本文整理汇总了Python中sklearn.cross_validation.cross_val_score函数的典型用法代码示例。如果您正苦于以下问题:Python cross_val_score函数的具体用法?Python cross_val_score怎么用?Python cross_val_score使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了cross_val_score函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: getClfScore
def getClfScore(classifier, features, labels, cv):
'''Evaluating performance of estimator
param:
classifier : classifiers list
features : data to fit
labels : samples data
cv : cross validation iterator
return:
test_score : dict of classification score
'''
test_score = {}
for idx, clfname in enumerate(sorted(classifier.keys())):
clf_score = {}
clf = classifier[clfname]
precision = cross_val_score(clf, features, labels, 'precision', cv)
recall = cross_val_score(clf, features, labels, 'recall', cv)
clf_score['precision'] = np.mean(precision)
clf_score['recall'] = np.mean(recall)
test_score[clfname] = clf_score
return test_score
开发者ID:knopthakorn,项目名称:Data-Analyst,代码行数:25,代码来源:poi_id.py
示例2: test_cross_val_score_fit_params
def test_cross_val_score_fit_params():
clf = MockClassifier()
n_samples = X.shape[0]
n_classes = len(np.unique(y))
fit_params = {'sample_weight': np.ones(n_samples),
'class_prior': np.ones(n_classes) / n_classes}
cval.cross_val_score(clf, X, y, fit_params=fit_params)
开发者ID:GGXH,项目名称:scikit-learn,代码行数:7,代码来源:test_cross_validation.py
示例3: cv
def cv(self, parameters, scoring="roc_auc"):
""" Evaluate score by cross validation. """
X = self.data.values.astype(np.float)
y = self.label.values
print cross_val_score(self.estimator, X, y, scoring=scoring, cv=3)
开发者ID:JFanZhao,项目名称:practice,代码行数:7,代码来源:adult.py
示例4: importData
def importData(datadirectory):
#categories = ['n','u', 'y']
categories = ['n', 'y']
data = load_files(datadirectory,categories=categories, shuffle=True, random_state=42, encoding='latin-1')
X_train, X_test, y_train, y_test = cross_validation.train_test_split(data.data, data.target, test_size = 0.4, random_state=0)
print X_train
# count_vect = CountVectorizer()
# X_train_vec = count_vect.fit_transform(X_train)
# X_test_vec = count_vect.fit_transform(X_test)
# clf = svm.SVC(kernel='linear', C=1).fit(X_train_vec, y_train)
# clf.score(X_test_vec, y_test)
text_clf = Pipeline([('vect', TfidfVectorizer()), ('clf', MultinomialNB())])
#print text_clf.named_steps['clf']
print str(sum(cross_val_score(text_clf, data.data,data.target ))/3.0) + ' Tfidf NB'
#array([ 0.62376238, 0.57 , 0.6122449 ])
text_clf = Pipeline([('vect', CountVectorizer()),('clf', MultinomialNB()),])
print str(sum(cross_val_score(text_clf, data.data,data.target ))/3.0) + ' CountVec NB' #array([ 0.56435644, 0.5 , 0.57142857])
clf = Pipeline([('vect', CountVectorizer()), ('svm', LinearSVC())])
print str(sum(cross_val_score(clf, data.data,data.target ))/3.0) + ' CountVec SVM'
#array([ 0.55445545, 0.48 , 0.54081633])
clf = Pipeline([('vect', TfidfVectorizer()), ('svm', LinearSVC())])
print str(sum(cross_val_score(clf, data.data,data.target ))/3.0) + ' Tfidf SVM'
#array([ 0.62376238, 0.57 , 0.6122449 ])
clf_sgdc = Pipeline([('vect', CountVectorizer()),('clf', linear_model.SGDClassifier()),])
print str(sum(cross_val_score(clf_sgdc, data.data,data.target ))/3.0) + ' SGDC'
开发者ID:krsreenatha,项目名称:IndyRef,代码行数:27,代码来源:model.py
示例5: crossValidation
def crossValidation():
data2010, labels2010 = read_tac('2010')
#classifiers
gnb = naive_bayes.GaussianNB()
Svm = svm.SVC(kernel = "linear")
logReg = linear_model.LogisticRegression()
GNBscores = cross_validation.cross_val_score(gnb, data2010, labels2010, cv=2)
SVMscores = cross_validation.cross_val_score(Svm, data2010, labels2010, cv=2)
logRegscores = cross_validation.cross_val_score(logReg, data2010, labels2010, cv=2)
print "Results:"
print "Gaussian Naive Bayes: "
print str(GNBscores.mean())
print "Support Vector Machine: "
print str(SVMscores.mean())
print "Logistic Regression: "
print str(logRegscores.mean())
fh.write("Results:" + "\n")
fh.write("Gaussian Naive Bayes: " + "\n")
fh.write(str(GNBscores.mean()) + "\n")
fh.write("Support Vector Machine: " + "\n")
fh.write(str(SVMscores.mean()) + "\n")
fh.write("Logistic Regression: " + "\n")
fh.write(str(logRegscores.mean()) + "\n")
fh.write("-------------------------------------------------\n")
fh.write("\n\n")
开发者ID:daveguy,项目名称:Comp599,代码行数:29,代码来源:a1.py
示例6: dofitSVMstd
def dofitSVMstd(X_train, Y_train, X_test):
shape = X_train.shape
b = []
for j in range(shape[0]):
a1 = [np.std(X_train[j, :, i]) for i in range(shape[2])]
a2 = [getEntropy(list(X_train[j, :, i].astype(int))) for i in range(shape[2])]
a1.sort(reverse=True)
a2.sort()
b.append(a1[0:16] + a2[0:16])
x1 = np.array(b)
clf = RandomForestClassifier()
dummy = clf.fit(x1, Y_train)
scores = cross_validation.cross_val_score(clf, x1, Y_train)
p1 = clf.predict(x1)
shape = X_test.shape
b = []
for j in range(shape[0]):
a1 = [np.std(X_test[j, :, i]) for i in range(shape[2])]
a2 = [getEntropy(list(X_test[j, :, i].astype(int))) for i in range(shape[2])]
a1.sort(reverse=True)
a2.sort()
b.append(a1[0:16] + a2[0:16])
x2 = np.array(b)
y2 = clf.predict(x2)
xx = np.concatenate((x1, x2))
yy = np.concatenate((Y_train, y2))
dummy = clf.fit(xx, yy)
p2 = clf.predict(x2)
scores = cross_validation.cross_val_score(clf, x1, Y_train)
# sum(clf.predict(x2))
return [scores, np.concatenate((p1, p2))]
开发者ID:rbroberg,项目名称:kaggle.com,代码行数:33,代码来源:seizure_detection_simple_40a.py
示例7: test_cross_val_score_filter_feature_selection_threshold
def test_cross_val_score_filter_feature_selection_threshold():
threshold = 1.0
scikit_data,scikit_target = dfm.get_expression_scikit_data_target(expression_file, ic50_file,normalized=True,trimmed=True,threshold=None)
model = classify.construct_svc_model(kernel='linear')
non_thresholded_test_1 = cv.cross_val_score_filter_feature_selection(model,cv.trim_X_threshold,threshold,scikit_data,scikit_target,cv=5)
m = classify.construct_svc_model(kernel='linear')
s_data,s_target = dfm.get_expression_scikit_data_target(expression_file, ic50_file,normalized=True,trimmed=True,threshold=threshold)
non_thresholded_test_2 = cross_val_score(m,s_data,s_target,cv=5)
threshold = .05
scikit_data,scikit_target = dfm.get_expression_scikit_data_target(expression_file, ic50_file,normalized=True,trimmed=True,threshold=None)
model = classify.construct_svc_model(kernel='linear')
thresholded_test_1 = cv.cross_val_score_filter_feature_selection(model,cv.trim_X_threshold,threshold,scikit_data,scikit_target,cv=5)
m = classify.construct_svc_model(kernel='linear')
s_data,s_target = dfm.get_expression_scikit_data_target(expression_file, ic50_file,normalized=True,trimmed=True,threshold=threshold)
thresholded_test_2 = cross_val_score(m,s_data,s_target,cv=5)
#The non-thresholded tests should be the same because if we are not thresholding, it doesn't matter where we perform thresholding
assert(math.fabs(non_thresholded_test_1.mean() - non_thresholded_test_2.mean()) < .001)
#The first non_thresholded test should have lower accuracy because we are doing thresholding within the cross-validation,
#which will reduce cross-validation overfitting and as a consequence reported cross-validation accuracy.
assert(thresholded_test_1.mean() - thresholded_test_2.mean() < 0)
开发者ID:joewledger,项目名称:Cell-Line-Classification,代码行数:27,代码来源:Test_Cross_Val.py
示例8: validate_model
def validate_model(model, features, labels):
accuracy = cross_val_score(model, features, labels, scoring='accuracy', cv=4).mean()
precision = cross_val_score(model, features, labels, scoring='precision', cv=4).mean()
recall = cross_val_score(model, features, labels, scoring='recall', cv=4).mean()
f1 = cross_val_score(model, features, labels, scoring='f1', cv=4).mean()
print "\n(METRICS) Accuracy: {:.3f} Precision: {:.3f} Recall: {:.3f} F1-Score: {:.3f}".\
format(accuracy,precision, recall, f1)
开发者ID:nhtruong,项目名称:ud120-projects,代码行数:7,代码来源:poi_id.py
示例9: experiment_zero
def experiment_zero(data,company):
print '___Experiment One___'
# Experiment Parameters
finance_datatype = 0 # finance_datatype: Integer 2 = Stock price change, 1 = Percentage stock price change, 0 = Only direction
finance_n = 2 # finance_n: Integer >=0 Number of days of finance data to include
sentiment_datatype = 1 # sentiment_datatype: Boolean 1 = all sentiment featues, 0 = Total
sentiment_n = 1 # sentiment_n: Integer >=0 Number of days of sentiment data to include
day = 0 # day: Boolean 1 = Include day of the week, 0 = do not
target = 0 # target: Boolean 1 = Amount, 0 = Direction
volume = 0 # volume: boolean 1 = Yes, 0 = No
if (finance_n + sentiment_n + day + volume) == 0:
print 'Insufficient parameters set'
return
# Data Processing
feature_vector_meaning(company, finance_datatype, finance_n, sentiment_datatype, sentiment_n, day, target, volume)
matrix = create_feature_matrix(company, data, finance_datatype, finance_n, sentiment_datatype, sentiment_n, day, target, volume)
end = len(matrix[0])
train_x = matrix[:,0:end-1]
train_y = matrix[:,end-1]
# Classifier training
scaler = preprocessing.StandardScaler().fit(train_x)
train_x = scaler.transform(train_x)
clf = direction_classifier(train_x,train_y)
cv = cross_validation.ShuffleSplit(len(train_x), n_iter=5, test_size=0.2, random_state=0)
print ' _ _ _Evaluation_ _ _'
if target == 0:
scores = cross_validation.cross_val_score(clf, train_x, train_y, cv=cv, scoring='accuracy')
print(" Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
elif target == 1:
scores = cross_validation.cross_val_score(clf, train_x, train_y, cv=cv, scoring='mean_squared_error')
print(" MSE: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
print '====================='
开发者ID:RichEverett,项目名称:DowJonesTwitter,代码行数:35,代码来源:model.py
示例10: run_model
def run_model(data):
"""Do some label bucketing, print model output."""
features = data.ix[:, :-1]
# more categories <--> less accuracy
# labels = data.ix[:, -1].map(lambda k: 1 if k > 10 else 0)
labels = data.ix[:, -1].map(lambda k: int(k / 5)) # bucketing trick
print 'num classes = {}\n'.format(len(set(labels)))
# weak (base) classifier
print 'fitting weak classifier...'
weak_clf = DecisionTreeClassifier(max_depth=MAX_DEPTH)
weak_cv_results = cross_val_score(weak_clf, features, labels,
cv=N_FOLDS)
print 'weak_cv_results = {}'.format(weak_cv_results)
print 'avg accuracy = {}\n'.format(weak_cv_results.mean())
# strong (ensemble) classifier
print 'fitting strong classifier...'
strong_clf = RandomForestClassifier(
max_depth=MAX_DEPTH,
n_estimators=N_TREES,
n_jobs=N_JOBS)
strong_cv_results = cross_val_score(strong_clf, features, labels,
cv=N_FOLDS)
print 'strong_cv_results = {}'.format(strong_cv_results)
print 'avg accuracy = {}'.format(strong_cv_results.mean())
开发者ID:abbas91,项目名称:gads,代码行数:29,代码来源:abalone_forest.py
示例11: coeff_of_deterimination
def coeff_of_deterimination(classifier, X, y, K=10):
# Perform a cross-validation estimate of the coefficient of determination using
# the cross_validation module using all CPUs available on the machine
R21 = cross_val_score(classifier, X, y=y, n_jobs=1).mean()
R2 = cross_val_score(classifier, X, y=y, cv=KFold(y.size, K), n_jobs=1).mean()
print "The %d-Folds est coeff. of determ. R2 = %s" % (K, R2)
print "basic cross val ", R21
开发者ID:abnarain,项目名称:malware_detection,代码行数:7,代码来源:ml.py
示例12: run_conventional_linkage
def run_conventional_linkage(x, y, n_comps, linker_model, verbose=0, k_folds=3):
print "---->Cross validating"
cvs = cross_val_score(linker_model, x, y, cv=k_folds, scoring='r2', verbose=verbose)
mse = cross_val_score(linker_model, x, y, cv=k_folds, scoring='mean_squared_error', verbose=verbose)
print '---->R2: ', np.mean(cvs)
print '---->MSE: ', np.mean(mse)
return np.mean(cvs), np.std(cvs), np.mean(mse), np.std(mse)
开发者ID:Materials-Informatics-Class-Fall2015,项目名称:MIC-Ternary-Eutectic-Alloy,代码行数:7,代码来源:smart_pipeline.py
示例13: _run_classifier
def _run_classifier(X, Y, parent, child, max_depth):
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.333, random_state=0)
clf = tree.DecisionTreeClassifier(min_samples_split=parent, min_samples_leaf=child, max_depth=max_depth)
clf = clf.fit(X_train, y_train)
print 'model score on train data data:'
print clf.score(X_train, y_train)
print 'ten fold cross-validation results on train data:'
scores = cross_val_score(clf, X_train, y_train, cv=10)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
print 'model score on test data'
print clf.score(X_test, y_test)
print 'ten fold cross-validation results on test data:'
scores = cross_val_score(clf, X_test, y_test, cv=10)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
print 'Gini Importance'
print clf.feature_importances_
'Classification Report'
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))
'Confusion Matrix'
print(confusion_matrix(y_true, y_pred))
cm = confusion_matrix(y_true, y_pred)
print _calc_error_rate_conf_int(cm)
return _calc_error_rate_conf_int(cm) + [len(y_test)]
开发者ID:jugovich,项目名称:IS576,代码行数:29,代码来源:hw4.py
示例14: fit_from_prep
def fit_from_prep(self, infile):
H, y, w = self._da.load_from_file(infile)
self._vq = VQ(w, hist=w.shape[0])
self._cl.fit(H, y)
if self._verbose:
print cross_validation.cross_val_score(
self._cl, H, y, cv=3).mean()
开发者ID:fpeder,项目名称:mscr,代码行数:7,代码来源:bovw.py
示例15: analytics
def analytics():
trainer_data = get_thing_from_file("training_dataset.txt")
tester_data = get_thing_from_file("test_dataset.txt")
bayes_clf = get_thing_from_file("bayes_model.txt")
svm_clf = get_thing_from_file("svm_model.txt")
# we load the fitted models from file so we don't need these lines
# bayes_clf.fit(trainer_data.data, trainer_data.target)
# svm_clf.fit(trainer_data.data, trainer_data.target)
test = tester_data.data
predicted_bayes = bayes_clf.predict(test)
predicted_svm = svm_clf.predict(test)
print "** ACCURACIES **"
print numpy.mean(predicted_bayes == tester_data.target)
print numpy.mean(predicted_svm == tester_data.target)
print "** K-FOLD VALIDATION ACCURACY"
bayes_scores = cross_validation.cross_val_score(bayes_clf,
tester_data.data, tester_data.target, cv=10)
svm_scores = cross_validation.cross_val_score(svm_clf, tester_data.data,
tester_data.target, cv=10)
print max(bayes_scores)
print max(svm_scores)
print "**"
开发者ID:colinricardo28,项目名称:Peepl,代码行数:31,代码来源:classifiers.py
示例16: lda_run
def lda_run(self, k_folds = 5):
self.r_forest_lda = RandomForestClassifier(n_estimators=2000,n_jobs=5, max_depth=None, min_samples_split=1, random_state =0)
self.lda_scores = cross_validation.cross_val_score(self.r_forest_lda, self.lda_iss_features, self.labels, cv=k_folds,n_jobs=5)
print("Cross validation Random Forest performance LDA: Accuracy: %0.2f (std %0.2f)" % (self.lda_scores.mean()*100, self.lda_scores.std()*100))
self.r_forest_lda.fit(self.lda_iss_features,self.labels)
print self.r_forest_lda.score(self.lda_iss_validation_features, self.validation_labels)*100, 'LDA test-set performance \n'
'''
C_range = np.logspace(-2, 10, 13)
gamma_range = np.logspace(-9, 3, 13)
param_grid = dict(gamma=gamma_range, C=C_range)
cv = StratifiedShuffleSplit(self.labels, n_iter=5, test_size=0.2, random_state=42)
grid = GridSearchCV(SVC(), param_grid=param_grid, cv=cv)
grid.fit(self.lda_iss_features, self.labels)
print("The best parameters are %s with a score of %0.2f"% (grid.best_params_, grid.best_score_))
'''
self.svc_lda = SVC(kernel='rbf',C = 1,gamma = 'auto')
self.svc_lda_scores = cross_validation.cross_val_score(self.svc_lda, self.lda_iss_features, self.labels, cv=k_folds,n_jobs=5)
print("Cross validation SVM performance LDA: Accuracy: %0.2f (std %0.2f)" % (self.svc_lda_scores.mean()*100, self.svc_lda_scores.std()*100))
self.svc_lda.fit(self.lda_iss_features,self.labels)
print self.svc_lda.score(self.lda_iss_validation_features, self.validation_labels)*100, 'LDA test-set performance \n'
y_true = self.validation_labels
y_pred = self.svc_lda.predict(self.lda_iss_validation_features)
target_names = ['S1','S2','S3','S4']
t = classification_report(y_true, y_pred, target_names=target_names)
print 'Support vector report lda'
print t
开发者ID:rouzbeh,项目名称:networkclassifer,代码行数:29,代码来源:classifier.py
示例17: training
def training(matrix, Y, SVM):
""" def training(matrix , Y , svm ):
matrix: is the train data
Y: is the labels in array
svm: is a boolean. If svm == True we perform svm otherwise we perform AdaBoostClassifier
return: cross_validation scores
"""
if SVM:
classifier = svm.SVC()
else:
classifier = AdaBoostClassifier(n_estimators=300)
precision_micro_scorer = metrics.make_scorer(custom_precision_micro_score)
precision_macro_scorer = metrics.make_scorer(custom_precision_macro_score)
recall_micro_scorer = metrics.make_scorer(custom_recall_micro_score)
recall_macro_scorer = metrics.make_scorer(custom_recall_macro_score)
precision_micro = cross_val_score(classifier, matrix, Y, cv=10, scoring=precision_micro_scorer)
precision_macro = cross_val_score(classifier, matrix, Y, cv=10, scoring=precision_macro_scorer)
recall_micro = cross_val_score(classifier, matrix, Y, cv=10, scoring=recall_micro_scorer)
recall_macro = cross_val_score(classifier, matrix, Y, cv=10, scoring=recall_macro_scorer)
return {"micro": (precision_micro, recall_micro), "macro": (precision_macro, recall_macro)}
开发者ID:Ethiy,项目名称:ALTEGRAD,代码行数:25,代码来源:training.py
示例18: randomforest_info
def randomforest_info(self, max_trees = 1000, step = 40, k_folds = 5):
print 'Characterising R_forest. Looping through trees: ',
self.treedata = np.zeros((max_trees/step, 10))
for i,n_trees in enumerate(np.arange(0, max_trees,step)):
if n_trees == 0:
n_trees = 1
print n_trees,
r_forest = RandomForestClassifier(n_estimators=n_trees, n_jobs=5, max_depth=None, min_samples_split=1, random_state=0)
scores = cross_validation.cross_val_score(r_forest, self.iss_features, self.labels, cv=k_folds,n_jobs=5)
r_forest_full = RandomForestClassifier(n_estimators=n_trees, n_jobs=5, max_depth=None, min_samples_split=1, random_state=0)
r_forest_full.fit(self.iss_features,self.labels)
self.treedata[i,0] = n_trees
self.treedata[i,1] = scores.mean()
self.treedata[i,2] = scores.std()
# now add the test dataset - score
self.treedata[i,3] = r_forest_full.score(self.iss_validation_features, self.validation_labels)
r_forest_lda = RandomForestClassifier(n_estimators=n_trees, n_jobs=5, max_depth=None, min_samples_split=1, random_state=0)
r_forest_lda_full = RandomForestClassifier(n_estimators=n_trees, n_jobs=5, max_depth=None, min_samples_split=1, random_state=0)
r_forest_lda_full.fit(self.lda_iss_features,self.labels)
lda_scores = cross_validation.cross_val_score(r_forest_lda, self.lda_iss_features, self.labels, cv=k_folds,n_jobs=5)
self.treedata[i,4] = lda_scores.mean()
self.treedata[i,5] = lda_scores.std()
self.treedata[i,6] = r_forest_lda_full.score(self.lda_iss_validation_features, self.validation_labels)
print self.treedata[i,6]
r_forest_pca = RandomForestClassifier(n_estimators=n_trees, n_jobs=5, max_depth=None, min_samples_split=1, random_state=0)
r_forest_pca_full = RandomForestClassifier(n_estimators=n_trees, n_jobs=5, max_depth=None, min_samples_split=1, random_state=0)
r_forest_pca_full.fit(self.pca_iss_features,self.labels)
pca_scores = cross_validation.cross_val_score(r_forest_pca, self.pca_iss_features, self.labels, cv=k_folds,n_jobs=5)
self.treedata[i,7] = pca_scores.mean()
self.treedata[i,8] = pca_scores.std()
self.treedata[i,9] = r_forest_pca_full.score(self.pca_iss_validation_features, self.validation_labels)
开发者ID:rouzbeh,项目名称:networkclassifer,代码行数:33,代码来源:classifier.py
示例19: svmByPackageMachineLearning
def svmByPackageMachineLearning(xList, yList):
'''
Example:
iris = datasets.load_iris()
clf = svm.SVC(kernel='linear', C=1)
score = cross_validation.cross_val_score(clf, iris.data, iris.target, cv=10)
print(score)
print("Accuracy: %0.2f (+/- %0.2f)" % (score.mean(), score.std() * 2))
'''
#SVM with kernel
clf_rbf = svm.SVC(decision_function_shape='ovo', C=10.0, kernel='rbf', gamma=5)
clf_sig = svm.SVC(decision_function_shape='ovo', C=10.0, kernel='sigmoid', gamma=5, coef0=100.0)
#clf_pol = svm.SVC(decision_function_shape='ovo', C=10.0, kernel='polynomial', gamma=5, coef0=100.0, degree=4)
clf_lin = svm.SVC(decision_function_shape='ovo', C=10.0, kernel='linear')
#cross validation
score_rbf = cross_validation.cross_val_score(clf_rbf, xList, yList, cv=10)
score_sig = cross_validation.cross_val_score(clf_sig, xList, yList, cv=10)
#score_pol = cross_validation.cross_val_score(clf_pol, xList, yList, cv=10)
score_lin = cross_validation.cross_val_score(clf_lin, xList, yList, cv=10)
print("rbf: %0.2f (+/- %0.2f)" % (score_rbf.mean(), score_rbf.std() * 2))
print("sig: %0.2f (+/- %0.2f)" % (score_sig.mean(), score_sig.std() * 2))
#print("pol: %0.2f (+/- %0.2f)" % (score_pol.mean(), score_pol.std() * 2))
print("lin: %0.2f (+/- %0.2f)" % (score_lin.mean(), score_lin.std() * 2))
开发者ID:shuaizengMU,项目名称:MachineLearning,代码行数:30,代码来源:svmTrain_2_bsl.py
示例20: rf_cross_val
def rf_cross_val(x,y):
X_train, X_test, y_train, y_test = train_test_split(x,y,test_size = 0.33, random_state = 42)
random_forest_grid = {'n_estimators': [100],
'n_jobs': [-1]}
rf_gridsearch = GridSearchCV(RandomForestRegressor(),
random_forest_grid,
n_jobs=-1,
verbose=True,
cv=3)
rf_gridsearch.fit(X_train, y_train)
print "best parameters:", rf_gridsearch.best_params_
best_rf_model = rf_gridsearch.best_estimator_
y_pred = best_rf_model.predict(X_test)
print "Accuracy with best rf:", cross_val_score(best_rf_model, X_test, y_test).mean()
rf = RandomForestRegressor(n_estimators=10, n_jobs = -1)
print "Accuracy with default param rf:", cross_val_score(rf, X_test, y_test).mean()
return best_rf_model
开发者ID:mkls2319,项目名称:NYC_Yellow_Cab,代码行数:26,代码来源:8_tip_amount.py
注:本文中的sklearn.cross_validation.cross_val_score函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论