• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python datasets.make_circles函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.datasets.make_circles函数的典型用法代码示例。如果您正苦于以下问题:Python make_circles函数的具体用法?Python make_circles怎么用?Python make_circles使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了make_circles函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_sparse

    def test_sparse(self):
        np.random.seed(10)
        thresh = 1.1

        # Do dense filtration with threshold
        data = (
            datasets.make_circles(n_samples=100)[0]
            + 5 * datasets.make_circles(n_samples=100)[0]
        )
        res0 = ripser(data, thresh=thresh)

        # Convert to sparse matrix first based on threshold,
        # then do full filtration
        D = makeSparseDM(data, thresh)
        res1 = ripser(D, distance_matrix=True)

        # The same number of edges should have been added
        assert res0["num_edges"] == res1["num_edges"]

        dgms0 = res0["dgms"]
        dgms1 = res1["dgms"]
        I10 = dgms0[1]
        I11 = dgms1[1]
        idx = np.argsort(I10[:, 0])
        I10 = I10[idx, :]
        idx = np.argsort(I11[:, 0])
        I11 = I11[idx, :]
        assert np.allclose(I10, I11)
开发者ID:ctralie,项目名称:ripser,代码行数:28,代码来源:test_ripser.py


示例2: test_sparse

    def test_sparse(self):
        np.random.seed(10)
        thresh = 1.1

        # Do dense filtration with threshold
        data = (
            datasets.make_circles(n_samples=100)[0]
            + 5 * datasets.make_circles(n_samples=100)[0]
        )
        rips0 = Rips(thresh=thresh, maxdim=1)
        dgms0 = rips0.fit_transform(data)

        # Convert to sparse matrix first based on threshold,
        # then do full filtration
        rips1 = Rips(maxdim=1)
        D = makeSparseDM(data, thresh)
        dgms1 = rips1.fit_transform(D, distance_matrix=True)

        # The same number of edges should have been added
        assert rips0.num_edges_ == rips1.num_edges_

        I10 = dgms0[1]
        I11 = dgms1[1]
        idx = np.argsort(I10[:, 0])
        I10 = I10[idx, :]
        idx = np.argsort(I11[:, 0])
        I11 = I11[idx, :]
        assert np.allclose(I10, I11)
开发者ID:ctralie,项目名称:ripser,代码行数:28,代码来源:test_ripser_sklearn.py


示例3: withCircleData

def withCircleData():
    np.random.seed(0)
    X, Y = make_circles(n_samples=400, noise=.05, factor=.3)
    #plotData(X, Y, 'original-circle.png')
    #testPCA(X, Y, ncomp=2, dataset='circles')
    #myKPCA(X, Y, kernel_type='gauss', c=1, deg=2, ncomp=2, dataset='circles')
    myKPCA(X, Y, kernel_type='poly', c=1, deg=10, ncomp=2, dataset='circles')
开发者ID:ntduong,项目名称:ML,代码行数:7,代码来源:kernel_pca.py


示例4: main

def main():
    args = sys.argv[1:]
    
    dataset_path = None
    if args and '-save' in args:
        try: dataset_path = args[args.index('-save') + 1]
        except: dataset_path = 'dataset.p'
        
    # Generate the dataset
    print "...Generating Dataset..."
    X1, Y1 = make_circles(n_samples=800, noise=0.07, factor=0.4)
    frac0 = len(np.where(Y1 == 0)[0]) / float(len(Y1))
    frac1 = len(np.where(Y1 == 1)[0]) / float(len(Y1))
    
    print "Percentage of '0' labels:", frac0
    print "Percentage of '1' labels:", frac1

    # (Optionally) save the dataset to DATASET_PATH
    if dataset_path:
        print "...Saving dataset to {0}...".format(dataset_path)
        pickle.dump((X1, Y1, frac0, frac1), open(dataset_path, 'wb'))

    # Plot the dataset
    print "...Showing dataset in new window..."
    pl.figure(figsize=(10, 8))
    pl.subplots_adjust(bottom=.05, top=.9, left=.05, right=.95)

    pl.subplot(111)
    pl.title("Our Dataset: N=200, '0': {0} '1': {1} ".format(frac0, frac1), fontsize="large")

    pl.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)

    pl.show()
    
    print "...Done."
开发者ID:ewestern,项目名称:machine_learning,代码行数:35,代码来源:generate_dataset.py


示例5: generate_data

def generate_data():
    def kernel(x1, x2):
        return np.array([x1, x2, 2 * x1 ** 2 + 2 * x2 ** 2])

    X, Y = make_circles(500, noise=0.12, factor=0.01)

    A = X[np.where(Y == 0)]
    B = X[np.where(Y == 1)]

    X0_orig = A[:, 0]
    Y0_orig = A[:, 1]

    X1_orig = B[:, 0]
    Y1_orig = B[:, 1]

    A = np.array([kernel(x, y) for x, y in zip(np.ravel(X0_orig), np.ravel(Y0_orig))])

    X0 = A[:, 0]
    Y0 = A[:, 1]
    Z0 = A[:, 2]

    A = np.array([kernel(x, y) for x, y in zip(np.ravel(X1_orig), np.ravel(Y1_orig))])
    X1 = A[:, 0]
    Y1 = A[:, 1]
    Z1 = A[:, 2]

    return X0, X1, Y0, Y1, Z0, Z1
开发者ID:ilanman,项目名称:blogposts,代码行数:27,代码来源:kernel_trick.py


示例6: main

def main():
	no_of_samples = 400
	
	data = []
	data.append( datasets.make_moons(n_samples=no_of_samples, noise=0.05)[0] )
	data.append( datasets.make_circles(n_samples=no_of_samples, factor=0.5, noise=0.05)[0] )
	
	# number of clusters we expect
	K = 2

	for X in data:	
		# from dataset, create adjacency, degree, and laplacian matrix
		adjacency 	= gaussianDistance( X, sigma=0.1 )
		degree 		= degreeMatrix( adjacency )
		L 			= diag(degree) - adjacency

		# perform whitening on the Laplacian matrix
		deg_05 	= diag( degree  ** -0.5 )
		L 		= deg_05.dot( L ).dot( deg_05 )

		# use eig to obtain eigenvalues and eigenvectors
		eigenvalues, eigenvectors = linalg.eig( L )

		# Sort the eigenvalues ascending, the first K zero eigenvalues represent the connected components
		idx = eigenvalues.argsort()
		eigenvalues.sort()
		evecs = eigenvectors[:, idx]
		eigenvectors = evecs[:, 0:K]
		print eigenvalues[0:K]

		color_array = ['b', 'r', 'g', 'y']

		fig = pyplot.figure( figsize=(15, 5) )
		fig.canvas.set_window_title( 'Difference between K-means and Spectral Clusterings' )

		# First perform the normal K-means on the original dataset and plot it out
		centroids, labels = scipy.cluster.vq.kmeans2( X, K )
		data = c_[X, labels]	
		ax = fig.add_subplot( 131 )
		ax.set_title('K means clustering')
		for k in range( 0, K ):
			ax.scatter( data[data[:, 2]==k, 0], data[data[:, 2]==k, 1], c=color_array[k], marker='o')

		# Then we perform spectral clustering, i.e. K-means on eigenvectors
		centroids, labels = scipy.cluster.vq.kmeans2( eigenvectors, K )
		data = c_[X, labels]	
		ax = fig.add_subplot( 132 )
		ax.set_title('Spectral clustering')
		for k in range( 0, K ):
			ax.scatter( data[data[:, 2]==k, 0], data[data[:, 2]==k, 1], c=color_array[k], marker='o')

		# Plot out the eigenvectors too
		data = c_[eigenvectors, labels]
		ax = fig.add_subplot(133)
		ax.set_title('K-eigenvectors')
		for k in range( 0, K ):
			ax.scatter( data[data[:, 2]==k, 0], data[data[:, 2]==k, 1], c=color_array[k], marker='o')

		pyplot.show()
开发者ID:SanchitAggarwal,项目名称:Sandbox,代码行数:59,代码来源:spectral_clustering.py


示例7: generate_circles

def generate_circles():

    X1, Y1 = make_circles(n_samples=500, noise=0.07, factor=0.4)
    plt.figure(figsize=(5, 5))
    plt.scatter(X1[:, 0], X1[:, 1], c=Y1)
    plt.grid(b=True, which="major", linestyle="-", alpha=0.1, color="black")
    plt.title("Can this be solved linearly?", size=16)
    plt.show()
开发者ID:ilanman,项目名称:blogposts,代码行数:8,代码来源:kernel_trick.py


示例8: main

def main():
    n=500
    x,y=datasets.make_circles(n_samples=n,factor=.5,noise=.05)
    label=CCPMCV().fit(x).label
    print "ARI:",adjusted_rand_score(y,label)
    figure(1)
    scatter(x[:,0],x[:,1],c=label,s=50)
    show()
开发者ID:nkt1546789,项目名称:CCPM,代码行数:8,代码来源:CCPM.py


示例9: generate_circles

def generate_circles(n, y_val):
    """
    Generates a dataset where points are shaped into two circles,
    and labels them with y_val.
    """
    X,y = make_circles(n, noise=0.1)

    return (X, [y_val] * len(X))
开发者ID:adolenc,项目名称:topotext,代码行数:8,代码来源:benchmark_toy.py


示例10: generate_biclass_data

def generate_biclass_data(data_type, random_state):
    """ Generate biclass data to classify

    arg : data_type (str) possible type of data
            choose any in ["lin_sep", "non_lin_sep", "overlap"]
            'lin_sep' : Bi-class, linearly separable data
            'non_lin_sep' : Bi-class, non linearly separable data
            'overlap' : Bi-class, non linearly separable data with class overlap

        random_state (int) seed for numpy.random
    """

    # Set seed for reproducible results
    np.random.seed(random_state)

    # Case 1 : linearly separable data
    if data_type == "lin_sep":
        mean1 = np.array([0, 2])
        mean2 = np.array([2, 0])
        cov = np.array([[0.8, 0.6], [0.6, 0.8]])
        X1 = np.random.multivariate_normal(mean1, cov, 100)
        y1 = np.ones(len(X1))
        X2 = np.random.multivariate_normal(mean2, cov, 100)
        y2 = np.ones(len(X2)) * -1
        X = np.vstack((X1, X2))
        y = np.hstack((y1, y2))

    # Case 2 : non -linearly separable data
    elif data_type == "moons":
        X, y = make_moons(n_samples=200, noise=0.2)

    elif data_type == "circles":
        X, y = make_circles(n_samples=200, noise=0.2, factor=0.5)

    # Case 3 : data with overlap between classes
    elif data_type == "overlap":
        mean1 = np.array([0, 2])
        mean2 = np.array([2, 0])
        cov = np.array([[1.5, 1.0], [1.0, 1.5]])
        X1 = np.random.multivariate_normal(mean1, cov, 100)
        y1 = np.ones(len(X1))
        X2 = np.random.multivariate_normal(mean2, cov, 100)
        y2 = np.ones(len(X2)) * -1
        X = np.vstack((X1, X2))
        y = np.hstack((y1, y2))

    assert(X.shape[0] == y.shape[0])

    # Format target to: -1 / +1
    targets = set(y.tolist())
    t1 = min(targets)
    t2 = max(targets)
    l1 = np.where(y < t2)
    l2 = np.where(y > t1)
    y[l1] = -1
    y[l2] = 1

    return X, y
开发者ID:cuissai,项目名称:Learning,代码行数:58,代码来源:nntoy_examples.py


示例11: loadDatasets

def loadDatasets(linearly_separable):

    datasets = [\
                make_moons(noise=0.3, random_state=0), \
                make_circles(noise=0.2, factor=0.5, random_state=1), \
                linearly_separable \
               ]

    return datasets
开发者ID:AkiraKane,项目名称:Python,代码行数:9,代码来源:classifier_comparison.py


示例12: make_datasets

def make_datasets():
    """

    :return:
    """

    return [make_moons(n_samples=200, noise=0.3, random_state=0),
            make_circles(n_samples=200, noise=0.2, factor=0.5, random_state=1),
            make_linearly_separable()]
开发者ID:wdm0006,项目名称:sklearn-extensions,代码行数:9,代码来源:example.py


示例13: test_gridsearch_pipeline

def test_gridsearch_pipeline():
    # Test if we can do a grid-search to find parameters to separate
    # circles with a perceptron model.
    X, y = make_circles(n_samples=400, factor=0.3, noise=0.05, random_state=0)
    kpca = KernelPCA(kernel="rbf", n_components=2)
    pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())])
    param_grid = dict(kernel_pca__gamma=2.0 ** np.arange(-2, 2))
    grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid)
    grid_search.fit(X, y)
    assert_equal(grid_search.best_score_, 1)
开发者ID:Claire-Ling-Liu,项目名称:scikit-learn,代码行数:10,代码来源:test_kernel_pca.py


示例14: test_random_trees_dense_type

def test_random_trees_dense_type():
    # Test that the `sparse_output` parameter of RandomTreesEmbedding
    # works by returning a dense array.

    # Create the RTE with sparse=False
    hasher = RandomTreesEmbedding(n_estimators=10, sparse_output=False)
    X, y = datasets.make_circles(factor=0.5)
    X_transformed = hasher.fit_transform(X)

    # Assert that type is ndarray, not scipy.sparse.csr.csr_matrix
    assert_equal(type(X_transformed), np.ndarray)
开发者ID:henrywoo,项目名称:scikit-learn,代码行数:11,代码来源:test_forest.py


示例15: build_datasets

def build_datasets(n_samples=100):
    X, y = make_classification(n_samples=n_samples, n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1)
    X += 2 * np.random.uniform(size=X.shape)
    linearly_separable = (X, y)

    names = ['moons', 'circles', 'linear', 'xor']
    datasets = [make_moons(n_samples=n_samples, noise=0.3),
                make_circles(n_samples=n_samples, noise=0.2, factor=0.5),
                linearly_separable,
                xor_scale_invariant(n_samples=n_samples)]
    return (names, datasets)
开发者ID:AndreasMadsen,项目名称:course-02460,代码行数:11,代码来源:2d_significant.py


示例16: test_gridsearch_pipeline_precomputed

def test_gridsearch_pipeline_precomputed():
    # Test if we can do a grid-search to find parameters to separate
    # circles with a perceptron model using a precomputed kernel.
    X, y = make_circles(n_samples=400, factor=0.3, noise=0.05, random_state=0)
    kpca = KernelPCA(kernel="precomputed", n_components=2)
    pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())])
    param_grid = dict(Perceptron__n_iter=np.arange(1, 5))
    grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid)
    X_kernel = rbf_kernel(X, gamma=2.0)
    grid_search.fit(X_kernel, y)
    assert_equal(grid_search.best_score_, 1)
开发者ID:Claire-Ling-Liu,项目名称:scikit-learn,代码行数:11,代码来源:test_kernel_pca.py


示例17: gen_test_data

def gen_test_data() :
    ################################################################
    # using sklearn                                                #
    ################################################################
    N = 500
    #features,labels = ds.make_classification(n_samples = N,n_features = 2,n_informative = 2,n_redundant = 0,n_clusters_per_class = 1,class_sep = 2,shift = 2.2)
    features,labels = ds.make_circles(n_samples = N)
    #features,labels = ds.make_moons(n_samples = N)
    labels[labels == 0] = -1
    features = auto_np.array(features) * 4.0
    labels = auto_np.array(labels).reshape(features.shape[0],1)
    return features,labels
开发者ID:fenss,项目名称:tat_algorithm,代码行数:12,代码来源:tat_nn_with_autograd.py


示例18: makeSimpleDatasets

def makeSimpleDatasets(n_samples=1500): # from sklearn example
    np.random.seed(0)
    # Generate datasets. We choose the size big enough to see the scalability
    # of the algorithms, but not too big to avoid too long running times
    n_samples = 1500
    noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5,
                                          noise=.05)
    noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05)
    blobs = datasets.make_blobs(n_samples=n_samples, random_state=8)
    no_structure = np.random.rand(n_samples, 2), None

    return [noisy_circles, noisy_moons, blobs, no_structure]
开发者ID:dblalock,项目名称:flock,代码行数:12,代码来源:clusters.py


示例19: get_dataset

def get_dataset(dataset, n_samples):
    if dataset == "Noisy Circles":
        return datasets.make_circles(n_samples=n_samples, factor=0.5, noise=0.05)

    elif dataset == "Noisy Moons":
        return datasets.make_moons(n_samples=n_samples, noise=0.05)

    elif dataset == "Blobs":
        return datasets.make_blobs(n_samples=n_samples, random_state=8)

    elif dataset == "No Structure":
        return np.random.rand(n_samples, 2), None
开发者ID:ChunHungLiu,项目名称:bokeh,代码行数:12,代码来源:main.py


示例20: get_dataset

def get_dataset(dataset, n_samples):
    # Generate the new data:
    if dataset=='Noisy Circles':
        X, y = datasets.make_circles(n_samples=n_samples, factor=.5, noise=.05)
    elif dataset=='Noisy Moons':
        X, y = datasets.make_moons(n_samples=n_samples, noise=.05)
    elif dataset=='Blobs':
        X, y = datasets.make_blobs(n_samples=n_samples, random_state=8)
    else:
        X, y = np.random.rand(n_samples, 2), None

    return X, y
开发者ID:ContinuumIO,项目名称:webinar-examples,代码行数:12,代码来源:cluster2.py



注:本文中的sklearn.datasets.make_circles函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python datasets.make_classification函数代码示例发布时间:2022-05-27
下一篇:
Python datasets.make_blobs函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap