本文整理汇总了Python中skimage.segmentation.random_walker函数的典型用法代码示例。如果您正苦于以下问题:Python random_walker函数的具体用法?Python random_walker怎么用?Python random_walker使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了random_walker函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_2d_bf
def test_2d_bf():
lx = 70
ly = 100
data, labels = make_2d_syntheticdata(lx, ly)
labels_bf = random_walker(data, labels, beta=90, mode="bf")
assert (labels_bf[25:45, 40:60] == 2).all()
full_prob_bf = random_walker(data, labels, beta=90, mode="bf", return_full_prob=True)
assert (full_prob_bf[1, 25:45, 40:60] >= full_prob_bf[0, 25:45, 40:60]).all()
return data, labels_bf, full_prob_bf
开发者ID:GerardoLopez,项目名称:scikits-image,代码行数:9,代码来源:test_random_walker.py
示例2: test_2d_cg_mg
def test_2d_cg_mg():
lx = 70
ly = 100
data, labels = make_2d_syntheticdata(lx, ly)
labels_cg_mg = random_walker(data, labels, beta=90, mode="cg_mg")
assert (labels_cg_mg[25:45, 40:60] == 2).all()
full_prob = random_walker(data, labels, beta=90, mode="cg_mg", return_full_prob=True)
assert (full_prob[1, 25:45, 40:60] >= full_prob[0, 25:45, 40:60]).all()
return data, labels_cg_mg
开发者ID:GerardoLopez,项目名称:scikits-image,代码行数:9,代码来源:test_random_walker.py
示例3: test_length2_spacing
def test_length2_spacing():
# If this passes without raising an exception (warnings OK), the new
# spacing code is working properly.
np.random.seed(42)
img = np.ones((10, 10)) + 0.2 * np.random.normal(size=(10, 10))
labels = np.zeros((10, 10), dtype=np.uint8)
labels[2, 4] = 1
labels[6, 8] = 4
random_walker(img, labels, spacing=(1., 2.))
开发者ID:ameya005,项目名称:scikit-image,代码行数:9,代码来源:test_random_walker.py
示例4: test_multispectral_2d
def test_multispectral_2d():
lx, ly = 70, 100
data, labels = make_2d_syntheticdata(lx, ly)
data2 = data.copy()
data.shape += (1,)
data = data.repeat(2, axis=2) # Result should be identical
multi_labels = random_walker(data, labels, mode='cg', multichannel=True)
single_labels = random_walker(data2, labels, mode='cg')
assert (multi_labels.reshape(labels.shape)[25:45, 40:60] == 2).all()
return data, multi_labels, single_labels, labels
开发者ID:ChrisBeaumont,项目名称:scikit-image,代码行数:10,代码来源:test_random_walker.py
示例5: test_multispectral_2d
def test_multispectral_2d():
lx, ly = 70, 100
data, labels = make_2d_syntheticdata(lx, ly)
data = data[..., np.newaxis].repeat(2, axis=-1) # Expect identical output
multi_labels = random_walker(data, labels, mode='cg', multichannel=True)
assert data[..., 0].shape == labels.shape
single_labels = random_walker(data[..., 0], labels, mode='cg')
assert (multi_labels.reshape(labels.shape)[25:45, 40:60] == 2).all()
assert data[..., 0].shape == labels.shape
return data, multi_labels, single_labels, labels
开发者ID:4rozenwolves,项目名称:scikit-image,代码行数:10,代码来源:test_random_walker.py
示例6: test_multispectral_3d
def test_multispectral_3d():
n = 30
lx, ly, lz = n, n, n
data, labels = make_3d_syntheticdata(lx, ly, lz)
data.shape += (1,)
data = data.repeat(2, axis=3) # Result should be identical
multi_labels = random_walker(data, labels, mode='cg', multichannel=True)
single_labels = random_walker(data[..., 0], labels, mode='cg')
assert (multi_labels.reshape(labels.shape)[13:17, 13:17, 13:17] == 2).all()
assert (single_labels.reshape(labels.shape)[13:17, 13:17, 13:17] == 2).all()
return data, multi_labels, single_labels, labels
开发者ID:ChrisBeaumont,项目名称:scikit-image,代码行数:11,代码来源:test_random_walker.py
示例7: test_multispectral_3d
def test_multispectral_3d():
n = 30
lx, ly, lz = n, n, n
data, labels = make_3d_syntheticdata(lx, ly, lz)
data = data[..., np.newaxis].repeat(2, axis=-1) # Expect identical output
multi_labels = random_walker(data, labels, mode='cg', multichannel=True)
assert data[..., 0].shape == labels.shape
single_labels = random_walker(data[..., 0], labels, mode='cg')
assert (multi_labels.reshape(labels.shape)[13:17, 13:17, 13:17] == 2).all()
assert (single_labels.reshape(labels.shape)[13:17, 13:17, 13:17] == 2).all()
assert data[..., 0].shape == labels.shape
return data, multi_labels, single_labels, labels
开发者ID:4rozenwolves,项目名称:scikit-image,代码行数:12,代码来源:test_random_walker.py
示例8: test_spacing_1
def test_spacing_1():
n = 30
lx, ly, lz = n, n, n
data, _ = make_3d_syntheticdata(lx, ly, lz)
# Rescale `data` along Y axis
# `resize` is not yet 3D capable, so this must be done by looping in 2D.
data_aniso = np.zeros((n, n * 2, n))
for i, yz in enumerate(data):
data_aniso[i, :, :] = resize(yz, (n * 2, n),
mode='constant',
anti_aliasing=False)
# Generate new labels
small_l = int(lx // 5)
labels_aniso = np.zeros_like(data_aniso)
labels_aniso[lx // 5, ly // 5, lz // 5] = 1
labels_aniso[lx // 2 + small_l // 4,
ly - small_l // 2,
lz // 2 - small_l // 4] = 2
# Test with `spacing` kwarg
# First, anisotropic along Y
with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
NUMPY_MATRIX_WARNING]):
labels_aniso = random_walker(data_aniso, labels_aniso, mode='cg',
spacing=(1., 2., 1.))
assert (labels_aniso[13:17, 26:34, 13:17] == 2).all()
# Rescale `data` along X axis
# `resize` is not yet 3D capable, so this must be done by looping in 2D.
data_aniso = np.zeros((n, n * 2, n))
for i in range(data.shape[1]):
data_aniso[i, :, :] = resize(data[:, 1, :], (n * 2, n),
mode='constant',
anti_aliasing=False)
# Generate new labels
small_l = int(lx // 5)
labels_aniso2 = np.zeros_like(data_aniso)
labels_aniso2[lx // 5, ly // 5, lz // 5] = 1
labels_aniso2[lx - small_l // 2,
ly // 2 + small_l // 4,
lz // 2 - small_l // 4] = 2
# Anisotropic along X
with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
NUMPY_MATRIX_WARNING]):
labels_aniso2 = random_walker(data_aniso,
labels_aniso2,
mode='cg', spacing=(2., 1., 1.))
assert (labels_aniso2[26:34, 13:17, 13:17] == 2).all()
开发者ID:anntzer,项目名称:scikit-image,代码行数:52,代码来源:test_random_walker.py
示例9: test_2d_cg
def test_2d_cg():
lx = 70
ly = 100
data, labels = make_2d_syntheticdata(lx, ly)
labels_cg = random_walker(data, labels, beta=90, mode='cg')
assert (labels_cg[25:45, 40:60] == 2).all()
assert data.shape == labels.shape
full_prob = random_walker(data, labels, beta=90, mode='cg',
return_full_prob=True)
assert (full_prob[1, 25:45, 40:60] >=
full_prob[0, 25:45, 40:60]).all()
assert data.shape == labels.shape
return data, labels_cg
开发者ID:4rozenwolves,项目名称:scikit-image,代码行数:13,代码来源:test_random_walker.py
示例10: test_trivial_cases
def test_trivial_cases():
# When all voxels are labeled
img = np.ones((10, 10))
labels = np.ones((10, 10))
pass_through = random_walker(img, labels)
np.testing.assert_array_equal(pass_through, labels)
# When all voxels are labeled AND return_full_prob is True
labels[:, :5] = 3
expected = np.concatenate(((labels == 1)[..., np.newaxis],
(labels == 3)[..., np.newaxis]), axis=2)
test = random_walker(img, labels, return_full_prob=True)
np.testing.assert_array_equal(test, expected)
开发者ID:A-0-,项目名称:scikit-image,代码行数:13,代码来源:test_random_walker.py
示例11: test_multispectral_2d
def test_multispectral_2d():
lx, ly = 70, 100
data, labels = make_2d_syntheticdata(lx, ly)
data = data[..., np.newaxis].repeat(2, axis=-1) # Expect identical output
with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
NUMPY_MATRIX_WARNING]):
multi_labels = random_walker(data, labels, mode='cg',
multichannel=True)
assert data[..., 0].shape == labels.shape
with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
NUMPY_MATRIX_WARNING]):
single_labels = random_walker(data[..., 0], labels, mode='cg')
assert (multi_labels.reshape(labels.shape)[25:45, 40:60] == 2).all()
assert data[..., 0].shape == labels.shape
return data, multi_labels, single_labels, labels
开发者ID:anntzer,项目名称:scikit-image,代码行数:15,代码来源:test_random_walker.py
示例12: test_2d_cg
def test_2d_cg():
lx = 70
ly = 100
data, labels = make_2d_syntheticdata(lx, ly)
with expected_warnings(['"cg" mode' + '|' + SCIPY_EXPECTED]):
labels_cg = random_walker(data, labels, beta=90, mode='cg')
assert (labels_cg[25:45, 40:60] == 2).all()
assert data.shape == labels.shape
with expected_warnings(['"cg" mode' + '|' + SCIPY_EXPECTED]):
full_prob = random_walker(data, labels, beta=90, mode='cg',
return_full_prob=True)
assert (full_prob[1, 25:45, 40:60] >=
full_prob[0, 25:45, 40:60]).all()
assert data.shape == labels.shape
return data, labels_cg
开发者ID:ameya005,项目名称:scikit-image,代码行数:15,代码来源:test_random_walker.py
示例13: test_3d
def test_3d():
n = 30
lx, ly, lz = n, n, n
data, labels = make_3d_syntheticdata(lx, ly, lz)
labels = random_walker(data, labels, mode='cg')
assert (labels.reshape(data.shape)[13:17, 13:17, 13:17] == 2).all()
return data, labels
开发者ID:ludwigschwardt,项目名称:scikits-image,代码行数:7,代码来源:test_random_walker.py
示例14: test_2d_cg_mg
def test_2d_cg_mg():
lx = 70
ly = 100
data, labels = make_2d_syntheticdata(lx, ly)
labels_cg_mg = random_walker(data, labels, beta=90, mode='cg_mg')
assert (labels_cg_mg[25:45, 40:60] == 2).all()
return data, labels_cg_mg
开发者ID:NeilYager,项目名称:scikits-image,代码行数:7,代码来源:test_random_walker.py
示例15: cluster_by_diffusion
def cluster_by_diffusion(data):
markers = np.zeros(data.shape, dtype=np.uint)
markers[data < -0.00] = 1
markers[data > 0.03] = 2
labels2 = random_walker(data, markers, beta=10, mode='bf')
return labels2
开发者ID:chiffa,项目名称:Chromosome_counter,代码行数:7,代码来源:chr_sep_mouse.py
示例16: start
def start():
# Generate noisy synthetic data
data = microstructure(l=128)
data += 0.35 * np.random.randn(*data.shape)
markers = np.zeros(data.shape, dtype=np.uint)
markers[data < -0.3] = 1
markers[data > 1.3] = 2
# Run random walker algorithm
labels = random_walker(data, markers, beta=10, mode='bf')
# Plot results
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(8, 3.2))
ax1.imshow(data, cmap='gray', interpolation='nearest')
ax1.axis('off')
ax1.set_title('Noisy data')
ax2.imshow(markers, cmap='hot', interpolation='nearest')
ax2.axis('off')
ax2.set_title('Markers')
ax3.imshow(labels, cmap='gray', interpolation='nearest')
ax3.axis('off')
ax3.set_title('Segmentation')
fig.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0,
right=1)
plt.show()
开发者ID:geobricks,项目名称:Playground,代码行数:26,代码来源:segmentation.py
示例17: segment_out_cells
def segment_out_cells(base):
# TODO: try using OTSU for GFP thresholding
sel_elem = disk(2)
gfp_collector = np.sum(base, axis=0)
gfp_clustering_markers = np.zeros(gfp_collector.shape, dtype=np.uint8)
# random walker segment
gfp_clustering_markers[gfp_collector > np.mean(gfp_collector) * 2] = 2
gfp_clustering_markers[gfp_collector < np.mean(gfp_collector) * 0.20] = 1
labels = random_walker(gfp_collector, gfp_clustering_markers, beta=10, mode='bf')
# round up the labels and set the background to 0 from 1
labels = closing(labels, sel_elem)
labels -= 1
# prepare distances for the watershed
distance = ndi.distance_transform_edt(labels)
local_maxi = peak_local_max(distance,
indices=False, # we want the image mask, not peak position
min_distance=10, # about half of a bud with our size
threshold_abs=10, # allows to clear the noise
labels=labels)
# we fuse the labels that are close together that escaped the min distance in local_maxi
local_maxi = ndi.convolve(local_maxi, np.ones((5, 5)), mode='constant', cval=0.0)
# finish the watershed
expanded_maxi_markers = ndi.label(local_maxi, structure=np.ones((3, 3)))[0]
segmented_cells_labels = watershed(-distance, expanded_maxi_markers, mask=labels)
# log debugging data
running_debug_frame.gfp_collector = gfp_collector
running_debug_frame.gfp_clustering_markers = gfp_clustering_markers
running_debug_frame.labels = labels
running_debug_frame.segmented_cells_labels = segmented_cells_labels
return gfp_collector, segmented_cells_labels
开发者ID:chiffa,项目名称:Chromo_vision,代码行数:33,代码来源:layered_zstack_processing.py
示例18: _automatic_localization
def _automatic_localization(self):
"""
Automatic localization made by Tomas Ryba.
"""
# seeds = self.get_seeds_using_class_1(class1)
liver = self.data3d * (self.segmentation != 0)
print('analyzing histogram...')
class1 = tools.analyse_histogram(self.data3d,
roi=self.segmentation != 0)
# sed3.sed3(self.data3d, seeds=class1).show()
print('getting seeds...')
seeds = self.get_seeds_using_prob_class1(
liver,
class1,
thresholdType='percOfMaxDist',
percT=0.3)
# sed3.sed3(self.data3d, seeds=seeds).show()
print('Starting random walker...')
rw = random_walker(liver, seeds, mode='cg_mg')
print('...finished.')
label_l = self.data['slab']['lesions']
lessions = rw == 2
sed3.sed3(self.data3d, contour=lessions).show()
lessions = self.filter_objects(lessions)
self.segmentation = np.where(lessions, label_l, self.segmentation)
开发者ID:mjirik,项目名称:lisa,代码行数:31,代码来源:lesions.py
示例19: test_2d_bf
def test_2d_bf():
lx = 70
ly = 100
data, labels = make_2d_syntheticdata(lx, ly)
labels_bf = random_walker(data, labels, beta=90, mode="bf")
assert (labels_bf[25:45, 40:60] == 2).all()
assert data.shape == labels.shape
full_prob_bf = random_walker(data, labels, beta=90, mode="bf", return_full_prob=True)
assert (full_prob_bf[1, 25:45, 40:60] >= full_prob_bf[0, 25:45, 40:60]).all()
assert data.shape == labels.shape
# Now test with more than two labels
labels[55, 80] = 3
full_prob_bf = random_walker(data, labels, beta=90, mode="bf", return_full_prob=True)
assert (full_prob_bf[1, 25:45, 40:60] >= full_prob_bf[0, 25:45, 40:60]).all()
assert len(full_prob_bf) == 3
assert data.shape == labels.shape
开发者ID:NelleV,项目名称:scikits.image,代码行数:16,代码来源:test_random_walker.py
示例20: test_spacing_0
def test_spacing_0():
n = 30
lx, ly, lz = n, n, n
data, _ = make_3d_syntheticdata(lx, ly, lz)
# Rescale `data` along Z axis
data_aniso = np.zeros((n, n, n // 2))
for i, yz in enumerate(data):
data_aniso[i, :, :] = resize(yz, (n, n // 2),
mode='constant',
anti_aliasing=False)
# Generate new labels
small_l = int(lx // 5)
labels_aniso = np.zeros_like(data_aniso)
labels_aniso[lx // 5, ly // 5, lz // 5] = 1
labels_aniso[lx // 2 + small_l // 4,
ly // 2 - small_l // 4,
lz // 4 - small_l // 8] = 2
# Test with `spacing` kwarg
with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
NUMPY_MATRIX_WARNING]):
labels_aniso = random_walker(data_aniso, labels_aniso, mode='cg',
spacing=(1., 1., 0.5))
assert (labels_aniso[13:17, 13:17, 7:9] == 2).all()
开发者ID:anntzer,项目名称:scikit-image,代码行数:27,代码来源:test_random_walker.py
注:本文中的skimage.segmentation.random_walker函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论