本文整理汇总了Python中sklearn.decomposition.sklearnPCA函数的典型用法代码示例。如果您正苦于以下问题:Python sklearnPCA函数的具体用法?Python sklearnPCA怎么用?Python sklearnPCA使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了sklearnPCA函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: pca_step_na
def pca_step_na(trans_std,promo_std):
from sklearn.decomposition import PCA as sklearnPCA
trans_pca = sklearnPCA(n_components=8)
trans_new = trans_pca.fit_transform(trans_std)
# promo PCA
promo_pca = sklearnPCA(n_components=12)
promo_new = promo_pca.fit_transform(promo_std)
pca_dict = {"trans":trans_pca,"promo":promo_pca}
return trans_new,promo_new,pca_dict
开发者ID:raincoatrun,项目名称:Rang-Tech-Data-Competition,代码行数:10,代码来源:KFoldPCA.py
示例2: pca_step
def pca_step(trans_std,food_std,promo_std):
from sklearn.decomposition import PCA as sklearnPCA
trans_pca = sklearnPCA(n_components=9)
trans_new = trans_pca.fit_transform(trans_std)
#food pca
food_pca = sklearnPCA(n_components=24)
food_new = food_pca.fit_transform(food_std)
# promo PCA
promo_pca = sklearnPCA(n_components=13)
promo_new = promo_pca.fit_transform(promo_std)
pca_dict = {"trans":trans_pca,"food":food_pca,"promo":promo_pca}
return trans_new,food_new,promo_new,pca_dict
开发者ID:raincoatrun,项目名称:Rang-Tech-Data-Competition,代码行数:15,代码来源:KFoldPCA.py
示例3: reduceDataset
def reduceDataset(self,nr=3,method='PCA'):
'''It reduces the dimensionality of a given dataset using different techniques provided by Sklearn library
Methods available:
'PCA'
'FactorAnalysis'
'KPCArbf','KPCApoly'
'KPCAcosine','KPCAsigmoid'
'IPCA'
'FastICADeflation'
'FastICAParallel'
'Isomap'
'LLE'
'LLEmodified'
'LLEltsa'
'''
dataset=self.ModelInputs['Dataset']
#dataset=self.dataset[Model.in_columns]
#dataset=self.dataset[['Humidity','TemperatureF','Sea Level PressureIn','PrecipitationIn','Dew PointF','Value']]
#PCA
if method=='PCA':
sklearn_pca = sklearnPCA(n_components=nr)
reduced = sklearn_pca.fit_transform(dataset)
#Factor Analysis
elif method=='FactorAnalysis':
fa=FactorAnalysis(n_components=nr)
reduced=fa.fit_transform(dataset)
#kernel pca with rbf kernel
elif method=='KPCArbf':
kpca=KernelPCA(nr,kernel='rbf')
reduced=kpca.fit_transform(dataset)
#kernel pca with poly kernel
elif method=='KPCApoly':
kpca=KernelPCA(nr,kernel='poly')
reduced=kpca.fit_transform(dataset)
#kernel pca with cosine kernel
elif method=='KPCAcosine':
kpca=KernelPCA(nr,kernel='cosine')
reduced=kpca.fit_transform(dataset)
#kernel pca with sigmoid kernel
elif method=='KPCAsigmoid':
kpca=KernelPCA(nr,kernel='sigmoid')
reduced=kpca.fit_transform(dataset)
#ICA
elif method=='IPCA':
ipca=IncrementalPCA(nr)
reduced=ipca.fit_transform(dataset)
#Fast ICA
elif method=='FastICAParallel':
fip=FastICA(nr,algorithm='parallel')
reduced=fip.fit_transform(dataset)
elif method=='FastICADeflation':
fid=FastICA(nr,algorithm='deflation')
reduced=fid.fit_transform(dataset)
elif method == 'All':
self.dimensionalityReduction(nr=nr)
return self
self.ModelInputs.update({method:reduced})
self.datasetsAvailable.append(method)
return self
开发者ID:UIUC-SULLIVAN,项目名称:ThesisProject_Andrea_Mattera,代码行数:60,代码来源:Classes.py
示例4: dataframe_components
def dataframe_components(df2,lon,columns):
import numpy as np
import pandas as pd
from sklearn import tree
