本文整理汇总了Python中sklearn.decomposition.DictionaryLearning类的典型用法代码示例。如果您正苦于以下问题:Python DictionaryLearning类的具体用法?Python DictionaryLearning怎么用?Python DictionaryLearning使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了DictionaryLearning类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_dict_learning_lassocd_readonly_data
def test_dict_learning_lassocd_readonly_data():
n_components = 12
with TempMemmap(X) as X_read_only:
dico = DictionaryLearning(n_components, transform_algorithm='lasso_cd',
transform_alpha=0.001, random_state=0, n_jobs=-1)
code = dico.fit(X_read_only).transform(X_read_only)
assert_array_almost_equal(np.dot(code, dico.components_), X_read_only, decimal=2)
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:7,代码来源:test_dict_learning.py
示例2: test_dict_learning_split
def test_dict_learning_split():
n_atoms = 5
dico = DictionaryLearning(n_atoms, transform_algorithm='threshold')
code = dico.fit(X).transform(X)
dico.split_sign = True
split_code = dico.transform(X)
assert_array_equal(split_code[:, :n_atoms] - split_code[:, n_atoms:], code)
开发者ID:boersmamarcel,项目名称:scikit-learn,代码行数:8,代码来源:test_dict_learning.py
示例3: test_dict_learning_shapes
def test_dict_learning_shapes():
n_components = 5
dico = DictionaryLearning(n_components, random_state=0).fit(X)
assert_equal(dico.components_.shape, (n_components, n_features))
n_components = 1
dico = DictionaryLearning(n_components, random_state=0).fit(X)
assert_equal(dico.components_.shape, (n_components, n_features))
assert_equal(dico.transform(X).shape, (X.shape[0], n_components))
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:9,代码来源:test_dict_learning.py
示例4: trainLowDict
def trainLowDict(buffer):
print('Learning the dictionary...')
t0 = time()
dico = DictionaryLearning(n_components=100, alpha=1, max_iter=100,verbose=1)
V = dico.fit(buffer).components_
E = dico.error_
dt = time() - t0
print('done in %.2fs.' % dt)
return V,E
开发者ID:morganrcu,项目名称:pysuperresolution,代码行数:10,代码来源:trainLowDict.py
示例5: test_dict_learning_split
def test_dict_learning_split():
n_components = 5
dico = DictionaryLearning(n_components, transform_algorithm='threshold',
random_state=0)
code = dico.fit(X).transform(X)
dico.split_sign = True
split_code = dico.transform(X)
assert_array_equal(split_code[:, :n_components] -
split_code[:, n_components:], code)
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:10,代码来源:test_dict_learning.py
示例6: test_dict_learning_reconstruction
def test_dict_learning_reconstruction():
n_components = 12
dico = DictionaryLearning(n_components, transform_algorithm='omp',
transform_alpha=0.001, random_state=0)
code = dico.fit(X).transform(X)
assert_array_almost_equal(np.dot(code, dico.components_), X)
dico.set_params(transform_algorithm='lasso_lars')
code = dico.transform(X)
assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2)
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:10,代码来源:test_dict_learning.py
示例7: test_dict_learning_nonzero_coefs
def test_dict_learning_nonzero_coefs():
n_components = 4
dico = DictionaryLearning(n_components, transform_algorithm='lars',
transform_n_nonzero_coefs=3, random_state=0)
code = dico.fit(X).transform(X[np.newaxis, 1])
assert_true(len(np.flatnonzero(code)) == 3)
dico.set_params(transform_algorithm='omp')
code = dico.transform(X[np.newaxis, 1])
assert_equal(len(np.flatnonzero(code)), 3)
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:10,代码来源:test_dict_learning.py
示例8: sparse_coding
def sparse_coding(dimension, input_x, alpha, iteration, tolerance):
#dl = DictionaryLearning(dimension)
dl = DictionaryLearning(dimension, alpha, iteration, tolerance)
dl.fit(input_x)
#np.set_printoptions(precision=3, suppress=True)
#print code
#print dl.components_
print "error:", dl.error_[-1]
return dl
开发者ID:paramoecium,项目名称:r324_sparse_coding,代码行数:10,代码来源:learnDic.py
示例9: test_dict_learning_reconstruction_parallel
def test_dict_learning_reconstruction_parallel():
# regression test that parallel reconstruction works with n_jobs=-1
n_components = 12
dico = DictionaryLearning(n_components, transform_algorithm='omp',
transform_alpha=0.001, random_state=0, n_jobs=-1)
code = dico.fit(X).transform(X)
assert_array_almost_equal(np.dot(code, dico.components_), X)
dico.set_params(transform_algorithm='lasso_lars')
code = dico.transform(X)
assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2)
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:11,代码来源:test_dict_learning.py
示例10: __init__
def __init__(self, model_filename=None):
if model_filename is not None:
self.load_model(model_filename)
else:
# default model params
self.n_components = SparseCoding.DEFAULT_MODEL_PARAMS['n_components']
self.n_features = SparseCoding.DEFAULT_MODEL_PARAMS['n_features']
self.max_iter = SparseCoding.DEFAULT_MODEL_PARAMS['max_iter']
self.random_state = SparseCoding.DEFAULT_MODEL_PARAMS['random_state']
self.dict_init = SparseCoding.DEFAULT_MODEL_PARAMS['dict_init']
self.code_init = SparseCoding.DEFAULT_MODEL_PARAMS['code_init']
# initialize Dictionary Learning object with default params and weights
self.DL_obj = DictionaryLearning(n_components=self.n_components,
alpha=1,
max_iter=self.max_iter,
tol=1e-08,
fit_algorithm='lars',
transform_algorithm='omp',
transform_n_nonzero_coefs=None,
transform_alpha=None,
n_jobs=1,
code_init=self.code_init,
dict_init=self.dict_init,
verbose=False,
split_sign=False,
random_state=self.random_state)
开发者ID:nitred,项目名称:sparsex,代码行数:27,代码来源:feature_extraction.py
示例11: test_dict_learning_positivity
def test_dict_learning_positivity(transform_algorithm,
positive_code,
positive_dict):
n_components = 5
dico = DictionaryLearning(
n_components, transform_algorithm=transform_algorithm, random_state=0,
positive_code=positive_code, positive_dict=positive_dict).fit(X)
code = dico.transform(X)
if positive_dict:
assert_true((dico.components_ >= 0).all())
else:
assert_true((dico.components_ < 0).any())
if positive_code:
assert_true((code >= 0).all())
else:
assert_true((code < 0).any())
开发者ID:MartinThoma,项目名称:scikit-learn,代码行数:16,代码来源:test_dict_learning.py
示例12: get_dic_per_cluster
def get_dic_per_cluster(clust_q, data_cluster, dataq, i, out_q=None, kerPCA=False):
if out_q is not None:
name = mpc.current_process().name
print name, 'Starting'
else:
print 'Starting estimation of dic %i...' % i
# parse the feature vectors for each cluster
for q in clust_q:
data_cluster = np.vstack((data_cluster, dataq[q]))
# remove useless first line
data_cluster = data_cluster[1:, :]
# learn the sparse code for that cluster
if kerPCA is False:
dict_learn = DictionaryLearning(n_jobs=10)
dict_learn.fit(data_cluster)
else:
print 'Doing kernel PCA...'
print data_cluster.shape
dict_learn = KernelPCA(kernel="rbf", gamma=10, n_components=3)
#dict_learn = PCA(n_components=10)
dict_learn.fit(data_cluster)
if out_q is not None:
res = {}
res[i] = dict_learn
out_q.put(res)
print name, 'Exiting'
else:
print 'Finished.'
return dict_learn # dict(i = dict_learn)
开发者ID:clouizos,项目名称:AIR,代码行数:29,代码来源:DC.py
示例13: create_dictionary_dl
def create_dictionary_dl(lmbd, K=100, N=10000, dir_mnist='save_exp/mnist'):
import os.path as osp
fname = osp.join(dir_mnist, "D_mnist_K{}_lmbd{}.npy".format(K, lmbd))
if osp.exists(fname):
D = np.load(fname)
else:
from sklearn.decomposition import DictionaryLearning
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
im = mnist.train.next_batch(N)[0]
im = im.reshape(N, 28, 28)
im = [imresize(a, (17, 17), interp='bilinear', mode='L')-.5
for a in im]
X = np.array(im).reshape(N, -1)
print(X.shape)
dl = DictionaryLearning(K, alpha=lmbd*N, fit_algorithm='cd',
n_jobs=-1, verbose=1)
dl.fit(X)
D = dl.components_.reshape(K, -1)
np.save(fname, D)
return D
开发者ID:tomMoral,项目名称:AdaptiveOptim,代码行数:22,代码来源:mnist_problem_generator.py
示例14: __init__
def __init__(self, num_components=10,
catalog_name='unknown',
alpha = 0.001,
transform_alpha = 0.01,
max_iter = 2000,
tol = 1e-9,
n_jobs = 1,
verbose = True,
random_state = None):
self._decomposition = 'Sparse Coding'
self._num_components = num_components
self._catalog_name = catalog_name
self._alpha = alpha
self._transform_alpha = 0.001
self._n_jobs = n_jobs
self._random_state = random_state
self._DL = DictionaryLearning(n_components=self._num_components,
alpha = self._alpha,
transform_alpha = self._transform_alpha,
n_jobs = self._n_jobs,
verbose = verbose,
random_state = self._random_state)
开发者ID:bwengals,项目名称:ccsnmultivar,代码行数:24,代码来源:basis.py
示例15: SC
class SC(object):
"""
Wrapper for sklearn package. Performs sparse coding
Sparse Coding, or Dictionary Learning has 5 methods:
- fit(waveforms)
update class instance with Sparse Coding fit
- fit_transform()
do what fit() does, but additionally return the projection onto new basis space
- inverse_transform(A)
inverses the decomposition, returns waveforms for an input A, using Z^\dagger
- get_basis()
returns the basis vectors Z^\dagger
- get_params()
returns metadata used for fits.
"""
def __init__(self, num_components=10,
catalog_name='unknown',
alpha = 0.001,
transform_alpha = 0.01,
max_iter = 2000,
tol = 1e-9,
n_jobs = 1,
verbose = True,
random_state = None):
self._decomposition = 'Sparse Coding'
self._num_components = num_components
self._catalog_name = catalog_name
self._alpha = alpha
self._transform_alpha = 0.001
self._n_jobs = n_jobs
self._random_state = random_state
self._DL = DictionaryLearning(n_components=self._num_components,
alpha = self._alpha,
transform_alpha = self._transform_alpha,
n_jobs = self._n_jobs,
verbose = verbose,
random_state = self._random_state)
def fit(self,waveforms):
# TODO make sure there are more columns than rows (transpose if not)
# normalize waveforms
self._waveforms = waveforms
self._DL.fit(self._waveforms)
def fit_transform(self,waveforms):
# TODO make sure there are more columns than rows (transpose if not)
# normalize waveforms
self._waveforms = waveforms
self._A = self._DL.fit_transform(self._waveforms)
return self._A
def inverse_transform(self,A):
# convert basis back to waveforms using fit
new_waveforms = self._DL.inverse_transform(A)
return new_waveforms
def get_params(self):
# TODO know what catalog was used! (include waveform metadata)
params = self._DL.get_params()
params['num_components'] = params.pop('n_components')
params['Decompositon'] = self._decomposition
return params
def get_basis(self):
""" Return the SPCA basis vectors (Z^\dagger)"""
return self._DL.components_
开发者ID:bwengals,项目名称:ccsnmultivar,代码行数:73,代码来源:basis.py
示例16: xrange
audio = data["mfccs"]
image = np.zeros((1, 75 * 50))
for i in xrange(video.shape[2]):
if i + 1 < video.shape[2]:
image = np.vstack(
(image, np.abs((video[:, :, i].reshape((1, 75 * 50)) - video[:, :, i + 1].reshape((1, 75 * 50)))))
)
idx = np.random.shuffle([i for i in xrange(image[1:].shape[0])])
image = image[idx][0]
image = (image - np.min(image, axis=0)) / (np.max(image, axis=0) + 0.01)
audio = audio.T[idx, :][0]
print image.shape, audio.shape
fusion = np.hstack((image, audio))
# sparse code
video_learner = DictionaryLearning(n_components=784, alpha=0.5, max_iter=50, fit_algorithm="cd", verbose=1)
audio_learner = DictionaryLearning(n_components=10, alpha=0.5, max_iter=50, fit_algorithm="cd", verbose=1)
fusion_learner = DictionaryLearning(n_components=784, alpha=0.5, max_iter=50, fit_algorithm="cd", verbose=1)
video_learner.fit(image)
"""
# build model
face_rbm = RBM(n_components=100, verbose=2, batch_size=20, n_iter=10)
audio_rbm = RBM(n_components=100, verbose=2, batch_size=20, n_iter=10)
# fit model
face_rbm.fit(image)
audio_rbm.fit(audio)
print face_rbm.components_.shape, audio_rbm.components_.shape
开发者ID:saicoco,项目名称:face_audio_video,代码行数:30,代码来源:plot_feature.py
示例17: TruncatedSVD
new_U.dot(new_S)
#array([-2.20719466, -3.16170819, -4.11622173])
tsvd = TruncatedSVD(2)
tsvd.fit(iris_data)
tsvd.transform(iris_data)
#One advantage of TruncatedSVD over PCA is that TruncatedSVD can operate on sparse
#matrices while PCA cannot
#Decomposition分解 to classify分类 with DictionaryLearning
from sklearn.decomposition import DictionaryLearning
dl = DictionaryLearning(3)
transformed = dl.fit_transform(iris_data[::2])
transformed[:5]
#array([[ 0. , 6.34476574, 0. ],
#[ 0. , 5.83576461, 0. ],
#[ 0. , 6.32038375, 0. ],
#[ 0. , 5.89318572, 0. ],
#[ 0. , 5.45222715, 0. ]])
#Next, let's fit (not fit_transform) the testing set:
transformed = dl.transform(iris_data[1::2])
#Putting it all together with Pipelines
#Let's briefly load the iris dataset and seed it with some missing values:
开发者ID:chenzhongtao,项目名称:source,代码行数:31,代码来源:premodel.py
示例18: enumerate
pca.fit(mov)
#%%
import cv2
comps = np.reshape(pca.components_, [n_comps, 30, 30])
for count, comp in enumerate(comps):
pl.subplot(4, 4, count + 1)
blur = cv2.GaussianBlur(comp.astype(np.float32), (5, 5), 0)
blur = np.array(blur / np.max(blur) * 255, dtype=np.uint8)
ret3, th3 = cv2.threshold(
blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
pl.imshow((th3 * comp).T)
#%%
n_comps = 3
dl = DictionaryLearning(n_comps, alpha=1, verbose=True)
comps = dl.fit_transform(Yr.T)
comps = np.reshape(comps, [30, 30, n_comps]).transpose([2, 0, 1])
for count, comp in enumerate(comps):
pl.subplot(4, 4, count + 1)
pl.imshow(comp)
#%%
N_ICA_COMPS = 8
ica = FastICA(N_ICA_COMPS, max_iter=10000, tol=10e-8)
ica.fit(pca.components_)
#%
comps = np.reshape(ica.components_, [N_ICA_COMPS, 30, 30])
for count, comp in enumerate(comps):
idx = np.argmax(np.abs(comp))
comp = comp * np.sign(comp.flatten()[idx])
pl.subplot(4, 4, count + 1)
开发者ID:Peichao,项目名称:Constrained_NMF,代码行数:30,代码来源:online_testing.py
示例19: NMF
from sklearn.decomposition import NMF
nmfHOG = NMF(n_components=components)
nmfHOF = NMF(n_components=components)
nmfHOG.fit(np.array([x['hog'] for x in features]).T)
nmfHOF.fit(np.array([x['hof'] for x in features]).T)
hogComponents = icaHOG.components_.T
hofComponents = icaHOF.components_.T
return hogComponents, hofComponents
if 0:
from sklearn.decomposition import DictionaryLearning
dicHOG = DictionaryLearning(25)
dicHOG.fit(hogs)
def displayComponents(components):
sides = ceil(np.sqrt(len(components)))
for i in range(len(components)):
subplot(sides, sides, i+1)
imshow(hog2image(components[i], imageSize=[24,24],orientations=4))
sides = ceil(np.sqrt(components.shape[1]))
for i in range(components.shape[1]):
subplot(sides, sides, i+1)
imshow(hog2image(components[:,i], imageSize=[24,24],orientations=4))
开发者ID:MerDane,项目名称:pyKinectTools,代码行数:30,代码来源:FeatureUtils.py
示例20: interface
# sklearn utilities
from sklearn.decomposition import DictionaryLearning
from sklearn.preprocessing import normalize
def interface():
args = argparse.ArgumentParser()
# Required
args.add_argument('-i', '--data-matrix', help='Input data matrix', required=True)
# Optional
args.add_argument('-d', '--dict-file', help='Dictionary encoder file (.pkl)', default='dict.pkl')
args.add_argument('-n', '--num-atoms', help='Desired dictionary size', default=1000, type=int)
args.add_argument('-a', '--alpha', help='Alpha (sparsity enforcement)', default=1.0, type=float)
args = args.parse_args()
return args
if __name__=="__main__":
args = interface()
# Load and preprocess the data
sample_ids, matrix = parse_otu_matrix(args.data_matrix)
matrix = normalize(matrix)
# Learn a dictionary
dict_transformer = DictionaryLearning(n_components=args.num_atoms, alpha=args.alpha)
dict_transformer.fit(matrix)
# Save dictionary to file
save_object_to_file(dict_transformer, args.dict_file)
开发者ID:samfway,项目名称:classification,代码行数:28,代码来源:build_sparse_dictionary.py
注:本文中的sklearn.decomposition.DictionaryLearning类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论