本文整理汇总了Python中skimage.transform.resize函数的典型用法代码示例。如果您正苦于以下问题:Python resize函数的具体用法?Python resize怎么用?Python resize使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了resize函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: loadDataMontgomery
def loadDataMontgomery(df, path, im_shape):
"""Function for loading Montgomery dataset"""
X, y = [], []
for i, item in df.iterrows():
img = img_as_float(io.imread(path + item[0]))
gt = io.imread(path + item[1])
l, r = np.where(img.sum(0) > 1)[0][[0, -1]]
t, b = np.where(img.sum(1) > 1)[0][[0, -1]]
img = img[t:b, l:r]
mask = gt[t:b, l:r]
img = transform.resize(img, im_shape)
img = exposure.equalize_hist(img)
img = np.expand_dims(img, -1)
mask = transform.resize(mask, im_shape)
mask = np.expand_dims(mask, -1)
X.append(img)
y.append(mask)
X = np.array(X)
y = np.array(y)
X -= X.mean()
X /= X.std()
print '### Data loaded'
print '\t{}'.format(path)
print '\t{}\t{}'.format(X.shape, y.shape)
print '\tX:{:.1f}-{:.1f}\ty:{:.1f}-{:.1f}\n'.format(X.min(), X.max(), y.min(), y.max())
print '\tX.mean = {}, X.std = {}'.format(X.mean(), X.std())
return X, y
开发者ID:eclique,项目名称:lung-segmentation-2d,代码行数:28,代码来源:load_data.py
示例2: normalize_size
def normalize_size(image, size=256, trans='c'):
## 'c':central crop, 'w':warp, 'p':padding
o_shape = image.shape
assert o_shape[0] > size and o_shape[1] > size
if trans == 'c':
if o_shape[0] > o_shape[1]:
dh = int( (o_shape[0] - o_shape[1])/2 )
image = image[dh:dh+o_shape[1],:]
else:
dw = int( (o_shape[1] - o_shape[0])/2 )
image = image[:,dw:dw+o_shape[0]]
new_shape = image.shape
assert new_shape[0] == new_shape[1]
image = resize(image, (size,size), order=3, preserve_range=False)
elif trans == 'w':
image = resize(image, (size,size), order=3, preserve_range=False)
elif trans == 'p':
background = np.zeros((size, size, 3))
if o_shape[0] > o_shape[1]:
new_shape = (size,size*o_shape[1]/o_shape[0])
dh = 0
dw = (size - new_shape[1])/2
else:
new_shape = (size*o_shape[0]/o_shape[1],size)
dh = (size - new_shape[0])/2
dw = 0
image = resize(image, (new_shape[0],new_shape[1]), order=0, preserve_range=False)
background[dh:dh+new_shape[0],dw:dw+new_shape[1],:] = image[:,:,:]
image = background
else:
print "ERROR:undesignated transformation"
return image
开发者ID:paramoecium,项目名称:RAPID,代码行数:32,代码来源:preprocessing.py
示例3: test
def test(classifier, pca):
building = io.imread("http://www.nps.gov/tps/images/briefs/14-commercial-building.jpg")
building = transform.resize(building, (200, 200, 3))
building = color.rgb2gray(building)
building = building.reshape(1, -1)
# building = pca.transform(building)
print building
print classifier.predict(building)[0]
print to_cat[str(classifier.predict(building)[0])] + " (expect building)"
# print classifier.predict_proba(building)
snow = io.imread("http://farm4.static.flickr.com/3405/3332148397_92d89db2ab.jpg")
snow = transform.resize(snow, (200, 200, 3))
snow = color.rgb2gray(snow)
snow = snow.reshape(1, -1)
# snow = pca.transform(snow)
print snow
print to_cat[str(classifier.predict(snow)[0])] + " (expect snow)"
# print classifier.predict_proba(snow)
flower = io.imread("https://upload.wikimedia.org/wikipedia/commons/f/fd/Daisy_flower_green_background.jpg")
