escuras da imagem equalizada
ax4.imshow(realceNucleos, vmin=0, vmax=255, cmap=plt.cm.gray)
ax4.set_title('logaritimica')
return realceNucleos
开发者ID:geogob,项目名称:Python,代码行数:31,代码来源:projeto.py
示例12: denoise_image
def denoise_image(input, output):
kidney_image = io.imread(input)
# estimate the noise in the image
# do a test denosing using a total variation filter
kidney_image_denoised_tv = restoration.denoise_tv_chambolle(
kidney_image, weight=0.1)
io.imsave(output, kidney_image_denoised_tv)
开发者ID:echopen,项目名称:kit-soft,代码行数:7,代码来源:denoise_image.py
示例13: preprocess
def preprocess(X):
progbar = Progbar(X.shape[0]) # progress bar for pre-processing status tracking
for i in range(X.shape[0]):
for j in range(X.shape[1]):
X[i, j] = denoise_tv_chambolle(X[i, j], weight=0.1, multichannel=False)
progbar.add(1)
return X
开发者ID:ReachExceedingGrasp,项目名称:ImageSegmentationMajor,代码行数:8,代码来源:utils.py
示例14: test_denoise_tv_chambolle_1d
def test_denoise_tv_chambolle_1d():
"""Apply the TV denoising algorithm on a 1D sinusoid."""
x = 125 + 100*np.sin(np.linspace(0, 8*np.pi, 1000))
x += 20 * np.random.rand(x.size)
x = np.clip(x, 0, 255)
res = restoration.denoise_tv_chambolle(x.astype(np.uint8), weight=0.1)
assert_(res.dtype == np.float)
assert_(res.std() * 255 < x.std())
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:8,代码来源:test_denoise.py
示例15: preprocess
def preprocess(X):
"Pre-process images that are fed to neural network"
progbar = Progbar(X.shape[0]) # progress bar for pre-processing status tracking
for i in range(X.shape[0]):
for j in range(X.shape[1]):
X[i, j] = denoise_tv_chambolle(X[i, j], weight=0.1, multichannel=False)
progbar.add(1)
return X # Denoising weight is the regularization parameter
开发者ID:aklasnja,项目名称:ckme136_w16_01,代码行数:9,代码来源:utils.py
示例16: preprocess_image
def preprocess_image(self):
"""
Denoises and increases contrast.
"""
image = restoration.denoise_tv_chambolle(self.image, weight=0.1)
thresh = threshold_otsu(image)
self.bw = closing(image > thresh, square(2))
self.cleared = self.bw.copy()
return self.cleared
开发者ID:kmiddleton,项目名称:ImageTextRecognition,代码行数:9,代码来源:userimageski.py
示例17: denoiseTV_Chambolle
def denoiseTV_Chambolle(imagen,multichannel):
"""
-Tiende a producir imagenes como las de los dibujos animados.
-Reduce al minimo la variacion total de la imagen
"""
noisy = img_as_float(imagen)
denoise = denoise_tv_chambolle(noisy, 7, 9, 0.08,multichannel)
return denoise
开发者ID:gastonzarate,项目名称:ReconocedorPlexoBraquialUltrasonido,代码行数:10,代码来源:ReducirRuido.py
示例18: test_denoise_tv_chambolle_float_result_range
def test_denoise_tv_chambolle_float_result_range():
# lena image
img = lena_gray
int_lena = np.multiply(img, 255).astype(np.uint8)
assert np.max(int_lena) > 1
denoised_int_lena = restoration.denoise_tv_chambolle(int_lena, weight=60.0)
# test if the value range of output float data is within [0.0:1.0]
assert denoised_int_lena.dtype == np.float
assert np.max(denoised_int_lena) <= 1.0
assert np.min(denoised_int_lena) >= 0.0
开发者ID:jehturner,项目名称:scikit-image,代码行数:10,代码来源:test_denoise.py
示例19: test_denoise_tv_chambolle_float_result_range
def test_denoise_tv_chambolle_float_result_range():
# astronaut image
img = astro_gray
int_astro = np.multiply(img, 255).astype(np.uint8)
assert_(np.max(int_astro) > 1)
denoised_int_astro = restoration.denoise_tv_chambolle(int_astro,
weight=0.1)
# test if the value range of output float data is within [0.0:1.0]
assert_(denoised_int_astro.dtype == np.float)
assert_(np.max(denoised_int_astro) <= 1.0)
assert_(np.min(denoised_int_astro) >= 0.0)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:11,代码来源:test_denoise.py
示例20: test_denoise_tv_chambolle_3d
def test_denoise_tv_chambolle_3d():
"""Apply the TV denoising algorithm on a 3D image representing a sphere."""
x, y, z = np.ogrid[0:40, 0:40, 0:40]
mask = (x - 22)**2 + (y - 20)**2 + (z - 17)**2 < 8**2
mask = 100 * mask.astype(np.float)
mask += 60
mask += 20 * np.random.rand(*mask.shape)
mask[mask < 0] = 0
mask[mask > 255] = 255
res = restoration.denoise_tv_chambolle(mask.astype(np.uint8), weight=0.1)
assert_(res.dtype == np.float)
assert_(res.std() * 255 < mask.std())
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:12,代码来源:test_denoise.py
注:本文中的skimage.restoration.denoise_tv_chambolle函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论