• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python datasets.fetch_lfw_people函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.datasets.fetch_lfw_people函数的典型用法代码示例。如果您正苦于以下问题:Python fetch_lfw_people函数的具体用法?Python fetch_lfw_people怎么用?Python fetch_lfw_people使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了fetch_lfw_people函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_load_fake_lfw_people

def test_load_fake_lfw_people():
    lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA,
                                  min_faces_per_person=3,
                                  download_if_missing=False)

    # The data is croped around the center as a rectangular bounding box
    # around the face. Colors are converted to gray levels:
    assert_equal(lfw_people.images.shape, (10, 62, 47))
    assert_equal(lfw_people.data.shape, (10, 2914))

    # the target is array of person integer ids
    assert_array_equal(lfw_people.target, [2, 0, 1, 0, 2, 0, 2, 1, 1, 2])

    # names of the persons can be found using the target_names array
    expected_classes = ['Abdelatif Smith', 'Abhati Kepler', 'Onur Lopez']
    assert_array_equal(lfw_people.target_names, expected_classes)

    # It is possible to ask for the original data without any croping or color
    # conversion and not limit on the number of picture per person
    lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, resize=None,
                                  slice_=None, color=True,
                                  download_if_missing=False)
    assert_equal(lfw_people.images.shape, (17, 250, 250, 3))

    # the ids and class names are the same as previously
    assert_array_equal(lfw_people.target,
                       [0, 0, 1, 6, 5, 6, 3, 6, 0, 3, 6, 1, 2, 4, 5, 1, 2])
    assert_array_equal(lfw_people.target_names,
                       ['Abdelatif Smith', 'Abhati Kepler', 'Camara Alvaro',
                        'Chen Dupont', 'John Lee', 'Lin Bauman', 'Onur Lopez'])
开发者ID:NelleV,项目名称:scikit-learn,代码行数:30,代码来源:test_lfw.py


示例2: get_lfw

def get_lfw():
    lfw = fetch_lfw_people(resize=1)
    
    lfw.data = lfw.data.astype(np.float32) / 255.0
    lfw.target = lfw.target.astype(np.int32)

    return lfw.data, lfw.target
开发者ID:ToraxXx,项目名称:gsdr,代码行数:7,代码来源:util.py


示例3: visualize

def visualize():
  """
  Writes out various visualizations of our testing data."
  """
  print "Preparing visualizations..."

  tile_faces(fetch_lfw_people()["images"], constants.LOG_DIR + "/all_faces_tiled.png")
开发者ID:amar37,项目名称:personal-photos-model,代码行数:7,代码来源:visualize.py


示例4: get_eigenfaces

def get_eigenfaces():
    # get sklearn faces data set
    lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=1.0)
    n_samples, h, w = lfw_people.images.shape
    np.random.seed(42)

    # get face data
    print "Getting LFW people data from SKLearn..."
    X = lfw_people.data

    # subtract average row from each row
    print "Normalizing image array..."
    mean_image = np.mean(X, axis = 0)
    arr_norm = np.zeros([n_samples, h*w])
    arr_norm = X - mean_image

    # run pca using the signular value decomposition
    print "Running PCA of input image set. This may take a few moments."
    pca = PCA()
    pca.fit(arr_norm)
    eigenfaces = pca.components_

    # Save images
    print "Saving eigenfaces..."
    path = 'static/eigenface_images/'
    for i, face in enumerate(eigenfaces[:50]):
        process_image.save_image_vector(path,str(i),face)
    print "Complete! Saving pickle files..."

    input_data = {'mean_image': mean_image, 'eigenfaces': eigenfaces, 'arr_norm': arr_norm}
    f = open('eigenface_data.p', 'wb')
    pickle.dump(input_data, f)
    f.close()
    print "Pickle files saved. Shutting up shop now."
开发者ID:james727,项目名称:Eigenface_Explorer,代码行数:34,代码来源:eigenfaces.py


示例5: dictionary_learn_ex

def dictionary_learn_ex():

    patch_shape = (18, 18)
    n_atoms = 225
    n_plot_atoms = 225
    n_nonzero_coefs = 2
    n_jobs = 8
    lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4,color=False)
    n_imgs, h, w = lfw_people.images.shape

    imgs = []
    for i in range(n_imgs):
        img = lfw_people.images[i, :, :].reshape((h, w))
        img /= 255.
        imgs.append(img)

    print 'Extracting reference patches...'
    X = extract_patches(imgs, patch_size=patch_shape[0],scale=False,n_patches=int(1e5),verbose=True,n_jobs=n_jobs)
    print "number of patches:", X.shape[1]

    se = sparse_encoder(algorithm='bomp',params={'n_nonzero_coefs': n_nonzero_coefs}, n_jobs=n_jobs)

    odc = online_dictionary_coder(n_atoms=n_atoms, sparse_coder=se, n_epochs=2,
                                  batch_size=1000, non_neg=False, verbose=True, n_jobs=n_jobs)
    odc.fit(X)
    D = odc.D
    plt.figure(figsize=(4.2, 4))
    for i in range(n_plot_atoms):
        plt.subplot(15, 15, i + 1)
        plt.imshow(D[:, i].reshape(patch_shape), cmap=plt.cm.gray)
        plt.subplots_adjust(left=0.0, bottom=0.0, right=1.0, top=1.0, wspace=0.0, hspace=0.0)
        plt.xticks(())
        plt.yticks(())
    plt.show()
开发者ID:ektormak,项目名称:Lyssandra,代码行数:34,代码来源:visualization_ex.py


示例6: get_lfw

def get_lfw(max_size=None):
    dataset = fetch_lfw_people(color=True)
    # keep only one image per person
    return image_per_label(
        dataset.images,
        dataset.target,
        dataset.target_names,
        max_size=max_size)
开发者ID:GunnarEcon,项目名称:fancyimpute,代码行数:8,代码来源:complete_faces.py


示例7: _download_lwf

def _download_lwf(dataset,size):
    from sklearn.datasets import fetch_lfw_people
    '''
    :param dataset:
    :return:
    '''
    lfw_people = fetch_lfw_people(color=True,resize=size)
    f = gzip.open(dataset, 'w')
    cPkl.dump([lfw_people.images.astype('uint8'),lfw_people.target], f,
              protocol=cPkl.HIGHEST_PROTOCOL)
    f.close()
开发者ID:casperkaae,项目名称:parmesan,代码行数:11,代码来源:datasets.py


示例8: generateface2picsmapping

def generateface2picsmapping(minimum_faces_per_person=1):
	lfw_people = fetch_lfw_people(min_faces_per_person=minimum_faces_per_person, resize=0.4)
	n_samples, h, w = lfw_people.images.shape
	X, y, target_names = lfw_people.data, lfw_people.target, lfw_people.target_names
	n_examples, n_features = X.shape
	face2pics = []
	print(max(y))
	for i in range((max(y)+1)):
		face2pics.append([target_names[i],[] ])
	for i in range(len(y)):
		face2pics[y[i]][1].append(i)
	return face2pics
开发者ID:EllenSebastian,项目名称:r-faces,代码行数:12,代码来源:functionsTest.py


示例9: getData2

def getData2():
    global X, n, d, y, h, w
    lfw_people = fetch_lfw_people(min_faces_per_person=40, resize=0.4)
    n, h, w = lfw_people.images.shape
    X = lfw_people.data
    d = X.shape[1]
    y = lfw_people.target
    n_classes = lfw_people.target_names.shape[0]
    print("Total dataset size:")
    print("n_samples: %d" % n)
    print("n_features: %d" % d)
    print("n_classes: %d" % n_classes)
    return X, y, n_classes
开发者ID:brando90,项目名称:6.036_project_2,代码行数:13,代码来源:project2.py


示例10: getFaceData

def getFaceData():
    # Download the data, if not already on disk and load it as numpy arrays
    lfw_people = fetch_lfw_people(data_home='.', min_faces_per_person=70, resize=0.4)
    # insert code here 
    X = lfw_people.data
    n_features = X.shape[1]
    y = lfw_people.target
    target_names = lfw_people.target_names
    n_classes = target_names.shape[0]
    n_samples, h, w = lfw_people.images.shape
    print "Total dataset size:"
    print "n_samples: %d" % n_samples
    print "n_features: %d" % n_features
    print "n_classes: %d" % n_classes
    return X,y,n_features,target_names,n_classes,n_samples,h,w
开发者ID:derZukunft,项目名称:GADataScience2013,代码行数:15,代码来源:pca.py


示例11: get_data

def get_data(dataset_name):
    print("Getting dataset: %s" % dataset_name)

    if dataset_name == 'lfw_people':
        X = fetch_lfw_people().data
    elif dataset_name == '20newsgroups':
        X = fetch_20newsgroups_vectorized().data[:, :100000]
    elif dataset_name == 'olivetti_faces':
        X = fetch_olivetti_faces().data
    elif dataset_name == 'rcv1':
        X = fetch_rcv1().data
    elif dataset_name == 'CIFAR':
        if handle_missing_dataset(CIFAR_FOLDER) == "skip":
            return
        X1 = [unpickle("%sdata_batch_%d" % (CIFAR_FOLDER, i + 1))
              for i in range(5)]
        X = np.vstack(X1)
        del X1
    elif dataset_name == 'SVHN':
        if handle_missing_dataset(SVHN_FOLDER) == 0:
            return
        X1 = sp.io.loadmat("%strain_32x32.mat" % SVHN_FOLDER)['X']
        X2 = [X1[:, :, :, i].reshape(32 * 32 * 3) for i in range(X1.shape[3])]
        X = np.vstack(X2)
        del X1
        del X2
    elif dataset_name == 'low rank matrix':
        X = make_low_rank_matrix(n_samples=500, n_features=np.int(1e4),
                                 effective_rank=100, tail_strength=.5,
                                 random_state=random_state)
    elif dataset_name == 'uncorrelated matrix':
        X, _ = make_sparse_uncorrelated(n_samples=500, n_features=10000,
                                        random_state=random_state)
    elif dataset_name == 'big sparse matrix':
        sparsity = np.int(1e6)
        size = np.int(1e6)
        small_size = np.int(1e4)
        data = np.random.normal(0, 1, np.int(sparsity/10))
        data = np.repeat(data, 10)
        row = np.random.uniform(0, small_size, sparsity)
        col = np.random.uniform(0, small_size, sparsity)
        X = sp.sparse.csr_matrix((data, (row, col)), shape=(size, small_size))
        del data
        del row
        del col
    else:
        X = fetch_mldata(dataset_name).data
    return X
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:48,代码来源:bench_plot_randomized_svd.py


示例12: gen_face_sets

def gen_face_sets():
    people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
    n_samples, h, w = people.images.shape

    data = people.data
    n_features = data.shape[1]

    target = people.target
    target_names = people.target_names
    n_classes = target_names.shape[0]

    N = len(target)
    inds = random.sample(sp.arange(0, N), N)
    n_train = int(sp.floor(0.8 * N))
    trainingdata = data[inds[0:n_train], :]
    trainingtarget = target[inds[0:n_train]]
    testdata = data[inds[n_train:]]
    testtarget = target[inds[n_train:]]
    return trainingdata, testdata, trainingtarget, testtarget
开发者ID:rachelwebb,项目名称:numerical_computing,代码行数:19,代码来源:imagerecognition.py


示例13: load_data

def load_data():
    global training_data, testing_data

    lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

    xs = lfw_people.data
    ys = lfw_people.target

    inputs = []
    labels = list(ys)

    for face in xs:
        V = Vol(50, 37, 1, 0.0)
        V.w = list(face)
        inputs.append(augment(V, 30))

    x_tr, x_te, y_tr, y_te = train_test_split(inputs, labels, test_size=0.25)

    training_data = zip(x_tr, y_tr)
    testing_data = zip(x_te, y_te)

    print 'Dataset made...'
开发者ID:Aaronduino,项目名称:ConvNetPy,代码行数:22,代码来源:faces.py


示例14: fetch_lfw_people

# coding:utf-8

import logging
from time import time
from sklearn.datasets import fetch_lfw_people
from sklearn.cross_validation import train_test_split
from sklearn.decomposition import RandomizedPCA
from sklearn.grid_search import GridSearchCV
from sklearn.svm import SVC
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix


logging.basicConfig(level=logging.INFO, format="%(asctime)s %(message)s")

lfw_people = fetch_lfw_people(data_home="D:\\My documents\\code\\dataset\\", resize=0.4)

n_samples, h, w = lfw_people.images.shape

X = lfw_people.data
n_features = X.shape[1]

y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0]

print ("Total dataset size:")
print ("n_samples: %d" % n_samples)
print ("n_features: %d" % n_features)
print ("n_classes: %d" % n_classes)
开发者ID:guker,项目名称:algrithm-learn,代码行数:30,代码来源:facedetect.py


示例15: test_load_fake_lfw_people_too_restrictive

def test_load_fake_lfw_people_too_restrictive():
    fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=100, download_if_missing=False)
开发者ID:Claire-Ling-Liu,项目名称:scikit-learn,代码行数:2,代码来源:test_lfw.py


示例16: test_load_empty_lfw_people

def test_load_empty_lfw_people():
    fetch_lfw_people(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False)
开发者ID:Claire-Ling-Liu,项目名称:scikit-learn,代码行数:2,代码来源:test_lfw.py


示例17: nudge_dataset

        data = numpy.asarray(digits.data, dtype='float32')
        target = numpy.asarray(digits.target, dtype='int32')
        nudged_x, nudged_y = nudge_dataset(data, target)
        if SCALE:
            nudged_x = preprocessing.scale(nudged_x)
        x_train, x_test, y_train, y_test = cross_validation.train_test_split(
                nudged_x, nudged_y, test_size=0.2, random_state=42)
        train_models(x_train, y_train, x_test, y_test, nudged_x.shape[1],
                     len(set(target)), numpy_rng=numpy.random.RandomState(123),
                     name='digits')

    if FACES:
        import logging
        logging.basicConfig(level=logging.INFO,
                            format='%(asctime)s %(message)s')
        lfw_people = datasets.fetch_lfw_people(min_faces_per_person=50,
                                               resize=0.4)
        X = numpy.asarray(lfw_people.data, dtype='float32')
        if SCALE:
            X = preprocessing.scale(X)
        y = numpy.asarray(lfw_people.target, dtype='int32')
        target_names = lfw_people.target_names
        print("Total dataset size:")
        print("n samples: %d" % X.shape[0])
        print("n features: %d" % X.shape[1])
        print("n classes: %d" % target_names.shape[0])
        x_train, x_test, y_train, y_test = cross_validation.train_test_split(
                    X, y, test_size=0.2, random_state=42)

        train_models(x_train, y_train, x_test, y_test, X.shape[1],
                     len(set(y)), numpy_rng=numpy.random.RandomState(123),
                     name='faces')
开发者ID:goelrhea1992,项目名称:AdaptiveLearning,代码行数:32,代码来源:AdaptiveLearningDNN.py


示例18: lfwTest01

def lfwTest01():
	from sklearn.datasets import fetch_lfw_people
	lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

	for name in lfw_people.target_names:
		print(name)
开发者ID:hyliu0302,项目名称:scikit-learn-notes,代码行数:6,代码来源:myScikitLearnFcns.py


示例19: main

def main():
    print(__doc__)

    # Display progress logs on stdout
    logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')


###############################################################################
    # Download the data, if not already on disk and load it as numpy arrays

    lfw_people = fetch_lfw_people(min_faces_per_person=100, resize=0.4)

    # introspect the images arrays to find the shapes (for plotting)
    n_samples, h, w = lfw_people.images.shape

    # for machine learning we use the 2 data directly (as relative pixel
    # positions info is ignored by this model)
    X = lfw_people.data
    n_features = X.shape[1]

    # the label to predict is the id of the person
    y = lfw_people.target
    target_names = lfw_people.target_names
    n_classes = target_names.shape[0]

    print("Total dataset size:")
    print("n_samples: %d" % n_samples)
    print("n_features: %d" % n_features)
    print("n_classes: %d" % n_classes)


    ###############################################################################
    # Split into a training set and a test set using a stratified k fold

    # split into a training and testing set
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.25)

    n_train_samples = X_train.shape[0]
    n_test_samples = X_test.shape[0]

    ###############################################################################
    # legacy PCA: just computes all the eigenvectors of the training data
    # then select eigenvectors that have the highest eigenvalues

    legacy_PCA_demo = False
    if legacy_PCA_demo:
        n_components = 150

        print("Extracting the top %d eigenfaces from %d faces using legacy PCA"
              % (n_components, X_train.shape[0]))
        t0 = time()
        pca = LegacyPCA(n_components=n_components, whiten=True).fit(X_train)
        print("done in %0.3fs" % (time() - t0))

        print("Projecting the input data on the eigenfaces orthonormal basis")
        t0 = time()
        X_train_pca_legacy = pca.transform(X_train)
        X_test_pca_legacy = pca.transform(X_test)
        print("done in %0.3fs" % (time() - t0))

        print("Fitting the Prototype classifier to the training set using legacy PCA")
        t0 = time()
        clf = PrototypeClassifier().fit(X_train_pca_legacy, y_train)
        print("done in %0.3fs" % (time() - t0))

        print("Predicting people's names on the test set")
        t0 = time()
        y_pred = clf.predict(X_test_pca_legacy)
        print("done in %0.3fs" % (time() - t0))

        print(classification_report(y_test, y_pred, target_names=target_names))

        print("Fitting the SVM classifier to the training set using legacy PCA")
        t0 = time()
        param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],
                      'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
        clf = GridSearchCV(SVC(kernel='rbf', class_weight='auto'), param_grid)
        clf = clf.fit(X_train_pca_legacy, y_train)
        print("done in %0.3fs" % (time() - t0))
        print("Best estimator found by grid search:")
        print(clf.best_estimator_)

        print("Predicting people's names on the test set")
        t0 = time()
        y_pred = clf.predict(X_test_pca_legacy)
        print("done in %0.3fs" % (time() - t0))

        print(classification_report(y_test, y_pred, target_names=target_names))

    ##############################################################################
    # Random PCA
    random_PCA_demo = True
    if random_PCA_demo:
        n_components = 150

        print("Extracting the top %d eigenfaces from %d faces using random PCA"
              % (n_components, X_train.shape[0]))
        t0 = time()
        pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)
#.........这里部分代码省略.........
开发者ID:gongbudaizhe,项目名称:bilib,代码行数:101,代码来源:face_recognition.py


示例20: fetch_lfw_people

from sklearn.cross_validation import train_test_split
from sklearn.datasets import fetch_lfw_people
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.decomposition import RandomizedPCA
from sklearn.svm import SVC

# Display progress logs on stdout
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')


###############################################################################
# Download the data, if not already on disk and load it as numpy arrays

lfw_people = fetch_lfw_people(data_home='.', min_faces_per_person=70, resize=0.4)

# introspect the images arrays to find the shapes (for plotting)
n_samples, h, w = lfw_people.images.shape

# fot machine learning we use the 2 data directly (as relative pixel
# positions info is ignored by this model)
X = lfw_people.data
n_features = X.shape[1]

# the label to predict is the id of the person
y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0]

print "Total dataset size:"
开发者ID:kevinbluer,项目名称:data-science,代码行数:31,代码来源:face_recognition.py



注:本文中的sklearn.datasets.fetch_lfw_people函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python datasets.fetch_mldata函数代码示例发布时间:2022-05-27
下一篇:
Python datasets.fetch_20newsgroups_vectorized函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap