• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python compose.ColumnTransformer类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.compose.ColumnTransformer的典型用法代码示例。如果您正苦于以下问题:Python ColumnTransformer类的具体用法?Python ColumnTransformer怎么用?Python ColumnTransformer使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了ColumnTransformer类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_column_transformer_special_strings

def test_column_transformer_special_strings():

    # one 'drop' -> ignore
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
    ct = ColumnTransformer(
        [('trans1', Trans(), [0]), ('trans2', 'drop', [1])])
    exp = np.array([[0.], [1.], [2.]])
    assert_array_equal(ct.fit_transform(X_array), exp)
    assert_array_equal(ct.fit(X_array).transform(X_array), exp)

    # all 'drop' -> return shape 0 array
    ct = ColumnTransformer(
        [('trans1', 'drop', [0]), ('trans2', 'drop', [1])])
    assert_array_equal(ct.fit(X_array).transform(X_array).shape, (3, 0))
    assert_array_equal(ct.fit_transform(X_array).shape, (3, 0))

    # 'passthrough'
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
    ct = ColumnTransformer(
        [('trans1', Trans(), [0]), ('trans2', 'passthrough', [1])])
    exp = X_array
    assert_array_equal(ct.fit_transform(X_array), exp)
    assert_array_equal(ct.fit(X_array).transform(X_array), exp)

    # None itself / other string is not valid
    for val in [None, 'other']:
        ct = ColumnTransformer(
            [('trans1', Trans(), [0]), ('trans2', None, [1])])
        assert_raise_message(TypeError, "All estimators should implement",
                             ct.fit_transform, X_array)
        assert_raise_message(TypeError, "All estimators should implement",
                             ct.fit, X_array)
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:32,代码来源:test_column_transformer.py


示例2: test_make_column_transformer_pandas

def test_make_column_transformer_pandas():
    pd = pytest.importorskip('pandas')
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_df = pd.DataFrame(X_array, columns=['first', 'second'])
    norm = Normalizer()
    ct1 = ColumnTransformer([('norm', Normalizer(), X_df.columns)])
    ct2 = make_column_transformer((norm, X_df.columns))
    assert_almost_equal(ct1.fit_transform(X_df),
                        ct2.fit_transform(X_df))
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:9,代码来源:test_column_transformer.py


示例3: test_column_transformer_remainder_numpy

def test_column_transformer_remainder_numpy(key):
    # test different ways that columns are specified with passthrough
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_res_both = X_array

    ct = ColumnTransformer([('trans1', Trans(), key)],
                           remainder='passthrough')
    assert_array_equal(ct.fit_transform(X_array), X_res_both)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:9,代码来源:test_column_transformer.py


示例4: test_column_transformer_sparse_stacking

def test_column_transformer_sparse_stacking():
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    col_trans = ColumnTransformer([('trans1', Trans(), [0]),
                                   ('trans2', SparseMatrixTrans(), 1)])
    col_trans.fit(X_array)
    X_trans = col_trans.transform(X_array)
    assert_true(sparse.issparse(X_trans))
    assert_equal(X_trans.shape, (X_trans.shape[0], X_trans.shape[0] + 1))
    assert_array_equal(X_trans.toarray()[:, 1:], np.eye(X_trans.shape[0]))
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:9,代码来源:test_column_transformer.py


示例5: test_column_transformer_negative_column_indexes

def test_column_transformer_negative_column_indexes():
    X = np.random.randn(2, 2)
    X_categories = np.array([[1], [2]])
    X = np.concatenate([X, X_categories], axis=1)

    ohe = OneHotEncoder(categories='auto')

    tf_1 = ColumnTransformer([('ohe', ohe, [-1])], remainder='passthrough')
    tf_2 = ColumnTransformer([('ohe', ohe,  [2])], remainder='passthrough')
    assert_array_equal(tf_1.fit_transform(X), tf_2.fit_transform(X))
开发者ID:kevin-coder,项目名称:scikit-learn-fork,代码行数:10,代码来源:test_column_transformer.py


示例6: test_2D_transformer_output

def test_2D_transformer_output():
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T

    # if one transformer is dropped, test that name is still correct
    ct = ColumnTransformer([('trans1', 'drop', 0),
                            ('trans2', TransNo2D(), 1)])
    assert_raise_message(ValueError, "the 'trans2' transformer should be 2D",
                         ct.fit_transform, X_array)
    ct.fit(X_array)
    assert_raise_message(ValueError, "the 'trans2' transformer should be 2D",
                         ct.transform, X_array)
开发者ID:neverlanding,项目名称:scikit-learn,代码行数:11,代码来源:test_column_transformer.py


示例7: test_column_transformer_no_remaining_remainder_transformer

def test_column_transformer_no_remaining_remainder_transformer():
    X_array = np.array([[0, 1, 2],
                        [2, 4, 6],
                        [8, 6, 4]]).T

    ct = ColumnTransformer([('trans1', Trans(), [0, 1, 2])],
                           remainder=DoubleTrans())

    assert_array_equal(ct.fit_transform(X_array), X_array)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_array)
    assert len(ct.transformers_) == 1
    assert ct.transformers_[-1][0] != 'remainder'
开发者ID:neverlanding,项目名称:scikit-learn,代码行数:12,代码来源:test_column_transformer.py


示例8: test_column_transformer_remainder_pandas

def test_column_transformer_remainder_pandas(key):
    # test different ways that columns are specified with passthrough
    pd = pytest.importorskip('pandas')

    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_df = pd.DataFrame(X_array, columns=['first', 'second'])
    X_res_both = X_array

    ct = ColumnTransformer([('trans1', Trans(), key)],
                           remainder='passthrough')
    assert_array_equal(ct.fit_transform(X_df), X_res_both)
    assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
开发者ID:shenzhun,项目名称:scikit-learn,代码行数:12,代码来源:test_column_transformer.py


示例9: test_2D_transformer_output_pandas

def test_2D_transformer_output_pandas():
    pd = pytest.importorskip('pandas')

    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_df = pd.DataFrame(X_array, columns=['col1', 'col2'])

    # if one transformer is dropped, test that name is still correct
    ct = ColumnTransformer([('trans1', TransNo2D(), 'col1')])
    assert_raise_message(ValueError, "the 'trans1' transformer should be 2D",
                         ct.fit_transform, X_df)
    ct.fit(X_df)
    assert_raise_message(ValueError, "the 'trans1' transformer should be 2D",
                         ct.transform, X_df)
开发者ID:neverlanding,项目名称:scikit-learn,代码行数:13,代码来源:test_column_transformer.py


示例10: test_column_transformer_sparse_array

def test_column_transformer_sparse_array():
    X_sparse = sparse.eye(3, 2).tocsr()

    # no distinction between 1D and 2D
    X_res_first = X_sparse[:, 0]
    X_res_both = X_sparse

    for col in [0, [0], slice(0, 1)]:
        for remainder, res in [('drop', X_res_first),
                               ('passthrough', X_res_both)]:
            ct = ColumnTransformer([('trans', Trans(), col)],
                                   remainder=remainder,
                                   sparse_threshold=0.8)
            assert sparse.issparse(ct.fit_transform(X_sparse))
            assert_allclose_dense_sparse(ct.fit_transform(X_sparse), res)
            assert_allclose_dense_sparse(ct.fit(X_sparse).transform(X_sparse),
                                         res)

    for col in [[0, 1], slice(0, 2)]:
        ct = ColumnTransformer([('trans', Trans(), col)],
                               sparse_threshold=0.8)
        assert sparse.issparse(ct.fit_transform(X_sparse))
        assert_allclose_dense_sparse(ct.fit_transform(X_sparse), X_res_both)
        assert_allclose_dense_sparse(ct.fit(X_sparse).transform(X_sparse),
                                     X_res_both)
开发者ID:kevin-coder,项目名称:scikit-learn-fork,代码行数:25,代码来源:test_column_transformer.py


示例11: test_column_transformer_get_set_params

def test_column_transformer_get_set_params():
    ct = ColumnTransformer([('trans1', StandardScaler(), [0]),
                            ('trans2', StandardScaler(), [1])])

    exp = {'n_jobs': 1,
           'remainder': 'drop',
           'trans1': ct.transformers[0][1],
           'trans1__copy': True,
           'trans1__with_mean': True,
           'trans1__with_std': True,
           'trans2': ct.transformers[1][1],
           'trans2__copy': True,
           'trans2__with_mean': True,
           'trans2__with_std': True,
           'transformers': ct.transformers,
           'transformer_weights': None}

    assert_dict_equal(ct.get_params(), exp)

    ct.set_params(trans1__with_mean=False)
    assert_false(ct.get_params()['trans1__with_mean'])

    ct.set_params(trans1='passthrough')
    exp = {'n_jobs': 1,
           'remainder': 'drop',
           'trans1': 'passthrough',
           'trans2': ct.transformers[1][1],
           'trans2__copy': True,
           'trans2__with_mean': True,
           'trans2__with_std': True,
           'transformers': ct.transformers,
           'transformer_weights': None}

    assert_dict_equal(ct.get_params(), exp)
开发者ID:neverlanding,项目名称:scikit-learn,代码行数:34,代码来源:test_column_transformer.py


示例12: test_column_transformer_named_estimators

def test_column_transformer_named_estimators():
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
    ct = ColumnTransformer([('trans1', StandardScaler(), [0]),
                            ('trans2', StandardScaler(with_std=False), [1])])
    assert_false(hasattr(ct, 'transformers_'))
    ct.fit(X_array)
    assert_true(hasattr(ct, 'transformers_'))
    assert_true(isinstance(ct.named_transformers_['trans1'], StandardScaler))
    assert_true(isinstance(ct.named_transformers_.trans1, StandardScaler))
    assert_true(isinstance(ct.named_transformers_['trans2'], StandardScaler))
    assert_true(isinstance(ct.named_transformers_.trans2, StandardScaler))
    assert_false(ct.named_transformers_.trans2.with_std)
    # check it are fitted transformers
    assert_equal(ct.named_transformers_.trans1.mean_, 1.)
开发者ID:neverlanding,项目名称:scikit-learn,代码行数:14,代码来源:test_column_transformer.py


示例13: test_column_transformer_get_set_params_with_remainder

def test_column_transformer_get_set_params_with_remainder():
    ct = ColumnTransformer([('trans1', StandardScaler(), [0])],
                           remainder=StandardScaler())

    exp = {'n_jobs': 1,
           'remainder': ct.remainder,
           'remainder__copy': True,
           'remainder__with_mean': True,
           'remainder__with_std': True,
           'trans1': ct.transformers[0][1],
           'trans1__copy': True,
           'trans1__with_mean': True,
           'trans1__with_std': True,
           'transformers': ct.transformers,
           'transformer_weights': None}

    assert ct.get_params() == exp

    ct.set_params(remainder__with_std=False)
    assert not ct.get_params()['remainder__with_std']

    ct.set_params(trans1='passthrough')
    exp = {'n_jobs': 1,
           'remainder': ct.remainder,
           'remainder__copy': True,
           'remainder__with_mean': True,
           'remainder__with_std': False,
           'trans1': 'passthrough',
           'transformers': ct.transformers,
           'transformer_weights': None}

    assert ct.get_params() == exp
开发者ID:neverlanding,项目名称:scikit-learn,代码行数:32,代码来源:test_column_transformer.py


示例14: test_column_transformer_no_estimators

def test_column_transformer_no_estimators():
    X_array = np.array([[0, 1, 2],
                        [2, 4, 6],
                        [8, 6, 4]]).astype('float').T
    ct = ColumnTransformer([], remainder=StandardScaler())

    params = ct.get_params()
    assert params['remainder__with_mean']

    X_trans = ct.fit_transform(X_array)
    assert X_trans.shape == X_array.shape
    assert len(ct.transformers_) == 1
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][2] == [0, 1, 2]
开发者ID:neverlanding,项目名称:scikit-learn,代码行数:14,代码来源:test_column_transformer.py


示例15: test_column_transformer_drops_all_remainder_transformer

def test_column_transformer_drops_all_remainder_transformer():
    X_array = np.array([[0, 1, 2],
                        [2, 4, 6],
                        [8, 6, 4]]).T

    # columns are doubled when remainder = DoubleTrans
    X_res_both = 2 * X_array.copy()[:, 1:3]

    ct = ColumnTransformer([('trans1', 'drop', [0])],
                           remainder=DoubleTrans())

    assert_array_equal(ct.fit_transform(X_array), X_res_both)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert isinstance(ct.transformers_[-1][1], DoubleTrans)
    assert_array_equal(ct.transformers_[-1][2], [1, 2])
开发者ID:neverlanding,项目名称:scikit-learn,代码行数:17,代码来源:test_column_transformer.py


示例16: test_column_transformer_drop_all_sparse_remainder_transformer

def test_column_transformer_drop_all_sparse_remainder_transformer():
    X_array = np.array([[0, 1, 2],
                        [2, 4, 6],
                        [8, 6, 4]]).T
    ct = ColumnTransformer([('trans1', 'drop', [0])],
                           remainder=SparseMatrixTrans())

    X_trans = ct.fit_transform(X_array)
    assert sparse.issparse(X_trans)

    #  SparseMatrixTrans creates 3 features for each column, thus:
    assert X_trans.shape == (3, 3)
    assert_array_equal(X_trans.toarray(), np.eye(3))
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert isinstance(ct.transformers_[-1][1], SparseMatrixTrans)
    assert_array_equal(ct.transformers_[-1][2], [1, 2])
开发者ID:neverlanding,项目名称:scikit-learn,代码行数:17,代码来源:test_column_transformer.py


示例17: test_column_transformer_list

def test_column_transformer_list():
    X_list = [
        [1, float('nan'), 'a'],
        [0, 0, 'b']
    ]
    expected_result = np.array([
        [1, float('nan'), 1, 0],
        [-1, 0, 0, 1],
    ])

    ct = ColumnTransformer([
        ('numerical', StandardScaler(), [0, 1]),
        ('categorical', OneHotEncoder(), [2]),
    ])

    assert_array_equal(ct.fit_transform(X_list), expected_result)
    assert_array_equal(ct.fit(X_list).transform(X_list), expected_result)
开发者ID:kevin-coder,项目名称:scikit-learn-fork,代码行数:17,代码来源:test_column_transformer.py


示例18: test_column_transformer_remainder_transformer

def test_column_transformer_remainder_transformer(key):
    X_array = np.array([[0, 1, 2],
                        [2, 4, 6],
                        [8, 6, 4]]).T
    X_res_both = X_array.copy()

    # second and third columns are doubled when remainder = DoubleTrans
    X_res_both[:, 1:3] *= 2

    ct = ColumnTransformer([('trans1', Trans(), key)],
                           remainder=DoubleTrans())

    assert_array_equal(ct.fit_transform(X_array), X_res_both)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert isinstance(ct.transformers_[-1][1], DoubleTrans)
    assert_array_equal(ct.transformers_[-1][2], [1, 2])
开发者ID:neverlanding,项目名称:scikit-learn,代码行数:18,代码来源:test_column_transformer.py


示例19: test_column_transformer_remainder_pandas

def test_column_transformer_remainder_pandas(key):
    # test different ways that columns are specified with passthrough
    pd = pytest.importorskip('pandas')
    if isinstance(key, six.string_types) and key == 'pd-index':
        key = pd.Index(['first'])

    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_df = pd.DataFrame(X_array, columns=['first', 'second'])
    X_res_both = X_array

    ct = ColumnTransformer([('trans1', Trans(), key)],
                           remainder='passthrough')
    assert_array_equal(ct.fit_transform(X_df), X_res_both)
    assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'passthrough'
    assert_array_equal(ct.transformers_[-1][2], [1])
开发者ID:neverlanding,项目名称:scikit-learn,代码行数:18,代码来源:test_column_transformer.py


示例20: test_2D_transformer_output

def test_2D_transformer_output():

    class TransNo2D(BaseEstimator):
        def fit(self, X, y=None):
            return self

        def transform(self, X, y=None):
            return X

    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T

    # if one transformer is dropped, test that name is still correct
    ct = ColumnTransformer([('trans1', 'drop', 0),
                            ('trans2', TransNo2D(), 1)])
    assert_raise_message(ValueError, "the 'trans2' transformer should be 2D",
                         ct.fit_transform, X_array)
    ct.fit(X_array)
    assert_raise_message(ValueError, "the 'trans2' transformer should be 2D",
                         ct.transform, X_array)
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:19,代码来源:test_column_transformer.py



注:本文中的sklearn.compose.ColumnTransformer类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python covariance.empirical_covariance函数代码示例发布时间:2022-05-27
下一篇:
Python compose.make_column_transformer函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap