• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python cross_validation.check_cv函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.cross_validation.check_cv函数的典型用法代码示例。如果您正苦于以下问题:Python check_cv函数的具体用法?Python check_cv怎么用?Python check_cv使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了check_cv函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: benchmark

def benchmark(clf, X, y, cv=None):
    X, y = check_arrays(X, y, sparse_format='csr', allow_lists=True)
    cv = check_cv(cv, X, y, classifier=is_classifier(clf))
    
    # learning_curve_ = learning_curve(clf, X_all, y_all, cv=cv)
    
    train_times = []
    test_times = []
    confusion_matrices = []
    confusion_matrix_indices = []
    coefs = []
    for train, test in cv:
        X_train, y_train = X[train], y[train]
        X_test, y_test = X[test], y[test]
        
        t0 = time()
        clf.fit(X_train, y_train)
        train_times.append(time()-t0)
        
        t0 = time()
        y_pred = clf.predict(X_test)
        test_times.append(time()-t0)
    
        confusion_matrices.append(confusion_matrix(y_test, y_pred))
        confusion_matrix_indices.append(np.array([[test[pred] for pred in true] for true in confusion_matrix_instances(y_test, y_pred)]))
    
        coefs.append(clf.coef_)
    
    return dict(
        train_times = np.array(train_times),
        test_times = np.array(test_times),
        confusion_matrices = np.array(confusion_matrices),
        confusion_matrix_indices = np.array(confusion_matrix_indices),
        coefs = np.array(coefs)
    )
开发者ID:EdwardBetts,项目名称:twitter-sentiment,代码行数:35,代码来源:evaluation.py


示例2: fit

    def fit(self, epochs, y=None):
        from sklearn.cross_validation import check_cv, StratifiedKFold
        from mne.decoding.time_gen import _check_epochs_input
        X, y, self.gat.picks_ = _check_epochs_input(epochs, y, self.gat.picks)
        gat_list = list()

        cv = self.cv
        if isinstance(cv, (int, np.int)):
            cv = StratifiedKFold(y, cv)
        cv = check_cv(cv, X, y, classifier=True)
        # Construct meta epoch and fit gat with a single fold
        for ii, (train, test) in enumerate(cv):
            # meta trial
            epochs_ = make_meta_epochs(epochs[train], y[train], n_bin=self.n)
            # fit gat
            gat_ = deepcopy(self.gat)
            cv_one_fold = [(range(len(epochs_)), [])]
            gat_.cv = cv_one_fold
            gat_.fit(epochs_, epochs_.events[:, 2])
            gat_list.append(gat_)

        # gather
        self.gat = gat_
        self.gat.train_times_ = gat_.train_times_
        self.gat.estimators_ = np.squeeze(
            [gat.estimators_ for gat in gat_list]).T.tolist()
        self.gat.cv_ = cv
        self.gat.y_train_ = y
开发者ID:kingjr,项目名称:jr-tools,代码行数:28,代码来源:base.py


示例3: Bootstrap_cv

def Bootstrap_cv(estimator1, estimator2, X, y, score_func, cv=None, n_jobs=1,
                 verbose=0, ratio=.5):
    X, y = cross_validation.check_arrays(X, y, sparse_format='csr')
    cv = cross_validation.check_cv(cv, X, y,
                                   classifier=
                                   cross_validation.is_classifier(estimator1))
    if score_func is None:
        if not hasattr(estimator1, 'score') or \
                not hasattr(estimator2, 'score'):
            raise TypeError(
                "If no score_func is specified, the estimator passed "
                "should have a 'score' method. The estimator %s "
                "does not." % estimator1)
    # We clone the estimator to make sure that all the folds are
    # independent, and that it is pickle-able.
    scores = \
        cross_validation.Parallel(
            n_jobs=n_jobs, verbose=verbose)(
                cross_validation.delayed(
                    dual_cross_val_score)
                (cross_validation.clone(estimator1),
                 cross_validation.clone(estimator2),
                 X, y, score_func, train, test, verbose, ratio)
                for train, test in cv)
    return np.array(scores)
开发者ID:rdimaggio,项目名称:kaggle_overfitting,代码行数:25,代码来源:analysis_v1.py


示例4: _fit

    def _fit(self, X, y, parameter_iterable):
        """Actual fitting,  performing the search over parameters."""
        self.scorer_ = check_scoring(self.estimator, scoring=self.scoring)
        X, y = indexable(X, y)
        cv = check_cv(self.cv, X, y, classifier=is_classifier(self.estimator))
        base_estimator = clone(self.estimator)

        best = best_parameters(base_estimator, cv, X, y, parameter_iterable,
                               self.scorer_, self.fit_params, self.iid)
        best = best.compute()

        self.best_params_ = best.parameters
        self.best_score_ = best.mean_validation_score


        if isinstance(base_estimator, Pipeline):
            base_estimator = base_estimator.to_sklearn().compute()

        if self.refit:
            # fit the best estimator using the entire dataset
            # clone first to work around broken estimators
            best_estimator = base_estimator.set_params(**best.parameters)
            if y is not None:
                self.best_estimator_ = best_estimator.fit(X, y, **self.fit_params)
            else:
                self.best_estimator_ = best_estimator.fit(X, **self.fit_params)
        return self
开发者ID:konggas,项目名称:dasklearn,代码行数:27,代码来源:grid_search.py


示例5: add_del_cv

def add_del_cv(df, predictors, target, model, scoring='roc_auc', cv1=None,
               n_folds=8, n_jobs=-1, start=[], selmax=None, selmin=1,
               min_ratio=1e-7, max_steps=10, verbosity=0):
    """ Forward-Backward (ADD-DEL) selection using model.

    Parameters
    ----------

    Returns
    -------
    selected: list
        selected predictors

    Example
    -------
    References
    ----------
    """
    def test_to_break(selected, selected_curr, to_break):
        if set(selected) == set(selected_curr):
            to_break += 1
        else:
            to_break = 0
        return to_break

    X, y, _ = df_xyf(df, predictors=predictors, target=target)
    cv1 = cross_validation.check_cv(
            cv1, X=X, y=y,
            classifier=is_classifier(model))

    selected_curr = start
    to_break = 0

    for i_step in xrange(max_steps):
        selected = forward_cv(
                        df, predictors, target, model, scoring=scoring,
                        cv1=cv1, n_folds=n_folds, n_jobs=n_jobs,
                        start=selected_curr, selmax=selmax,
                        min_ratio=min_ratio, verbosity=verbosity-1)
        to_break = test_to_break(selected, selected_curr, to_break)
        selected_curr = selected
        if verbosity > 0:
            print('forward:', ' '.join(selected_curr))
        if to_break > 1:
            break
        selected = backward_cv(
                        df, selected_curr, target, model, scoring=scoring,
                        cv1=cv1, n_folds=n_folds, n_jobs=n_jobs, selmin=selmin,
                        min_ratio=min_ratio, verbosity=verbosity-1)
        to_break = test_to_break(selected, selected_curr, to_break)
        selected_curr = selected
        if verbosity > 0:
            print('backward:', ' '.join(selected_curr))
        if to_break > 0:
            break

    return selected_curr
开发者ID:orazaro,项目名称:kgml,代码行数:57,代码来源:feature_selection.py


示例6: dynamic_cross_val_predict

def dynamic_cross_val_predict(estimator, fv, esa_feature_list, unigram_feature_list, dynamic_X, y=None, cv=None,
                              verbose=0, fit_params=None):


    print "dynamic predict cross val mit %s" % esa_feature_list + unigram_feature_list


    vec = DictVectorizer()
    tfidf = TfidfTransformer()

    X = vec.fit_transform(fv).toarray()
    # X = tfidf.fit_transform(X).toarray()

    X, y = cross_validation.indexable(X, y)
    cv = cross_validation.check_cv(cv, X, y, classifier=cross_validation.is_classifier(estimator))

    preds_blocks = []

    cross_val_step = 0
    for train, test in cv:

        fv_copy = copy.deepcopy(fv)

        #baue X in jedem Schritt neu
        for i in range(0,len(fv)): #jedes i steht für einen featuredict
            feature_dict = fv_copy[i]
            dynamic_vec = dynamic_X[cross_val_step] #zeigt auf esa_vec
            for feature in esa_feature_list:
                feature_dict.update(dynamic_vec[find_index_for_dynamic_feature(feature)][i]) #das i-te feature-dict mit esa-feature updaten
            for feature in unigram_feature_list:
                feature_dict.update(dynamic_vec[find_index_for_dynamic_feature(feature)][i]) #das i-te feature-dict mit esa-feature updaten


        X = vec.fit_transform(fv_copy).toarray()
        # X = tfidf.fit_transform(X).toarray()

        preds_blocks.append(cross_validation._fit_and_predict(cross_validation.clone(estimator), X, y,
                                                      train, test, verbose,
                                                      fit_params))

        cross_val_step+=1

    preds = [p for p, _ in preds_blocks]
    locs = np.concatenate([loc for _, loc in preds_blocks])
    if not cross_validation._check_is_partition(locs, cross_validation._num_samples(X)):
        raise ValueError('cross_val_predict only works for partitions')
    inv_locs = np.empty(len(locs), dtype=int)
    inv_locs[locs] = np.arange(len(locs))

    # Check for sparse predictions
    if sp.issparse(preds[0]):
        preds = sp.vstack(preds, format=preds[0].format)
    else:
        preds = np.concatenate(preds)
    return preds[inv_locs]
开发者ID:Ftohei,项目名称:classification_tests,代码行数:55,代码来源:classifier.py


示例7: fit

    def fit(self, X, y):
        """Actual fitting,  performing the search over parameters."""

        parameter_iterable = ParameterSampler(self.param_distributions,
                                              self.n_iter,
                                              random_state=self.random_state)
        estimator = self.estimator
        cv = self.cv

        n_samples = _num_samples(X)
        X, y = indexable(X, y)

        if y is not None:
            if len(y) != n_samples:
                raise ValueError('Target variable (y) has a different number '
                                 'of samples (%i) than data (X: %i samples)'
                                 % (len(y), n_samples))
        cv = check_cv(cv, X, y, classifier=is_classifier(estimator))

        if self.verbose > 0:
            if isinstance(parameter_iterable, Sized):
                n_candidates = len(parameter_iterable)
                print("Fitting {0} folds for each of {1} candidates, totalling"
                      " {2} fits".format(len(cv), n_candidates,
                                         n_candidates * len(cv)))

        base_estimator = clone(self.estimator)

        pre_dispatch = self.pre_dispatch

        out = Parallel(
            n_jobs=self.n_jobs, verbose=self.verbose,
            pre_dispatch=pre_dispatch
        )(
            delayed(cv_fit_and_score)(clone(base_estimator), X, y, self.scoring,
                                      parameters, cv=cv)
            for parameters in parameter_iterable)

        best = sorted(out, reverse=True)[0]
        self.best_params_ = best[1]
        self.best_score_ = best[0]

        if self.refit:
            # fit the best estimator using the entire dataset
            # clone first to work around broken estimators
            best_estimator = clone(base_estimator).set_params(
                **best[1])
            if y is not None:
                best_estimator.fit(X, y, **self.fit_params)
            else:
                best_estimator.fit(X, **self.fit_params)
            self.best_estimator_ = best_estimator

        return self
开发者ID:MD2Korg,项目名称:cStress-model,代码行数:54,代码来源:puffMarker.py


示例8: test_check_cv_return_types

def test_check_cv_return_types():
    X = np.ones((9, 2))
    cv = cval.check_cv(3, X, classifier=False)
    assert_true(isinstance(cv, cval.KFold))

    y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1])
    cv = cval.check_cv(3, X, y_binary, classifier=True)
    assert_true(isinstance(cv, cval.StratifiedKFold))

    y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2])
    cv = cval.check_cv(3, X, y_multiclass, classifier=True)
    assert_true(isinstance(cv, cval.StratifiedKFold))

    X = np.ones((5, 2))
    y_multilabel = [[1, 0, 1], [1, 1, 0], [0, 0, 0], [0, 1, 1], [1, 0, 0]]
    cv = cval.check_cv(3, X, y_multilabel, classifier=True)
    assert_true(isinstance(cv, cval.KFold))

    y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]])
    cv = cval.check_cv(3, X, y_multioutput, classifier=True)
    assert_true(isinstance(cv, cval.KFold))
开发者ID:AppliedArtificialIntelligence,项目名称:scikit-learn,代码行数:21,代码来源:test_cross_validation.py


示例9: test_searchlight

def test_searchlight():
    # Create a toy dataset to run searchlight on

    # Initialize with 4x4x4 scans of random values on 30 frames
    rand = np.random.RandomState(0)
    frames = 30
    data = rand.rand(5, 5, 5, frames)
    mask = np.ones((5, 5, 5), np.bool)
    mask_img = nibabel.Nifti1Image(mask.astype(np.int), np.eye(4))
    # Create a condition array
    cond = np.arange(frames, dtype=int) > frames / 2

    # Create an activation pixel.
    data[2, 2, 2, :] = 0
    data[2, 2, 2][cond.astype(np.bool)] = 2
    data_img = nibabel.Nifti1Image(data, np.eye(4))


    # Define cross validation
    from sklearn.cross_validation import check_cv
    # avoid using KFold for compatibility with sklearn 0.10-0.13
    cv = check_cv(4, cond)
    n_jobs = 1

    # Run Searchlight with different radii
    # Small radius : only one pixel is selected
    sl = searchlight.SearchLight(mask_img, process_mask_img=mask_img,
                                 radius=0.5, n_jobs=n_jobs,
                                 scoring='accuracy', cv=cv)
    sl.fit(data_img, cond)
    assert_equal(np.where(sl.scores_ == 1)[0].size, 1)
    assert_equal(sl.scores_[2, 2, 2], 1.)

    # Medium radius : little ball selected

    sl = searchlight.SearchLight(mask_img, process_mask_img=mask_img, radius=1,
                                 n_jobs=n_jobs, scoring='accuracy', cv=cv)
    sl.fit(data_img, cond)
    assert_equal(np.where(sl.scores_ == 1)[0].size, 7)
    assert_equal(sl.scores_[2, 2, 2], 1.)
    assert_equal(sl.scores_[1, 2, 2], 1.)
    assert_equal(sl.scores_[2, 1, 2], 1.)
    assert_equal(sl.scores_[2, 2, 1], 1.)
    assert_equal(sl.scores_[3, 2, 2], 1.)
    assert_equal(sl.scores_[2, 3, 2], 1.)
    assert_equal(sl.scores_[2, 2, 3], 1.)

    # Big radius : big ball selected
    sl = searchlight.SearchLight(mask_img, process_mask_img=mask_img, radius=2,
                                 n_jobs=n_jobs, scoring='accuracy', cv=cv)
    sl.fit(data_img, cond)
    assert_equal(np.where(sl.scores_ == 1)[0].size, 33)
    assert_equal(sl.scores_[2, 2, 2], 1.)
开发者ID:VirgileFritsch,项目名称:nilearn,代码行数:53,代码来源:test_searchlight.py


示例10: test_check_cv_return_types

def test_check_cv_return_types():
    X = np.ones((9, 2))
    cv = cval.check_cv(3, X, classifier=False)
    assert_true(isinstance(cv, cval.KFold))

    y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1])
    cv = cval.check_cv(3, X, y_binary, classifier=True)
    assert_true(isinstance(cv, cval.StratifiedKFold))

    y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2])
    cv = cval.check_cv(3, X, y_multiclass, classifier=True)
    assert_true(isinstance(cv, cval.StratifiedKFold))

    X = np.ones((5, 2))
    y_seq_of_seqs = [[], [1, 2], [3], [0, 1, 3], [2]]

    with warnings.catch_warnings(record=True):
        # deprecated sequence of sequence format
        cv = cval.check_cv(3, X, y_seq_of_seqs, classifier=True)
    assert_true(isinstance(cv, cval.KFold))

    y_indicator_matrix = LabelBinarizer().fit_transform(y_seq_of_seqs)
    cv = cval.check_cv(3, X, y_indicator_matrix, classifier=True)
    assert_true(isinstance(cv, cval.KFold))

    y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]])
    cv = cval.check_cv(3, X, y_multioutput, classifier=True)
    assert_true(isinstance(cv, cval.KFold))
开发者ID:jonathanwoodard,项目名称:scikit-learn,代码行数:28,代码来源:test_cross_validation.py


示例11: cross_validate

    def cross_validate(self, k=10):
        """Performs a k-fold cross validation of our training data.

        Args:
            k: The number of folds for cross validation.
        """
        self.scores = []

        X, y = check_arrays(self.feature_vector,
                            self.classification_vector,
                            sparse_format='csr')
        cv = cross_validation.check_cv(
            k, self.feature_vector, self.classification_vector,
            classifier=True)

        for train, test in cv:
            self.classifier1.fit(self.feature_vector[train],
                          self.classification_vector[train])
            self.classifier2.fit(self.feature_vector[train],
                          self.classification_vector[train])
            self.classifier3.fit(self.feature_vector[train],
                          self.classification_vector[train])
            classification1 = self.classifier1.predict(
                self.feature_vector[test])
            classification2 = self.classifier2.predict(
                self.feature_vector[test])
            classification3 = self.classifier3.predict(
                self.feature_vector[test])

            classification = []
            for predictions in zip(classification1, classification2,
                                   classification3):
                neutral_count = predictions.count(0)
                positive_count = predictions.count(1)
                negative_count = predictions.count(-1)
                if (neutral_count == negative_count and
                    negative_count == positive_count):
                    classification.append(predictions[0])
                elif (neutral_count > positive_count and
                    neutral_count > negative_count):
                    classification.append(0)
                elif (positive_count > neutral_count and
                    positive_count > negative_count):
                    classification.append(1)
                elif (negative_count > neutral_count and
                    negative_count > positive_count):
                    classification.append(-1)
            classification = numpy.array(classification)

            self.scores.append(self.score_func(y[test], classification))
开发者ID:AlinaKay,项目名称:sentiment-analyzer,代码行数:50,代码来源:train.py


示例12: score

	def score(self,test_parameter):
		"""
		The score function to call in order to evaluate the quality 
		of the parameter test_parameter

		Parameters
		----------
		`tested_parameter` : dict, the parameter to test

		Returns
		-------
		`score` : the CV score, either the list of all cv results or
			the mean (depending of score_format)
		"""

		if not self._callable_estimator:
	 		cv = check_cv(self.cv, self.X, self.y, classifier=is_classifier(self.estimator))
	 		cv_score = [ _fit_and_score(clone(self.estimator), self.X, self.y, self.scorer_,
							train, test, False, test_parameter,
							self.fit_params, return_parameters=True)
						for train, test in cv ]

			n_test_samples = 0
			mean_score = 0
			detailed_score = []
			for tmp_score, tmp_n_test_samples, _, _ in cv_score:
				detailed_score.append(tmp_score)
				tmp_score *= tmp_n_test_samples
				n_test_samples += tmp_n_test_samples
				mean_score += tmp_score
			mean_score /= float(n_test_samples)

			if(self.score_format == 'avg'):
				score = mean_score
			else: # format == 'cv'
				score = detailed_score


		else:
			if(self.score_format == 'avg'):
				score = [self.estimator(test_parameter)]
			else: # format == 'cv'
				score = self.estimator(test_parameter)

		return score
开发者ID:BenJamesbabala,项目名称:DeepMining,代码行数:45,代码来源:smart_search.py


示例13: cross_val_predict

def cross_val_predict(estimator, X, y, cv=5, n_jobs=1, refit=False, predict_fun="predict"):
    X, y = check_arrays(X, y, sparse_format='csr', allow_lists=True)
    cv = check_cv(cv, X, y, classifier=is_classifier(estimator))
    pred = Parallel(n_jobs=n_jobs)(
        delayed(_cross_val_predict)(
            clone(estimator), X, y, train, test, predict_fun)
        for train, test in cv)
    pred = np.concatenate(pred)
    if cv.indices:
        index = np.concatenate([test for _, test in cv])
    else:
        index = np.concatenate([np.where(test)[0] for _, test in cv])
    ## pred[index] = pred doesn't work as expected
    pred[index] = pred.copy()
    if refit:
        return pred, clone(estimator).fit(X,y)
    else:
        return pred
开发者ID:luoq,项目名称:datatrek,代码行数:18,代码来源:stacking.py


示例14: my_cross_val_predict

def my_cross_val_predict(estimator, X, y=None, groups=None, cv=None, n_jobs=1,
                         verbose=0, fit_params=None, pre_dispatch='2*n_jobs',
                         method='predict'):
    X, y, groups = indexable(X, y, groups)

    cv = check_cv(cv, y, classifier=is_classifier(estimator))

    # Ensure the estimator has implemented the passed decision function
    if not callable(getattr(estimator, method)):
        raise AttributeError('{} not implemented in estimator'
                             .format(method))

    if method in ['decision_function', 'predict_proba', 'predict_log_proba']:
        le = LabelEncoder()
        y = le.fit_transform(y)

    # We clone the estimator to make sure that all the folds are
    # independent, and that it is pickle-able.
    parallel = Parallel(n_jobs=n_jobs, verbose=verbose,
                        pre_dispatch=pre_dispatch)
    prediction_blocks = parallel(delayed(_my_fit_and_predict)(
        clone(estimator), X, y, train, test, verbose, fit_params, method)
                                 for train, test in cv.split(X, y, groups))

    # Concatenate the predictions
    predictions = [pred_block_i for pred_block_i, _, _ in prediction_blocks]
    test_indices = np.concatenate([indices_i
                                   for _, indices_i, _ in prediction_blocks])
    scores = np.concatenate([score_i for _, _, score_i in prediction_blocks])

    if not _check_is_permutation(test_indices, _num_samples(X)):
        raise ValueError('cross_val_predict only works for partitions')

    inv_test_indices = np.empty(len(test_indices), dtype=int)
    inv_test_indices[test_indices] = np.arange(len(test_indices))

    # Check for sparse predictions
    if sp.issparse(predictions[0]):
        predictions = sp.vstack(predictions, format=predictions[0].format)
    else:
        predictions = np.concatenate(predictions)
    return predictions[inv_test_indices], scores
开发者ID:teopir,项目名称:ifqi,代码行数:42,代码来源:ifs.py


示例15: dynamic_cross_val_score

def dynamic_cross_val_score(estimator, fv, esa_feature_list, unigram_feature_list, dynamic_X, y=None, scoring=None, cv=None,
                verbose=0, fit_params=None):

    print "dynamic cross val mit %s" % esa_feature_list + unigram_feature_list
    vec = DictVectorizer()
    tfidf = TfidfTransformer()

    X = vec.fit_transform(fv).toarray()
    # X= tfidf.fit_transform(X).toarray()

    X, y = cross_validation.indexable(X, y)

    cv = cross_validation.check_cv(cv, X, y, classifier=cross_validation.is_classifier(estimator))
    scorer = cross_validation.check_scoring(estimator, scoring=scoring)
    scores = []

    cross_val_step = 0
    for train, test in cv:

        fv_copy = copy.deepcopy(fv)

        #baue X in jedem Schritt neu
        for i in range(0,len(fv)): #jedes i steht für einen featuredict
            feature_dict = fv_copy[i]
            dynamic_vec = dynamic_X[cross_val_step] #zeigt auf esa_vec
            for feature in esa_feature_list:
                feature_dict.update(dynamic_vec[find_index_for_dynamic_feature(feature)][i]) #das i-te feature-dict mit esa-feature updaten
            for feature in unigram_feature_list:
                feature_dict.update(dynamic_vec[find_index_for_dynamic_feature(feature)][i]) #das i-te feature-dict mit esa-feature updaten



        X = vec.fit_transform(fv_copy).toarray()
        # X = tfidf.fit_transform(X).toarray()

        scores.append(cross_validation._fit_and_score(cross_validation.clone(estimator), X, y, scorer,
                        train, test, verbose, None, fit_params))

        cross_val_step += 1


    return np.array(scores)[:, 0]
开发者ID:Ftohei,项目名称:classification_tests,代码行数:42,代码来源:classifier.py


示例16: cross_val_score_filter_feature_selection

def cross_val_score_filter_feature_selection(model,filter_function,filter_criteria, X, y, scoring=None, cv=None, n_jobs=1,
                    verbose=0, fit_params=None,
                    pre_dispatch='2*n_jobs'):

    X, y = indexable(X, y)

    cv = check_cv(cv, X, y, classifier=is_classifier(model))
    scorer = check_scoring(model, scoring=scoring)
    # We clone the estimator to make sure that all the folds are
    # independent, and that it is pickle-able.
    parallel = Parallel(n_jobs=n_jobs, verbose=verbose,
                        pre_dispatch=pre_dispatch)

    #
    scores = parallel(delayed(_fit_and_score)(clone(model), filter_function(X,y,train,filter_criteria), y, scorer,
                                              train, test, verbose, None,
                                              fit_params)
                      for train, test in cv)

    return np.array(scores)[:, 0]
开发者ID:joewledger,项目名称:Cell-Line-Classification,代码行数:20,代码来源:Cross_Validator.py


示例17: fit

	def fit(self,X,Y):
		if not self.best_subset:
			self.fshape = np.shape(X)[1]
			self.scorer_ = check_scoring(self.estimator, scoring=self.scoring)

			self.cv = check_cv(self.cv, X, Y, classifier=is_classifier(self.estimator))

			self.best_subset = tuple()
			self.best_subset_score = 0
			self.scores_ = {self.best_subset:self.best_subset_score}
			X = np.array(X)
			Y = np.array(Y)


			try:
				self.get_best_subset(X,Y)
			except KeyboardInterrupt:
				pass
		self.estimator = self.estimator.fit(X[:,self.best_subset],Y)
		return self
开发者ID:Khodeir,项目名称:datascience-cwk,代码行数:20,代码来源:wrappers.py


示例18: fit

    def fit(self, X, y):
        """Fit KNN model by choosing the best `n_neighbors`.

        Parameters
        -----------
        X : scipy.sparse matrix, (n_samples, vocab_size)
            Data
        y : ndarray, shape (n_samples,) or (n_samples, n_targets)
            Target
        """
        if self.n_neighbors_try is None:
            n_neighbors_try = range(1, 6)
        else:
            n_neighbors_try = self.n_neighbors_try

        X = check_array(X, accept_sparse='csr', copy=True)
        X = normalize(X, norm='l1', copy=False)

        cv = check_cv(self.cv, X, y)
        knn = KNeighborsClassifier(metric='precomputed', algorithm='brute')
        scorer = check_scoring(knn, scoring=self.scoring)

        scores = []
        for train_ix, test_ix in cv:
            dist = self._pairwise_wmd(X[test_ix], X[train_ix])
            knn.fit(X[train_ix], y[train_ix])
            scores.append([
                              scorer(knn.set_params(n_neighbors=k), dist, y[test_ix])
                              for k in n_neighbors_try
                              ])
        scores = np.array(scores)
        self.cv_scores_ = scores

        best_k_ix = np.argmax(np.mean(scores, axis=0))
        best_k = n_neighbors_try[best_k_ix]
        self.n_neighbors = self.n_neighbors_ = best_k

        return super(WordMoversKNNCV, self).fit(X, y)
开发者ID:jihyunp,项目名称:word_embeddings,代码行数:38,代码来源:word_movers_knn.py


示例19: _fit

    def _fit(self, X, y, parameter_iterable):
        """Actual fitting,  performing the search over parameters."""
        estimator = self.estimator
        cv = self.cv

        n_samples = _num_samples(X)

        X, y = check_arrays(X, y, allow_lists=True, sparse_format='csr')
        if y is not None:
            if len(y) != n_samples:
                raise ValueError('Target variable (y) has a different number '
                                 'of samples (%i) than data (X: %i samples)'
                                 % (len(y), n_samples))
            y = np.asarray(y)

        cv = check_cv(cv, X, y, classifier=is_classifier(estimator))
        if not self.dataset_filenames:
            self.save_dataset_filename(X, y, cv)

        dataset_filenames = self.dataset_filenames

        client = Client()
        lb_view = client.load_balanced_view()

        if self.verbose > 0:
            print("Number of CPU core %d" % len(client.ids()))

        self.tasks = [([lb_view.apply(evaluate, estimator, dataset_filename, params)
                        for dataset_filename in dataset_filenames], params)
                            for params in parameter_iterable]
        if self.sync:
            self.wait()
            self.set_grid_scores()
            self.set_best_score_params()

            if self.refit:
                self.set_best_estimator(estimator)
        return self
开发者ID:brenden17,项目名称:IPyGridSearchCV,代码行数:38,代码来源:grid_search_ipy.py


示例20: cross_val_score

def cross_val_score(estimator, X, y=None, score_func=None, cv=None, n_jobs=-1,
    verbose=0, as_dvalues=False):
  """Evaluate a score by cross-validation.

  Replacement of :func:`sklearn.cross_validation.cross_val_score`, used to
  support computation of decision values.

  """
  X, y = check_arrays(X, y, sparse_format='csr')
  cv = check_cv(cv, X, y, classifier=is_classifier(estimator))
  if score_func is None:
      if not hasattr(estimator, 'score'):
          raise TypeError(
              "If no score_func is specified, the estimator passed "
              "should have a 'score' method. The estimator %s "
              "does not." % estimator)
  # We clone the estimator to make sure that all the folds are
  # independent, and that it is pickle-able.
  scores = Parallel(n_jobs=n_jobs, verbose=verbose)(
      delayed(_cross_val_score)(clone(estimator), X, y, score_func, train, test,
          verbose, as_dvalues)
      for train, test in cv)
  return np.array(scores)
开发者ID:mthomure,项目名称:glimpse-project,代码行数:23,代码来源:learn.py



注:本文中的sklearn.cross_validation.check_cv函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python cross_validation.cross_val_predict函数代码示例发布时间:2022-05-27
下一篇:
Python cross_decomposition.PLSRegression类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap