本文整理汇总了Python中sklearn.datasets.make_regression函数的典型用法代码示例。如果您正苦于以下问题:Python make_regression函数的具体用法?Python make_regression怎么用?Python make_regression使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了make_regression函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testParallelPen
def testParallelPen(self):
#Check if penalisation == inf when treeSize < gamma
numExamples = 100
X, y = data.make_regression(numExamples)
learner = DecisionTreeLearner(pruneType="CART", maxDepth=10, minSplit=2)
paramDict = {}
paramDict["setGamma"] = numpy.array(numpy.round(2**numpy.arange(1, 10, 0.5)-1), dtype=numpy.int)
folds = 3
alpha = 1.0
Cvs = numpy.array([(folds-1)*alpha])
idx = Sampling.crossValidation(folds, X.shape[0])
resultsList = learner.parallelPen(X, y, idx, paramDict, Cvs)
learner, trainErrors, currentPenalties = resultsList[0]
learner.setGamma(2**10)
treeSize = 0
#Let's work out the size of the unpruned tree
for trainInds, testInds in idx:
trainX = X[trainInds, :]
trainY = y[trainInds]
learner.learnModel(trainX, trainY)
treeSize += learner.tree.size
treeSize /= float(folds)
self.assertTrue(numpy.isinf(currentPenalties[paramDict["setGamma"]>treeSize]).all())
self.assertTrue(not numpy.isinf(currentPenalties[paramDict["setGamma"]<treeSize]).all())
开发者ID:malcolmreynolds,项目名称:APGL,代码行数:33,代码来源:DecisionTreeLearnerTest.py
示例2: test_partial_dependence_helpers
def test_partial_dependence_helpers(est, method, target_feature):
# Check that what is returned by _partial_dependence_brute or
# _partial_dependence_recursion is equivalent to manually setting a target
# feature to a given value, and computing the average prediction over all
# samples.
# This also checks that the brute and recursion methods give the same
# output.
X, y = make_regression(random_state=0)
# The 'init' estimator for GBDT (here the average prediction) isn't taken
# into account with the recursion method, for technical reasons. We set
# the mean to 0 to that this 'bug' doesn't have any effect.
y = y - y.mean()
est.fit(X, y)
# target feature will be set to .5 and then to 123
features = np.array([target_feature], dtype=np.int32)
grid = np.array([[.5],
[123]])
if method == 'brute':
pdp = _partial_dependence_brute(est, grid, features, X,
response_method='auto')
else:
pdp = _partial_dependence_recursion(est, grid, features)
mean_predictions = []
for val in (.5, 123):
X_ = X.copy()
X_[:, target_feature] = val
mean_predictions.append(est.predict(X_).mean())
pdp = pdp[0] # (shape is (1, 2) so make it (2,))
assert_allclose(pdp, mean_predictions, atol=1e-3)
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:34,代码来源:test_partial_dependence.py
示例3: test_regression_custom_mse
def test_regression_custom_mse():
X, y = make_regression(n_samples=1000,
n_features=5,
n_informative=2,
n_targets=1,
random_state=123,
shuffle=False)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=123)
svm = SVR(kernel='rbf', gamma='auto')
svm.fit(X_train, y_train)
imp_vals, imp_all = feature_importance_permutation(
predict_method=svm.predict,
X=X_test,
y=y_test,
metric=mean_squared_error,
num_rounds=1,
seed=123)
norm_imp_vals = imp_vals / np.abs(imp_vals).max()
assert imp_vals.shape == (X_train.shape[1], )
assert imp_all.shape == (X_train.shape[1], 1)
assert norm_imp_vals[0] == -1.
开发者ID:rasbt,项目名称:mlxtend,代码行数:28,代码来源:test_feature_importance.py
示例4: __init__
def __init__(self, n_samples, n_features, n_informative, normalize_y = False, normalize = True, centerdata = True,
transformation=NullTransformation(), fit_intercept = True):
self.n_samples = n_samples
self.n_features = n_features
X, Y = datasets.make_regression(n_samples=self.n_samples, n_features=self.n_features,
n_informative=n_informative, shuffle=False, random_state=11)
XTrain, XTest, YTrain, YTest = train_test_split(X, Y, test_size=0.33,random_state=0)
self.XTrain_orig = XTrain
self.XTest_orig = XTest
self.YTrain_orig = YTrain
self.YTest_orig = YTest
if centerdata==True:
self.XTrain, YTrain, X_mean, y_mean, X_std = center_data(XTrain, YTrain, fit_intercept=fit_intercept, normalize = normalize)
self.XTest, YTest = self.center_test(XTest,YTest,X_mean,y_mean,X_std)
if normalize_y:
self.YTrain, self.YTest = self.normalize_labels(YTrain, YTest)
else:
self.YTrain = YTrain
self.YTest = YTest
else:
self.XTrain = XTrain
self.YTrain = YTrain
self.XTest = XTest
self.YTest = YTest
self.transformation = transformation
开发者ID:marty10,项目名称:LASSO,代码行数:25,代码来源:ExtractDataset.py
示例5: test_make_regression
def test_make_regression():
X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3,
effective_rank=5, coef=True, bias=0.0,
noise=1.0, random_state=0)
assert_equal(X.shape, (100, 10), "X shape mismatch")
assert_equal(y.shape, (100,), "y shape mismatch")
assert_equal(c.shape, (10,), "coef shape mismatch")
assert_equal(sum(c != 0.0), 3, "Unexpected number of informative features")
# Test that y ~= np.dot(X, c) + bias + N(0, 1.0).
assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1)
# Test with small number of features.
X, y = make_regression(n_samples=100, n_features=1) # n_informative=3
assert_equal(X.shape, (100, 1))
开发者ID:Adrien-NK,项目名称:scikit-learn,代码行数:16,代码来源:test_samples_generator.py
示例6: test_multi_predict
def test_multi_predict(self):
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
n = 1000
X, y = make_regression(n, random_state=rng)
X_train, X_test, y_train, y_test = train_test_split(X, y,
random_state=123)
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test)
params = {}
params["tree_method"] = "gpu_hist"
params['predictor'] = "gpu_predictor"
bst_gpu_predict = xgb.train(params, dtrain)
params['predictor'] = "cpu_predictor"
bst_cpu_predict = xgb.train(params, dtrain)
predict0 = bst_gpu_predict.predict(dtest)
predict1 = bst_gpu_predict.predict(dtest)
cpu_predict = bst_cpu_predict.predict(dtest)
assert np.allclose(predict0, predict1)
assert np.allclose(predict0, cpu_predict)
开发者ID:rfru,项目名称:xgboost,代码行数:26,代码来源:test_gpu_prediction.py
示例7: regression_data
def regression_data():
X, y = make_regression(
1000, 20, n_informative=10, bias=0, random_state=0)
X, y = X.astype(np.float32), y.astype(np.float32).reshape(-1, 1)
Xt = StandardScaler().fit_transform(X)
yt = StandardScaler().fit_transform(y)
return Xt, yt
开发者ID:YangHaha11514,项目名称:skorch,代码行数:7,代码来源:conftest.py
示例8: testRecursiveSetPrune
def testRecursiveSetPrune(self):
numExamples = 1000
X, y = data.make_regression(numExamples)
y = Standardiser().normaliseArray(y)
numTrain = numpy.round(numExamples * 0.66)
trainX = X[0:numTrain, :]
trainY = y[0:numTrain]
testX = X[numTrain:, :]
testY = y[numTrain:]
learner = DecisionTreeLearner()
learner.learnModel(trainX, trainY)
rootId = (0,)
learner.tree.getVertex(rootId).setTestInds(numpy.arange(testX.shape[0]))
learner.recursiveSetPrune(testX, testY, rootId)
for vertexId in learner.tree.getAllVertexIds():
tempY = testY[learner.tree.getVertex(vertexId).getTestInds()]
predY = numpy.ones(tempY.shape[0])*learner.tree.getVertex(vertexId).getValue()
error = numpy.sum((tempY-predY)**2)
self.assertAlmostEquals(error, learner.tree.getVertex(vertexId).getTestError())
#Check leaf indices form all indices
inds = numpy.array([])
for vertexId in learner.tree.leaves():
inds = numpy.union1d(inds, learner.tree.getVertex(vertexId).getTestInds())
nptst.assert_array_equal(inds, numpy.arange(testY.shape[0]))
开发者ID:malcolmreynolds,项目名称:APGL,代码行数:33,代码来源:DecisionTreeLearnerTest.py
示例9: test_multioutput_regression
def test_multioutput_regression():
# Test that multi-output regression works as expected
X, y = make_regression(n_samples=200, n_targets=5)
mlp = MLPRegressor(solver='lbfgs', hidden_layer_sizes=50, max_iter=200,
random_state=1)
mlp.fit(X, y)
assert_greater(mlp.score(X, y), 0.9)
开发者ID:aniryou,项目名称:scikit-learn,代码行数:7,代码来源:test_mlp.py
示例10: test_check_gcv_mode_error
def test_check_gcv_mode_error(mode):
X, y = make_regression(n_samples=5, n_features=2)
gcv = RidgeCV(gcv_mode=mode)
with pytest.raises(ValueError, match="Unknown value for 'gcv_mode'"):
gcv.fit(X, y)
with pytest.raises(ValueError, match="Unknown value for 'gcv_mode'"):
_check_gcv_mode(X, mode)
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:7,代码来源:test_ridge.py
示例11: test_check_gcv_mode_choice
def test_check_gcv_mode_choice(sparse, mode, mode_n_greater_than_p,
mode_p_greater_than_n):
X, _ = make_regression(n_samples=5, n_features=2)
if sparse:
X = sp.csr_matrix(X)
assert _check_gcv_mode(X, mode) == mode_n_greater_than_p
assert _check_gcv_mode(X.T, mode) == mode_p_greater_than_n
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:7,代码来源:test_ridge.py
示例12: test_shuffle
def test_shuffle():
# Test that the shuffle parameter affects the training process (it should)
X, y = make_regression(n_samples=50, n_features=5, n_targets=1,
random_state=0)
# The coefficients will be identical if both do or do not shuffle
for shuffle in [True, False]:
mlp1 = MLPRegressor(hidden_layer_sizes=1, max_iter=1, batch_size=1,
random_state=0, shuffle=shuffle)
mlp2 = MLPRegressor(hidden_layer_sizes=1, max_iter=1, batch_size=1,
random_state=0, shuffle=shuffle)
mlp1.fit(X, y)
mlp2.fit(X, y)
assert np.array_equal(mlp1.coefs_[0], mlp2.coefs_[0])
# The coefficients will be slightly different if shuffle=True
mlp1 = MLPRegressor(hidden_layer_sizes=1, max_iter=1, batch_size=1,
random_state=0, shuffle=True)
mlp2 = MLPRegressor(hidden_layer_sizes=1, max_iter=1, batch_size=1,
random_state=0, shuffle=False)
mlp1.fit(X, y)
mlp2.fit(X, y)
assert not np.array_equal(mlp1.coefs_[0], mlp2.coefs_[0])
开发者ID:chrisfilo,项目名称:scikit-learn,代码行数:25,代码来源:test_mlp.py
示例13: test_levenberg_marquardt
def test_levenberg_marquardt(self):
dataset = datasets.make_regression(n_samples=50, n_features=2)
data, target = dataset
data_scaler = preprocessing.MinMaxScaler()
target_scaler = preprocessing.MinMaxScaler()
x_train, x_test, y_train, y_test = train_test_split(
data_scaler.fit_transform(data),
target_scaler.fit_transform(target.reshape(-1, 1)),
train_size=0.85
)
lmnet = algorithms.LevenbergMarquardt(
connection=[
layers.Input(2),
layers.Sigmoid(6),
layers.Sigmoid(1),
],
mu_update_factor=2,
mu=0.1,
verbose=False,
show_epoch=1,
)
lmnet.train(x_train, y_train, epochs=4)
error = lmnet.prediction_error(x_test, y_test)
self.assertAlmostEqual(0.006, error, places=3)
开发者ID:itdxer,项目名称:neupy,代码行数:28,代码来源:test_levenberg_marquardt.py
示例14: test_cross_val_score_with_score_func_regression
def test_cross_val_score_with_score_func_regression():
X, y = make_regression(n_samples=30, n_features=20, n_informative=5,
random_state=0)
reg = Ridge()
# Default score of the Ridge regression estimator
scores = cval.cross_val_score(reg, X, y, cv=5)
assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
# R2 score (aka. determination coefficient) - should be the
# same as the default estimator score
r2_scores = cval.cross_val_score(reg, X, y, scoring="r2", cv=5)
assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
# Mean squared error; this is a loss function, so "scores" are negative
mse_scores = cval.cross_val_score(reg, X, y, cv=5,
scoring="mean_squared_error")
expected_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99])
assert_array_almost_equal(mse_scores, expected_mse, 2)
# Explained variance
with warnings.catch_warnings(record=True):
ev_scores = cval.cross_val_score(reg, X, y, cv=5,
score_func=explained_variance_score)
assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
开发者ID:GGXH,项目名称:scikit-learn,代码行数:25,代码来源:test_cross_validation.py
示例15: regr_data
def regr_data():
return make_regression(
n_samples=2000,
n_targets=1,
n_informative=10,
random_state=0,
)
开发者ID:BenjaminBossan,项目名称:mink,代码行数:7,代码来源:conftest.py
示例16: test_regression
def test_regression():
X, y = make_regression(n_samples=1000,
n_features=5,
n_informative=2,
n_targets=1,
random_state=123,
shuffle=False)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=123)
svm = SVR(kernel='rbf')
svm.fit(X_train, y_train)
imp_vals, imp_all = feature_importance_permutation(
predict_method=svm.predict,
X=X_test,
y=y_test,
metric='r2',
num_rounds=1,
seed=123)
assert imp_vals.shape == (X_train.shape[1], )
assert imp_all.shape == (X_train.shape[1], 1)
assert imp_vals[0] > 0.2
assert imp_vals[1] > 0.2
assert sum(imp_vals[3:]) <= 0.01
开发者ID:JJLWHarrison,项目名称:mlxtend,代码行数:28,代码来源:test_feature_importance.py
示例17: test_multi_target_regression_one_target
def test_multi_target_regression_one_target():
# Test multi target regression raises
X, y = datasets.make_regression(n_targets=1)
X_train, y_train = X[:50], y[:50]
X_test, y_test = X[50:], y[50:]
rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
assert_raises(ValueError, rgr.fit, X_train, y_train)
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:8,代码来源:test_multioutput.py
示例18: get_weights_regression
def get_weights_regression(min_weight, max_weight):
rng = np.random.RandomState(199)
n = 10000
sparsity = 0.25
X, y = datasets.make_regression(n, random_state=rng)
X = np.array([[np.nan if rng.uniform(0, 1) < sparsity else x for x in x_row] for x_row in X])
w = np.array([rng.uniform(min_weight, max_weight) for i in range(n)])
return X, y, w
开发者ID:alvis-huang,项目名称:xgboost,代码行数:8,代码来源:regression_test_utilities.py
示例19: test_fit_continuous
def test_fit_continuous(self):
"""
Should not allow any target type other than binary or multiclass
"""
X, y = make_regression()
with pytest.raises(YellowbrickValueError, match="does not support target type"):
oz = PrecisionRecallCurve(LinearSVC())
oz.fit(X, y)
开发者ID:DistrictDataLabs,项目名称:yellowbrick,代码行数:8,代码来源:test_prcurve.py
示例20: test_with_pandas_df
def test_with_pandas_df(self):
x, y = make_regression(random_state=561)
df = pd.DataFrame(x)
df['y'] = y
m = ElasticNet(n_splits=3, random_state=123)
m = m.fit(df.drop(['y'], axis=1), df.y)
sanity_check_regression(m, x)
开发者ID:civisanalytics,项目名称:python-glmnet,代码行数:8,代码来源:test_pandas.py
注:本文中的sklearn.datasets.make_regression函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论