from sklearn import metrics
from sklearn import cross_validation
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA as sklearnPCA
X=df2.values
from sklearn.preprocessing import StandardScaler
X_std = StandardScaler().fit_transform(X)
pca=sklearnPCA(n_components=lon).fit_transform(X_std)
list_comp_pca=[]
# CREACCION DATAFRAME CON COMPONENTES PRINCIPALES
for i in range(0,lon):
v="Componente"+str(i)
list_comp_pca.append(v)
dd1=pd.DataFrame(X_std,columns=columns)
dd2=pd.DataFrame(pca,columns=list_comp_pca)
df3=pd.concat([dd1,dd2],axis=1)
return df3
开发者ID:romcra,项目名称:ratios_pca_decisiontree,代码行数:27,代码来源:ratios_pca_decisiontree.py
示例5: pca
def pca(self):
# remove WHERE when table cleaned up to remove header rows
statement = (
"""SELECT transcript_id, TPM, sample_id FROM %s
where transcript_id != 'Transcript' """
% self.table
)
# fetch data
df = self.getDataFrame(statement)
# put dataframe so row=genes, cols = samples, cells contain TPM
pivot_df = df.pivot("transcript_id", "sample_id")["TPM"]
# filter dataframe to get rid of genes where TPM == 0 across samples
filtered_df = pivot_df[pivot_df.sum(axis=1) > 0]
# add +1 to counts and log transform data.
logdf = np.log(filtered_df + 0.1)
# Scale dataframe so variance =1 across rows
logscaled = sklearn_scale(logdf, axis=1)
# turn array back to df and add transcript id back to index
logscaled_df = pd.DataFrame(logscaled)
logscaled_df.index = list(logdf.index)
# Now do the PCA - can change n_components
sklearn_pca = sklearnPCA(n_components=self.n_components)
sklearn_pca.fit(logscaled_df)
index = logdf.columns
return sklearn_pca, index
开发者ID:sudlab,项目名称:CGATPipelines,代码行数:35,代码来源:RnaseqqcReport.py
示例6: pca_analysis
def pca_analysis(indexname,dataframe):
df = dataframe
column_count = len(df.columns)
X = df.ix[:,1:column_count].values
zip = df.ix[:,0].values
#Standardize Data
X_std = StandardScaler().fit_transform(X)
#Generate PCA Components
sklearn_pca = sklearnPCA(n_components=1)
Y_sklearn = sklearn_pca.fit_transform(X_std)
explained_ratio = sklearn_pca.explained_variance_ratio_
covariance_array = sklearn_pca.get_covariance()
df_final = pd.DataFrame({'zip5':zip,indexname:Y_sklearn[:,0]})
#Normalize Data on a 0 to 1 scale
#zip5_final = df_final['zip5'].values
#minmax_scale = preprocessing.MinMaxScaler().fit(df_final[[indexname]])
#minmax = minmax_scale.transform(df_final[[indexname]])
#df_minmax = pd.DataFrame({'zip5':zip5_final,indexname:minmax[:,0]})
return df_final
开发者ID:DistrictDataLabs,项目名称:03-censusables,代码行数:26,代码来源:Model.py
示例7: kmeans
def kmeans():
yeast_t = 7
yeast_k = 6
yeastData = np.empty([614, 7], dtype = float)
with open('YeastGene.csv', 'rb') as yeastdata:
yeastreader = csv.reader(yeastdata, delimiter=',')
i = 0
for row in yeastreader:
yeastData[i] = row
i += 1
#print yeastData
yeastCentroid = np.empty([yeast_k, 7], dtype = float)
with open('YeastGene_Initial_Centroids.csv', 'rb') as yeastdata:
yeastreader = csv.reader(yeastdata, delimiter=',')
i = 0
for row in yeastreader:
yeastCentroid[i] = row
i += 1
#print yeastCentroid
for t in range(0, yeast_t):
yeast_c = [[] for i in range(0,yeast_k)]
minCentroid = []
for arr in yeastData:
for cen in yeastCentroid:
minCentroid.append(np.linalg.norm(arr - cen))
yeast_c[minCentroid.index(min(minCentroid))].append(arr)
minCentroid = []
for k in range(0,yeast_k):
yeastCentroid[k] = [float(sum(l))/len(l) for l in zip(*yeast_c[k])]
#print "The new yeast Centroid values\n"
#print yeastCentroid
#print "The cluster sizes are - "
print len(yeast_c[0]), len(yeast_c[1]), len(yeast_c[2]), len(yeast_c[3]), len(yeast_c[4]), len(yeast_c[5])
clusters = np.zeros([614, 7], dtype=float)
prev_len = 0
for i in range(0,6):
for j in range(0,len(yeast_c[i])):
clusters[prev_len] = yeast_c[i][j]
prev_len += 1
sklearn_pca = sklearnPCA(n_components = 2)
transf = sklearn_pca.fit_transform(clusters)
plt.plot(transf[0:140, 0], transf[0:140, 1],'*', markersize = 7, color='blue', alpha=0.5, label='cluster 1')
plt.plot(transf[140:191, 0], transf[140:191, 1],'*', markersize = 7, color='red', alpha=0.5, label='cluster 2')
plt.plot(transf[191:355, 0], transf[191:355, 1],'*', markersize = 7, color='green', alpha=0.5, label='cluster 3')
plt.plot(transf[355:376, 0], transf[355:376, 1],'*', markersize = 7, color='indigo', alpha=0.5, label='cluster 4')
plt.plot(transf[376:538, 0], transf[376:538, 1],'*', markersize = 7, color='yellow', alpha=0.5, label='cluster 5')
plt.plot(transf[538:614, 0], transf[538:614, 1],'*', markersize = 7, color='black', alpha=0.5, label='cluster 6')
plt.xlim([-10, 10])
plt.ylim([-10, 10])
plt.legend()
plt.title("Kmeans")
plt.show()
开发者ID:tsmanikandan,项目名称:CSE469-3,代码行数:59,代码来源:cluster.py
示例8: dimensionalityReduction
def dimensionalityReduction(self,nr=5):
'''It applies all the dimensionality reduction techniques available in this class:
Techniques available:
'PCA'
'FactorAnalysis'
'KPCArbf','KPCApoly'
'KPCAcosine','KPCAsigmoid'
'IPCA'
'FastICADeflation'
'FastICAParallel'
'Isomap'
'LLE'
'LLEmodified'
'LLEltsa'
'''
dataset=self.ModelInputs['Dataset']
sklearn_pca = sklearnPCA(n_components=nr)
p_components = sklearn_pca.fit_transform(dataset)
fa=FactorAnalysis(n_components=nr)
factors=fa.fit_transform(dataset)
kpca=KernelPCA(nr,kernel='rbf')
rbf=kpca.fit_transform(dataset)
kpca=KernelPCA(nr,kernel='poly')
poly=kpca.fit_transform(dataset)
kpca=KernelPCA(nr,kernel='cosine')
cosine=kpca.fit_transform(dataset)
kpca=KernelPCA(nr,kernel='sigmoid')
sigmoid=kpca.fit_transform(dataset)
ipca=IncrementalPCA(nr)
i_components=ipca.fit_transform(dataset)
fip=FastICA(nr,algorithm='parallel')
fid=FastICA(nr,algorithm='deflation')
ficaD=fip.fit_transform(dataset)
ficaP=fid.fit_transform(dataset)
'''isomap=Isomap(n_components=nr).fit_transform(dataset)
try:
lle1=LocallyLinearEmbedding(n_components=nr).fit_transform(dataset)
except ValueError:
lle1=LocallyLinearEmbedding(n_components=nr,eigen_solver='dense').fit_transform(dataset)
try:
lle2=LocallyLinearEmbedding(n_components=nr,method='modified').fit_transform(dataset)
except ValueError:
lle2=LocallyLinearEmbedding(n_components=nr,method='modified',eigen_solver='dense').fit_transform(dataset)
try:
lle3=LocallyLinearEmbedding(n_components=nr,method='ltsa').fit_transform(dataset)
except ValueError:
lle3=LocallyLinearEmbedding(n_components=nr,method='ltsa',eigen_solver='dense').fit_transform(dataset)'''
values=[p_components,factors,rbf,poly,cosine,sigmoid,i_components,ficaD,ficaP]#,isomap,lle1,lle2,lle3]
keys=['PCA','FactorAnalysis','KPCArbf','KPCApoly','KPCAcosine','KPCAsigmoid','IPCA','FastICADeflation','FastICAParallel']#,'Isomap','LLE','LLEmodified','LLEltsa']
self.ModelInputs.update(dict(zip(keys, values)))
[self.datasetsAvailable.append(key) for key in keys ]
#debug
#dataset=pd.DataFrame(self.ModelInputs['Dataset'])
#dataset['Output']=self.ModelOutput
#self.debug['Dimensionalityreduction']=dataset
###
return self
开发者ID:UIUC-SULLIVAN,项目名称:ThesisProject_Andrea_Mattera,代码行数:59,代码来源:Classes.py
示例9: pcaDecomp
def pcaDecomp(data, normalize = True):
if normalize:
data = StandardScaler().fit_transform(data)
pca = sklearnPCA(n_components = 2)
decomp = pca.fit_transform(data)
# plt.scatter(data[:,0], data[:,1])
# plt.show()
histo2d(decomp, ranged = False)
开发者ID:mattyhk,项目名称:soccer-meng,代码行数:9,代码来源:Clustering.py
示例10: apply_pca
def apply_pca(data):
from sklearn.preprocessing import StandardScaler
X_std = StandardScaler().fit_transform(data)
from sklearn.decomposition import PCA as sklearnPCA
sklearn_pca = sklearnPCA(n_components=2)
Y_sklearn = sklearn_pca.fit_transform(X_std)
return Y_sklearn
开发者ID:rudolfsberzins,项目名称:Various_code_examples,代码行数:9,代码来源:DAM_apply_pca.py
示例11: pca
def pca(self, samples):
'''
Apply pca from sklearn.
'''
sklearn_pca = sklearnPCA(n_components=2)
# Fit the model with samples
fit = sklearn_pca.fit(samples)
# Apply the dimensionality reduction on samples
pca = fit.transform(samples)
return pca
开发者ID:GabiThume,项目名称:msc-src,代码行数:10,代码来源:plot-1.0.py
示例12: pca_json
def pca_json(df, n_components=4, exp_var_min=.05):
sklearn_pca = sklearnPCA(n_components=n_components)
pca_points = sklearn_pca.fit_transform(df.T)
exp_var, num_pc = pc_to_keep(sklearn_pca.explained_variance_ratio_,
exp_var_min)
pca_points_df = trim_pc(pca_points, num_pc)
pca_points_df['sample'] = df.columns.values
pca_points_df = append_exp_var(pc_df=pca_points_df,
exp_var_list=exp_var,
num_pc=num_pc)
return pca_points_df
开发者ID:JakeHagen,项目名称:gene_expression_norm,代码行数:11,代码来源:gene_expression.py
示例13: plotGraph
def plotGraph(samples, n_samples, tags, dimensions):
colours = ['blue', 'red', 'green', 'yellow', 'black']
n_tags = len(tags)
if dimensions == '2D':
sklearn_pca = sklearnPCA(n_components=2)
sklearn_transf = sklearn_pca.fit_transform(samples)
for i in range(n_tags):
plt.plot(sklearn_transf[i*n_samples:(i+1)*n_samples,0],sklearn_transf[i*n_samples:(i+1)*n_samples,1],\
'o', markersize=7, color=colours[i], alpha=0.5, label=tags[i])
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
# plt.xlim([-4,4])
# plt.ylim([-4,4])
plt.legend()
plt.title('PCA')
elif dimensions == '3D':
sklearn_pca = sklearnPCA(n_components=3)
sklearn_transf = sklearn_pca.fit_transform(samples)
fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(111, projection='3d')
plt.rcParams['legend.fontsize'] = 10
for i in range(n_tags):
ax.plot(sklearn_transf[i*n_samples:(i+1)*n_samples,0], sklearn_transf[i*n_samples:(i+1)*n_samples,1],\
sklearn_transf[i*n_samples:(i+1)*n_samples,2], 'o', markersize=8, color=colours[i], alpha=0.5, label=tags[i])
plt.title('PCA')
ax.legend(loc='upper right')
# plt.savefig("%s.png" % (dimensions), bbox_inches='tight',dpi=200)
plt.show()
# plt.close()
return True
开发者ID:mrmutator,项目名称:COP_Project,代码行数:40,代码来源:plot.py
示例14: plotGraph
def plotGraph(samples, word, dimensions):
if dimensions == '2D':
sklearn_pca = sklearnPCA(n_components=2)
sklearn_transf = sklearn_pca.fit_transform(samples)
plt.plot(sklearn_transf[:,0],sklearn_transf[:,1],\
'o', markersize=7, color='blue', alpha=0.5, label='')
# plt.plot(sklearn_transf[1::2,0], sklearn_transf[1::2,1],\
# '^', markersize=7, color='red', alpha=0.5, label='Matrix')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
# plt.xlim([-4,4])
plt.ylim([-.8,.8])
plt.legend()
plt.title('Word embeddings PCA')
print sklearn_transf
elif dimensions == '3D':
sklearn_pca = sklearnPCA(n_components=3)
sklearn_transf = sklearn_pca.fit_transform(samples)
fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(111, projection='3d')
plt.rcParams['legend.fontsize'] = 10
ax.plot(sklearn_transf[:,0], sklearn_transf[:,1],\
sklearn_transf[:,2], 'o', markersize=8, color='blue', alpha=0.5, label='')
# ax.plot(sklearn_transf[:,0], sklearn_transf[:,1],\
# sklearn_transf[:,2], '^', markersize=8, alpha=0.5, color='red', label='Matrix')
plt.title('Word embeddings PCA')
ax.legend(loc='upper right')
print sklearn_transf
plt.savefig("%s-%s.png" % (word, dimensions), bbox_inches='tight', dpi=200)
plt.close()
return True
开发者ID:KatGarmash,项目名称:semantic_compound_splitting,代码行数:40,代码来源:pca.py
示例15: Seleccion_Ratios
def Seleccion_Ratios(df):
import numpy as np
import pandas as pd
from sklearn import tree
#from sklearn import metrics
from sklearn import cross_validation
from sklearn.decomposition import PCA as sklearnPCA
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
# Eliminamos antes del cálculo de las PCAs las columnas target e id.
df.columns = [x.lower() for x in df.columns]
objetivo = [col for col in df.columns if 'target' in col]
objetivo = ''.join(objetivo)
dfBorrar = df[['id', objetivo]]
borrar = ['id', objetivo]
dfaux = df.drop(borrar, axis=1)
ListaColumnas= dfaux.columns
tamDf = len(dfaux.columns)
X_std = StandardScaler().fit_transform(dfaux.values)
pca=sklearnPCA(n_components=tamDf).fit_transform(X_std)
columnas_pca=[]
for i in range(0,pca.shape[0]):
v="VAR_PCA_"+str(i)
columnas_pca.append(v)
df1=pd.DataFrame(X_std,columns=ListaColumnas)
df2=pd.DataFrame(pca,columns=columnas_pca)
df_PCA=pd.concat([df1,df2],axis=1)
y = df[objetivo]
forest = RandomForestClassifier(n_estimators=250, random_state=0)
forest.fit(df_PCA, y)
importances = forest.feature_importances_
std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0)
indices = np.argsort(importances)[::-1]
# Obtenemos el ranking de los mejores 30
print("TOP 30:")
for f in range(30):
print("%d. Ratio %s (%f) " % (f + 1, df_PCA.columns[indices[f]], importances[indices[f]] ))
开发者ID:ciffcesarhernandez,项目名称:practica3,代码行数:52,代码来源:RatioSelection.py
示例16: plot
def plot(self):
self.train()
# this will get data frame in self.mllib.X_train
X = self.mllib.X_train.iloc[:,:-1]
Y = self.mllib.X_train.iloc[:,-1]
# get data in 3D axis
scaler = sklearnPCA(n_components=3).fit(X)
X = scaler.transform(X)
Y = Y.reshape(Y.shape[0],1)
X = np.append(X, Y, 1)
self.mllib.plot(X)
开发者ID:dhruvkp,项目名称:musicreco,代码行数:14,代码来源:Manager.py
示例17: dim_reduction_PCA
def dim_reduction_PCA(X,n_dim):
""" Reduce the dimension by PCA.
:param X: matrix data (n*k), n is the number of samples. k is the dimension of each sample
:param n_dim: number of dimension we desired to reduce to.
:return reduced_X:matrix data(n*n_dim)
"""
try:
reduced_X = sklearnPCA(n_components=n_dim).fit_transform(X)
except:
print ("Dimension Error")
reduced_X = []
finally:
return reduced_X
开发者ID:rimow,项目名称:NeuroPrononciation,代码行数:15,代码来源:dim_reduction.py
示例18: pca_built
def pca_built(self, all_samples):
from sklearn.decomposition import PCA as sklearnPCA
sklearn_pca = sklearnPCA(n_components=2)
sklearn_transf = sklearn_pca.fit_transform(all_samples.T)
sklearn_transf = sklearn_transf*(-1)
plt.plot(sklearn_transf[0:20, 0], sklearn_transf[0:20, 1], 'o', markersize=7, color='yellow', alpha=0.5, label='class1')
plt.plot(sklearn_transf[20:40, 0], sklearn_transf[20:40, 1], '^', markersize=7, color='black', alpha=0.5, label='class2')
plt.xlabel('x_values')
plt.ylabel('y_values')
plt.xlim([-4, 4])
plt.ylim([-4, 4])
plt.legend()
plt.title('Transformed samples with class labels from built PCA')
plt.draw()
plt.show()
开发者ID:GameCracker,项目名称:brainControl,代码行数:15,代码来源:like_recog.py
示例19: best_dimension
def best_dimension(X,n_com = 0.8):
""" get the number of dimension
:param X: matrix data (n*k), n is the number of samples. k is the dimension of each sample
:param n_dim: number of dimension we desired to reduce to.
:return best_dimension:
"""
try:
pca = sklearnPCA(n_components=n_com)
pca.fit_transform(X)
except:
print ("Dimension Error")
return 0
finally:
return pca.n_components_
开发者ID:rimow,项目名称:NeuroPrononciation,代码行数:16,代码来源:dim_reduction.py
示例20: deaPCA
def deaPCA(df, allres=False, normalise=False, plot=True):
"""
Extract principal components from pandas dataframe and shift distribution
so that all values are strictly positive, as required for DEA.
Takes:
df: A dataframe of series to run the PCA on.
allres: Boolean. Set True if you would like to get the PCA object
returned instead of the transformed data. This can be
useful if you wish to use the entire results of the PCA.
The object is a fit_transformed sklearn.decomposition.PCA
object.
normalise: Boolean. Set True to normalise the series to a z-score
before transforming.
plot: Should the function display a plot of the variance explained?
"""
from sklearn.decomposition import PCA as sklearnPCA
if normalise:
df = normalise_df(df)
indat_pca = sklearnPCA()
indat_transf = pd.DataFrame(
indat_pca.fit_transform(df.values), index=df.index)
pca_colnames = ["PCA" + str(i) for i in indat_transf.columns]
indat_transf.columns = pca_colnames
indat_transf_pos = _all_positive(indat_transf)
if plot:
_, ax1 = plt.subplots()
ax1.plot(np.array(indat_pca.explained_variance_ratio_).cumsum())
ax1.bar(np.arange(0.1, len(indat_pca.explained_variance_ratio_), 1),
np.array(indat_pca.explained_variance_ratio_))
ax1.legend(['Cumulative variance explained',
'Variance explained by component'], loc='center right')
ax1.set_ylabel('Proportion of variance explained')
ax1.set_title('Variance explained by each principal component')
ax1.set_xlim(right=len(indat_pca.explained_variance_ratio_))
ax1.set_ylim(top=1)
if allres:
return indat_pca
else:
return indat_transf_pos
开发者ID:Gbemileke,项目名称:pyDEA,代码行数:47,代码来源:tools.py
注:本文中的sklearn.decomposition.sklearnPCA函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论