flower = transform.resize(flower, (200, 200, 3))
flower = color.rgb2gray(flower)
flower = flower.reshape(1, -1)
# flower = pca.transform(flower)
print to_cat[str(classifier.predict(flower)[0])] + " (expect plant)"
开发者ID:zverham,项目名称:svm_classifier,代码行数:27,代码来源:reader.py
示例4: image_compare
def image_compare(df, IMAGES_DIR='/home/ryan/asi_images/'):
'''
takes a list of n image ids and returns sum(n..n-1) n comparisons of r2 difference, r2(fft) difference, and average number of thresholded pixels
'''
img_buffer = {}
return_list = []
artdf = df[['_id', 'images']].copy()
artdf.images = artdf.images.apply(getpath)
paths = artdf[['_id','images']].dropna()
paths.index = paths._id
paths = paths.images
if paths.shape[0] < 2:
return DataFrame([])
for id_pair in combinations(paths.index, 2):
if id_pair[0] in img_buffer:
img1 = img_buffer[id_pair[0]]
else:
img_buffer[id_pair[0]] = img_as_float(rgb2gray(resize(imread(IMAGES_DIR + paths[id_pair[0]]), (300,300))))
img1 = img_buffer[id_pair[0]]
if id_pair[1] in img_buffer:
img2 = img_buffer[id_pair[1]]
else:
img_buffer[id_pair[1]] = img_as_float(rgb2gray(resize(imread(IMAGES_DIR + paths[id_pair[1]]), (300,300))))
img2 = img_buffer[id_pair[1]]
return_list.append(
[id_pair[0], id_pair[1], \
norm(img1 - img2), \
norm(fft2(img1) - fft2(img2)), \
#mean([sum(img1 > threshold_otsu(img1)), sum(img2 > threshold_otsu(img2))])]
#mean([sum(img1 > 0.9), sum(img2 > 0.9)])]
std(img1)+std(img2)/2.]
)
return DataFrame(return_list, columns=['id1','id2','r2diff', 'fftdiff', 'stdavg'])
开发者ID:rhsimplex,项目名称:artsift,代码行数:34,代码来源:art_utils.py
示例5: modify
def modify(img):
"""Randomly modify an image
This is a preprocessing step for training an OCR classifier. It takes
in an image and casts it to greyscale, reshapes it, and adds some
(1) rotations, (2) translations and (3) noise.
If more efficiency is needed, we could factor out some of the initial
nonrandom transforms.
"""
block_size = np.random.uniform(20, 40)
rotation = 5*np.random.randn()
#print 'BLOCK SIZE', block_size
#print 'ROTATION ', rotation
img = color.rgb2grey(img)
img = transform.resize(img, output_shape=(50,30))
img = filter.threshold_adaptive(img, block_size=block_size)
# rotate the image
img = np.logical_not(transform.rotate(np.logical_not(img), rotation))
# translate the image
img = shift(img)
# add some noise to the image
img = noise(img)
img = transform.resize(img, output_shape=(25,15))
return filter.threshold_adaptive(img, block_size=25)
开发者ID:rmcgibbo,项目名称:autogert,代码行数:30,代码来源:train_synthetic.py
示例6: create_thumbnail
def create_thumbnail(self, size, img=None):
print 'processing raw images'
if img:
return resize(img, (size, size))
curr_dir = os.path.dirname(
os.path.abspath(inspect.getfile(inspect.currentframe())))
folders = os.walk(os.path.join(curr_dir, '../../data/train/'))
images = []
classes = []
targets = []
for class_id, folder in enumerate(folders):
classes.append(folder[0][17:])
for img in folder[2]:
if img.index('.jpg') == -1:
continue
image = imread(folder[0] + '/' + img)
image = resize(image, (size, size))
# Important to put -1, to have it 0-based.
target = class_id - 1
new_images, new_targets = self.augment_data(image, target)
images.extend(new_images)
targets.extend(new_targets)
train = (images, targets)
self.save_set('train' + str(size), images, targets)
# f = open(curr_dir + '/train' + str(size) + '.pkl', 'wb')
# pickle.dump(train, f, protocol=pickle.HIGHEST_PROTOCOL)
# f.close()
return train
开发者ID:seba-1511,项目名称:planktonChallenge,代码行数:28,代码来源:data.py
示例7: check_size
def check_size(img, min_image_width_height, fixed_image_size=None):
'''
checks if the image accords to the minimum and maximum size requirements
or fixed image size and resizes if not
:param img: the image to be checked
:param min_image_width_height: the minimum image size
:param fixed_image_size:
'''
if fixed_image_size is not None:
if len(fixed_image_size) != 2:
raise ValueError('The requested fixed image size is invalid!')
new_img = resize(image=img, output_shape=fixed_image_size[::-1])
new_img = new_img.astype(np.float32)
return new_img
elif np.amin(img.shape[:2]) < min_image_width_height:
if np.amin(img.shape[:2]) == 0:
return None
scale = float(min_image_width_height + 1) / float(np.amin(img.shape[:2]))
new_shape = (int(scale * img.shape[0]), int(scale * img.shape[1]))
new_img = resize(image=img, output_shape=new_shape)
new_img = new_img.astype(np.float32)
return new_img
else:
return img
开发者ID:akramkohansal,项目名称:pytorch-phocnet,代码行数:25,代码来源:image_size.py
示例8: computeCAM
def computeCAM(snet, X, W, reshape_size=None, n_top_convs=20):
"""
Applies a forward pass of the pre-processed samples "X" in the GAP net "snet" and generates the resulting
CAM "maps" using the GAP weights "W" with the defined size "reshape_size".
Additionally, it returns the best "n_top_convs" convolutional features for each of the classes. The ranking is
computed considering the weight Wi assigned to the i-th feature map.
"""
from skimage.transform import resize
if reshape_size is None:
reshape_size = [256, 256]
# Apply forward pass in GAP model
[X, predictions] = applyForwardPass(snet, X)
# Get indices of best convolutional features for each class
ind_best = np.zeros((W.shape[1], n_top_convs))
for c in range(W.shape[1]):
ind_best[c, :] = np.argsort(W[:, c])[::-1][:n_top_convs]
# Compute heatmaps (CAMs) for each class [n_samples, n_classes, height, width]
maps = np.zeros((X.shape[0], W.shape[1], reshape_size[0], reshape_size[1]))
# Store top convolutional features
convs = np.zeros((X.shape[0], W.shape[1], n_top_convs, reshape_size[0], reshape_size[1]))
for s in range(X.shape[0]):
weighted_activation = np.dot(np.transpose(W), np.reshape(X[s], (W.shape[0], X.shape[2] * X.shape[3])))
mapping = np.reshape(weighted_activation, (W.shape[1], X.shape[2], X.shape[3]))
maps[s] = resize(mapping, tuple([W.shape[1]] + reshape_size), order=1, preserve_range=True)
for c in range(W.shape[1]):
for enum_conv, i_conv in list(enumerate(ind_best[c])):
convs[s, c, enum_conv] = resize(X[s, i_conv], reshape_size, order=1, preserve_range=True)
return [maps, predictions, convs]
开发者ID:MarcBS,项目名称:staged_keras_wrapper,代码行数:35,代码来源:localization_utilities.py
示例9: _images_thumbnails
def _images_thumbnails(self):
from vispy.io import imsave, imread
# TODO: Switch to using PIL for resizing
from skimage.transform import resize
import numpy as np
gallery_dir = op.join(IMAGES_DIR, 'gallery')
thumbs_dir = op.join(IMAGES_DIR, 'thumbs')
carousel_dir = op.join(IMAGES_DIR, 'carousel')
for fname in os.listdir(gallery_dir):
filename1 = op.join(gallery_dir, fname)
filename2 = op.join(thumbs_dir, fname)
filename3 = op.join(carousel_dir, fname)
#
im = imread(filename1)
newx = 200
newy = int(newx * im.shape[0] / im.shape[1])
im = (resize(im, (newy, newx), 2) * 255).astype(np.uint8)
imsave(filename2, im)
newy = 160 # This should match the carousel size!
newx = int(newy * im.shape[1] / im.shape[0])
im = (resize(im, (newy, newx), 1) * 255).astype(np.uint8)
imsave(filename3, im)
print('Created thumbnail and carousel %s' % fname)
开发者ID:rougier,项目名称:vispy,代码行数:26,代码来源:make.py
示例10: put_image
def put_image(self, image_path):
# print "Loading the image"
self.image = io.imread(image_path, as_grey=True)
self.image = transform.resize(self.image,(50,50))
self.image_scaled = io.imread(image_path, as_grey=True)
self.image_scaled = transform.resize(self.image_scaled,(50,50))
self.image_scaled *= (1/self.image_scaled.max())
开发者ID:AkaZuko,项目名称:TextDetection,代码行数:7,代码来源:test_image.py
示例11: preproc
def preproc(self, img, size, pixel_spacing, equalize=True, crop=True):
"""crop center and resize"""
# TODO: this is stupid, you could crop out the heart
# But should test this
if img.shape[0] < img.shape[1]:
img = img.T
# Standardize based on pixel spacing
img = transform.resize(img, (int(img.shape[0]*(1.0/np.float32(pixel_spacing[0]))), int(img.shape[1]*(1.0/np.float32(pixel_spacing[1])))))
# we crop image from center
short_egde = min(img.shape[:2])
yy = int((img.shape[0] - short_egde) / 2)
xx = int((img.shape[1] - short_egde) / 2)
if crop:
crop_img = img[yy : yy + short_egde, xx : xx + short_egde]
# resize to 64, 64
resized_img = transform.resize(crop_img, (size, size))
else:
resized_img = img
#resized_img = gaussian_filter(resized_img, sigma=1)
#resized_img = median_filter(resized_img, size=(3,3))
if equalize:
resized_img = equalize_hist(resized_img)
resized_img = adjust_sigmoid(resized_img)
resized_img *= 255.
return resized_img.astype("float32")
开发者ID:Breakend,项目名称:LeftVentricleVolumeEstimation,代码行数:26,代码来源:data_utils.py
示例12: main
def main():
for file_path in glob.glob("/home/lucas/Downloads/Lucas/GSK 10uM/*.JPG"):
img = data.imread(file_path, as_grey=True)
img = transform.resize(img, [600, 600])
img_color = transform.resize(data.imread(file_path), [600, 600])
img[img >img.mean()-0.1] = 0
# io.imshow(img)
# io.show()
#
edges = canny(img)
bordas_fechadas = closing(img > 0.1, square(15)) # fechando gaps
fill_cells = ndi.binary_fill_holes(bordas_fechadas)
# io.imshow(fill_cells)
# io.show()
img_label = label(fill_cells, background=0)
n= 0
for x in regionprops(img_label):
if x.area < 2000 and x.area > 300:
n +=1
print x.area
minr, minc, maxr, maxc = x.bbox
try:
out_path_name = file_path.split("/")[-1].rstrip(".JPG")
io.imsave("out/cell_{}_pic_{}_area_{}.png".format(n, out_path_name, str(round(x.area))),img_color[minr-3: maxr+3, minc-3: maxc+3])
#io.show()
except:
pass
开发者ID:LucasSilvaFerreira,项目名称:egg_finder,代码行数:31,代码来源:microscopia_eggs.py
示例13: sfit
def sfit(arr, degree=3, binning=16): # For efficiency, we downsample the input array before doing the fit.
"Fit polynomial to a 2D array, aka surface."
# For info on resizing, see http://stackoverflow.com/questions/29958670/how-to-use-matlabs-imresize-in-python
shape_small = (np.size(arr,0)/binning, np.size(arr,1)/binning)
shape_big = np.shape(arr)
# Create x and y arrays, which we need to pass to the fitting routine
x_big, y_big = np.mgrid[:shape_big[0], :shape_big[1]]
x_small = skt.resize(x_big, shape_small, order=1, preserve_range=True)
y_small = skt.resize(y_big, shape_small, order=1, preserve_range=True)
arr_small = skt.resize(arr, shape_small, order=1, preserve_range=True)
p_init = astropy.modeling.models.Polynomial2D(degree=degree)
# Define the fitting routine
fit_p = astropy.modeling.fitting.LevMarLSQFitter()
# with warnings.catch_warnings():
# Ignore model linearity warning from the fitter
# warnings.simplefilter('ignore')
# Do the fit itself
poly = fit_p(p_init, x_small, y_small, arr_small)
# Take the returned polynomial, and apply it to our x and y axes to get the final surface fit
surf_big = poly(x_big, y_big)
return surf_big
开发者ID:henrythroop,项目名称:python,代码行数:34,代码来源:HBT.py
示例14: augmentation
def augmentation(image, imageB, org_width=160,org_height=224, width=190, height=262):
max_angle=20
image=resize(image,(width,height))
imageB=resize(imageB,(width,height))
angle=np.random.randint(max_angle)
if np.random.randint(2):
angle=-angle
image=rotate(image,angle,resize=True)
imageB=rotate(imageB,angle,resize=True)
xstart=np.random.randint(width-org_width)
ystart=np.random.randint(height-org_height)
image=image[xstart:xstart+org_width,ystart:ystart+org_height]
imageB=imageB[xstart:xstart+org_width,ystart:ystart+org_height]
if np.random.randint(2):
image=cv2.flip(image,1)
imageB=cv2.flip(imageB,1)
if np.random.randint(2):
imageB=cv2.flip(imageB,0)
# image=resize(image,(org_width,org_height))
return image,imageB
开发者ID:neverspill,项目名称:u-net,代码行数:25,代码来源:train_res.py
示例15: generate_bg
def generate_bg(bg_resize=True):
files = glob.glob("/usr/share/backgrounds/*/*.jpg")
# random.choice(files)
# print(random.choice(files))
found = False
while not found:
fname = random.choice(files)
bg = cv2.imread(fname) / 255.#, cv2.CV_LOAD_IMAGE_GRAYSCALE) / 255.
if (bg.shape[1] >= OUTPUT_SHAPE[1] and
bg.shape[0] >= OUTPUT_SHAPE[0]):
found = True
#print(files)
# while not found:
# fname = "bgs/{:08d}.jpg".format(random.randint(0, num_bg_images - 1))
# bg = cv2.imread(fname, cv2.CV_LOAD_IMAGE_GRAYSCALE) / 255.
# if (bg.shape[1] >= OUTPUT_SHAPE[1] and
# bg.shape[0] >= OUTPUT_SHAPE[0]):
# found = True
if bg_resize:
x_shape = np.random.randint(OUTPUT_SHAPE[1], bg.shape[1])
y_shape = np.random.randint(OUTPUT_SHAPE[0], bg.shape[0])
resize(image=bg, output_shape=(y_shape, x_shape), order=3)
x = random.randint(0, bg.shape[1] - OUTPUT_SHAPE[1])
y = random.randint(0, bg.shape[0] - OUTPUT_SHAPE[0])
bg = bg[y:y + OUTPUT_SHAPE[0], x:x + OUTPUT_SHAPE[1]]
return bg, fname
开发者ID:kingtaurus,项目名称:cs231n,代码行数:29,代码来源:construct_proposals.py
示例16: repeated_sales
def repeated_sales(df, artistname, artname, r2thresh=7000, fftr2thresh=10000, IMAGES_DIR='/home/ryan/asi_images/'):
"""
Takes a dataframe, artistname and artname and tries to decide, via image matching, if there is a repeat sale. Returns a dict of lot_ids, each entry a list of repeat sales
"""
artdf = df[(df['artistID']==artistname) & (df['artTitle']==artname)]
artdf.images = artdf.images.apply(getpath)
paths = artdf[['_id','images']].dropna()
id_dict = {}
img_buffer = {}
already_ordered = []
for i, path_i in paths.values:
id_dict[i] = []
img_buffer[i] = img_as_float(rgb2gray(resize(imread(IMAGES_DIR + path_i), (300,300))))
for j, path_j in paths[paths._id != i].values:
if j > i and j not in already_ordered:
if j not in img_buffer.keys():
img_buffer[j] = img_as_float(rgb2gray(resize(imread(IMAGES_DIR + path_j), (300,300))))
if norm(img_buffer[i] - img_buffer[j]) < r2thresh and\
norm(fft2(img_buffer[i]) - fft2(img_buffer[j])) < fftr2thresh:
id_dict[i].append(j)
already_ordered.append(j)
for key in id_dict.keys():
if id_dict[key] == []:
id_dict.pop(key)
return id_dict
开发者ID:rhsimplex,项目名称:artsift,代码行数:26,代码来源:art_utils.py
示例17: get_batches_fn
def get_batches_fn(batch_size):
"""
Create batches of training data
:param batch_size: Batch Size
:return: Batches of training data
"""
image_paths = glob(os.path.join(data_folder, 'image_2', '*.png'))
label_paths = {
re.sub(r'_(lane|road)_', '_', os.path.basename(path)): path
for path in glob(os.path.join(data_folder, 'gt_image_2', '*_road_*.png'))}
background_color = np.array([255, 0, 0])
random.shuffle(image_paths)
for batch_i in range(0, len(image_paths), batch_size):
images = []
gt_images = []
for image_file in image_paths[batch_i:batch_i+batch_size]:
gt_image_file = label_paths[os.path.basename(image_file)]
#image = scipy.misc.imresize(scipy.misc.imread(image_file), image_shape)
image = resize(scipy.misc.imread(image_file), image_shape)
#gt_image = scipy.misc.imresize(scipy.misc.imread(gt_image_file), image_shape)
gt_image = resize(scipy.misc.imread(gt_image_file), image_shape)
gt_bg = np.all(gt_image == background_color, axis=2)
gt_bg = gt_bg.reshape(*gt_bg.shape, 1)
gt_image = np.concatenate((gt_bg, np.invert(gt_bg)), axis=2)
images.append(image)
gt_images.append(gt_image)
yield np.array(images), np.array(gt_images)
开发者ID:pparthasarathy,项目名称:SDCND-U3P2-Road-Semantic-Segmentation,代码行数:32,代码来源:helper.py
示例18: daisy_features
def daisy_features(train_data_images, train_data_split_images, test_data_images, IMG_SIZE):
canny(train_data_images, train_data_split_images, test_data_images, IMG_SIZE)
train_data_features = []
test_data_features = []
train_data = []
test_data = []
train_data_split_crossfold = []
print(4)
#bow_train = cv2.BOWKMeansTrainer(8)
#flann_params = dict(algorithm = 1, trees = 5)
#matcher = cv2.FlannBasedMatcher(flann_params, {})
#detect = cv2.xfeatures2d.SIFT_create()
#extract = cv2.xfeatures2d.SIFT_create()
#bow_extract = cv2.BOWImgDescriptorExtractor(extract, matcher)
#help(bow_train)
#help(bow_extract)
for image in train_data_images:
img = imread(image, as_grey=True)
resized_image = resize(img, (40,40))
train_data.append(resized_image)
for image in train_data_split_images:
img = imread(image, as_grey=True)
resized_image = resize(img, (40,40))
train_data_split_crossfold.append(resized_image)
for image in test_data_images:
img = imread(image, as_grey=True)
resized_image = resize(img, (40,40))
test_data.append(resized_image)
print(6)
des = []
des_cross = []
des_test = []
radius = 5
for image in train_data:
descs = daisy(image, radius=radius)
des.append(descs)
train_data_features = bow(des, train_data)
del des
print('oi1')
#for image in train_data_split_crossfold:
#descs = daisy(image, radius=radius)
#des_cross.append(descs)
print('oi1')
#for image in test_data:
#descs = daisy(image, radius=radius)
#des_test.append(descs)
print('oi1')
开发者ID:dvn123,项目名称:MachineLearning,代码行数:59,代码来源:image_features.py
示例19: iterate_train
def iterate_train(self,batchsize,data_augment=False):
num_batch=40000
for i in range(num_batch/batchsize):
start=i*batchsize
end=(i+1)*batchsize
if (data_augment==False):
x=self.train_set_x.get_value(borrow=True)[start:end]
x=(x-self.mean)/256.0
x=np.asarray(x,dtype=theano.config.floatX)
yield x, self.train_set_y.eval()[start:end]
else:
imgs=self.train_set_x.get_value(borrow=True)[start:end]
for j in range(imgs.shape[0]):
#horizontally flip
if randint(0,1)==0:
target=np.copy(imgs[j])
for i in range(imgs[j].shape[2]):
target[:,:,i]=imgs[j][:,:,imgs[j].shape[2]-1-i]
imgs[j]=target
#color transform
target=np.zeros([3,32,32])
mix=range(3)
np.random.shuffle(mix)
for x in range(3):
target[x]=imgs[j][mix[x]]
imgs[j]=target
r=randint(0,7)
if r==0:
tmp=np.transpose(imgs[j],(1,2,0));
tmp=transform.resize(tmp[0:28,0:28,:],[32,32,3])
imgs[j]=np.transpose(tmp,(2,0,1))
elif r==1:
tmp=np.transpose(imgs[j],(1,2,0))
tmp=transform.resize(tmp[0:28,4:32,:],[32,32,3])
imgs[j]=np.transpose(tmp,(2,0,1))
elif r==2:
tmp=np.transpose(imgs[j],(1,2,0))
tmp=transform.resize(tmp[4:32,0:28,:],[32,32,3])
imgs[j]=np.transpose(tmp,(2,0,1))
elif r==3:
tmp=np.transpose(imgs[j],(1,2,0))
tmp=transform.resize(tmp[4:32,4:32,:],[32,32,3])
imgs[j]=np.transpose(tmp,(2,0,1))
elif r==4:
tmp=np.asarray(imgs[j],dtype='int32')
tmp=transform.rotate(image=tmp,angle=5)
imgs[j]=np.asarray(imgs[j],dtype=theano.config.floatX)
elif r==5:
tmp=np.asarray(imgs[j],dtype='int32')
tmp=transform.rotate(image=tmp,angle=-5)
imgs[j]=np.asarray(imgs[j],dtype=theano.config.floatX)
imgs=(imgs-self.mean)/256.0
imgs=np.asarray(imgs,dtype=theano.config.floatX)
yield imgs,self.train_set_y.eval()[start:end]
开发者ID:ducquangkstn,项目名称:cnn,代码行数:58,代码来源:cifar10.py
示例20: preprocessing
def preprocessing(self):
p = resize(self.p, (256, 256))
image = np.zeros(shape=(258, 258))
image[1:257, 1:257] = p
image_ratio = self.universe(image)
image = image_ratio[0]
ratio = image_ratio[1]
image = resize(image, (252, 252))
return image, ratio
开发者ID:stels07,项目名称:CS534-OCR,代码行数:9,代码来源:feature_extraction.py
注:本文中的skimage.transform.resize函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论