• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python decomposition.DictionaryLearning类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.decomposition.DictionaryLearning的典型用法代码示例。如果您正苦于以下问题:Python DictionaryLearning类的具体用法?Python DictionaryLearning怎么用?Python DictionaryLearning使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了DictionaryLearning类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_dict_learning_lassocd_readonly_data

def test_dict_learning_lassocd_readonly_data():
    n_components = 12
    with TempMemmap(X) as X_read_only:
        dico = DictionaryLearning(n_components, transform_algorithm='lasso_cd',
                                  transform_alpha=0.001, random_state=0, n_jobs=-1)
        code = dico.fit(X_read_only).transform(X_read_only)
        assert_array_almost_equal(np.dot(code, dico.components_), X_read_only, decimal=2)
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:7,代码来源:test_dict_learning.py


示例2: test_dict_learning_split

def test_dict_learning_split():
    n_atoms = 5
    dico = DictionaryLearning(n_atoms, transform_algorithm='threshold')
    code = dico.fit(X).transform(X)
    dico.split_sign = True
    split_code = dico.transform(X)

    assert_array_equal(split_code[:, :n_atoms] - split_code[:, n_atoms:], code)
开发者ID:boersmamarcel,项目名称:scikit-learn,代码行数:8,代码来源:test_dict_learning.py


示例3: test_dict_learning_shapes

def test_dict_learning_shapes():
    n_components = 5
    dico = DictionaryLearning(n_components, random_state=0).fit(X)
    assert_equal(dico.components_.shape, (n_components, n_features))

    n_components = 1
    dico = DictionaryLearning(n_components, random_state=0).fit(X)
    assert_equal(dico.components_.shape, (n_components, n_features))
    assert_equal(dico.transform(X).shape, (X.shape[0], n_components))
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:9,代码来源:test_dict_learning.py


示例4: trainLowDict

def trainLowDict(buffer):
    print('Learning the dictionary...')
    t0 = time()
    dico = DictionaryLearning(n_components=100, alpha=1, max_iter=100,verbose=1)

    V = dico.fit(buffer).components_
    E = dico.error_
    dt = time() - t0
    print('done in %.2fs.' % dt)
    return V,E
开发者ID:morganrcu,项目名称:pysuperresolution,代码行数:10,代码来源:trainLowDict.py


示例5: test_dict_learning_split

def test_dict_learning_split():
    n_components = 5
    dico = DictionaryLearning(n_components, transform_algorithm='threshold',
                              random_state=0)
    code = dico.fit(X).transform(X)
    dico.split_sign = True
    split_code = dico.transform(X)

    assert_array_equal(split_code[:, :n_components] -
                       split_code[:, n_components:], code)
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:10,代码来源:test_dict_learning.py


示例6: test_dict_learning_reconstruction

def test_dict_learning_reconstruction():
    n_components = 12
    dico = DictionaryLearning(n_components, transform_algorithm='omp',
                              transform_alpha=0.001, random_state=0)
    code = dico.fit(X).transform(X)
    assert_array_almost_equal(np.dot(code, dico.components_), X)

    dico.set_params(transform_algorithm='lasso_lars')
    code = dico.transform(X)
    assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2)
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:10,代码来源:test_dict_learning.py


示例7: test_dict_learning_nonzero_coefs

def test_dict_learning_nonzero_coefs():
    n_components = 4
    dico = DictionaryLearning(n_components, transform_algorithm='lars',
                              transform_n_nonzero_coefs=3, random_state=0)
    code = dico.fit(X).transform(X[np.newaxis, 1])
    assert_true(len(np.flatnonzero(code)) == 3)

    dico.set_params(transform_algorithm='omp')
    code = dico.transform(X[np.newaxis, 1])
    assert_equal(len(np.flatnonzero(code)), 3)
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:10,代码来源:test_dict_learning.py


示例8: sparse_coding

def sparse_coding(dimension, input_x, alpha, iteration, tolerance):
	#dl = DictionaryLearning(dimension)
	dl = DictionaryLearning(dimension, alpha, iteration, tolerance) 
	dl.fit(input_x)
	#np.set_printoptions(precision=3, suppress=True)
	#print code
	#print dl.components_
	print "error:", dl.error_[-1]
	
	return dl
开发者ID:paramoecium,项目名称:r324_sparse_coding,代码行数:10,代码来源:learnDic.py


示例9: test_dict_learning_reconstruction_parallel

def test_dict_learning_reconstruction_parallel():
    # regression test that parallel reconstruction works with n_jobs=-1
    n_components = 12
    dico = DictionaryLearning(n_components, transform_algorithm='omp',
                              transform_alpha=0.001, random_state=0, n_jobs=-1)
    code = dico.fit(X).transform(X)
    assert_array_almost_equal(np.dot(code, dico.components_), X)

    dico.set_params(transform_algorithm='lasso_lars')
    code = dico.transform(X)
    assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2)
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:11,代码来源:test_dict_learning.py


示例10: __init__

    def __init__(self, model_filename=None):
        if model_filename is not None:
            self.load_model(model_filename)
        else:
            # default model params
            self.n_components = SparseCoding.DEFAULT_MODEL_PARAMS['n_components']
            self.n_features = SparseCoding.DEFAULT_MODEL_PARAMS['n_features']
            self.max_iter = SparseCoding.DEFAULT_MODEL_PARAMS['max_iter']
            self.random_state = SparseCoding.DEFAULT_MODEL_PARAMS['random_state']
            self.dict_init = SparseCoding.DEFAULT_MODEL_PARAMS['dict_init']
            self.code_init = SparseCoding.DEFAULT_MODEL_PARAMS['code_init']

            # initialize Dictionary Learning object with default params and weights
            self.DL_obj = DictionaryLearning(n_components=self.n_components,
                                       alpha=1,
                                       max_iter=self.max_iter,
                                       tol=1e-08,
                                       fit_algorithm='lars',
                                       transform_algorithm='omp',
                                       transform_n_nonzero_coefs=None,
                                       transform_alpha=None,
                                       n_jobs=1,
                                       code_init=self.code_init,
                                       dict_init=self.dict_init,
                                       verbose=False,
                                       split_sign=False,
                                       random_state=self.random_state)
开发者ID:nitred,项目名称:sparsex,代码行数:27,代码来源:feature_extraction.py


示例11: test_dict_learning_positivity

def test_dict_learning_positivity(transform_algorithm,
                                  positive_code,
                                  positive_dict):
    n_components = 5
    dico = DictionaryLearning(
        n_components, transform_algorithm=transform_algorithm, random_state=0,
        positive_code=positive_code, positive_dict=positive_dict).fit(X)
    code = dico.transform(X)
    if positive_dict:
        assert_true((dico.components_ >= 0).all())
    else:
        assert_true((dico.components_ < 0).any())
    if positive_code:
        assert_true((code >= 0).all())
    else:
        assert_true((code < 0).any())
开发者ID:MartinThoma,项目名称:scikit-learn,代码行数:16,代码来源:test_dict_learning.py


示例12: get_dic_per_cluster

def get_dic_per_cluster(clust_q, data_cluster, dataq, i, out_q=None, kerPCA=False):
    if out_q is not None:
        name = mpc.current_process().name
        print name, 'Starting'
    else:
        print 'Starting estimation of dic %i...' % i
    # parse the feature vectors for each cluster
    for q in clust_q:
        data_cluster = np.vstack((data_cluster, dataq[q]))
    # remove useless first line
    data_cluster = data_cluster[1:, :]
    # learn the sparse code for that cluster
    if kerPCA is False:
        dict_learn = DictionaryLearning(n_jobs=10)
        dict_learn.fit(data_cluster)
    else:
        print 'Doing kernel PCA...'
        print data_cluster.shape
        dict_learn = KernelPCA(kernel="rbf", gamma=10, n_components=3)
        #dict_learn = PCA(n_components=10)
        dict_learn.fit(data_cluster)
    if out_q is not None:
        res = {}
        res[i] = dict_learn
        out_q.put(res)
        print name, 'Exiting'
    else:
        print 'Finished.'
        return dict_learn   # dict(i = dict_learn)
开发者ID:clouizos,项目名称:AIR,代码行数:29,代码来源:DC.py


示例13: create_dictionary_dl

def create_dictionary_dl(lmbd, K=100, N=10000, dir_mnist='save_exp/mnist'):

    import os.path as osp
    fname = osp.join(dir_mnist, "D_mnist_K{}_lmbd{}.npy".format(K, lmbd))
    if osp.exists(fname):
        D = np.load(fname)
    else:
        from sklearn.decomposition import DictionaryLearning
        mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
        im = mnist.train.next_batch(N)[0]
        im = im.reshape(N, 28, 28)
        im = [imresize(a, (17, 17), interp='bilinear', mode='L')-.5
              for a in im]
        X = np.array(im).reshape(N, -1)
        print(X.shape)

        dl = DictionaryLearning(K, alpha=lmbd*N, fit_algorithm='cd',
                                n_jobs=-1, verbose=1)
        dl.fit(X)
        D = dl.components_.reshape(K, -1)
        np.save(fname, D)
    return D
开发者ID:tomMoral,项目名称:AdaptiveOptim,代码行数:22,代码来源:mnist_problem_generator.py


示例14: __init__

    def __init__(self, num_components=10,
                 catalog_name='unknown',
                 alpha = 0.001,
                 transform_alpha = 0.01,
                 max_iter = 2000,
                 tol = 1e-9,
                 n_jobs = 1,
                 verbose = True,
                 random_state = None):

        self._decomposition   = 'Sparse Coding'
        self._num_components  = num_components
        self._catalog_name    = catalog_name
        self._alpha           = alpha
        self._transform_alpha = 0.001
        self._n_jobs          = n_jobs
        self._random_state    = random_state

        self._DL = DictionaryLearning(n_components=self._num_components,
                              alpha           = self._alpha,
                              transform_alpha = self._transform_alpha,
                              n_jobs          = self._n_jobs,
                              verbose         = verbose,
                              random_state    = self._random_state)
开发者ID:bwengals,项目名称:ccsnmultivar,代码行数:24,代码来源:basis.py


示例15: SC

class SC(object):
    """
    Wrapper for sklearn package.  Performs sparse coding

    Sparse Coding, or Dictionary Learning has 5 methods:
       - fit(waveforms)
       update class instance with Sparse Coding fit

       - fit_transform()
       do what fit() does, but additionally return the projection onto new basis space

       - inverse_transform(A)
       inverses the decomposition, returns waveforms for an input A, using Z^\dagger

       - get_basis()
       returns the basis vectors Z^\dagger

       - get_params()
       returns metadata used for fits.
    """
    def __init__(self, num_components=10,
                 catalog_name='unknown',
                 alpha = 0.001,
                 transform_alpha = 0.01,
                 max_iter = 2000,
                 tol = 1e-9,
                 n_jobs = 1,
                 verbose = True,
                 random_state = None):

        self._decomposition   = 'Sparse Coding'
        self._num_components  = num_components
        self._catalog_name    = catalog_name
        self._alpha           = alpha
        self._transform_alpha = 0.001
        self._n_jobs          = n_jobs
        self._random_state    = random_state

        self._DL = DictionaryLearning(n_components=self._num_components,
                              alpha           = self._alpha,
                              transform_alpha = self._transform_alpha,
                              n_jobs          = self._n_jobs,
                              verbose         = verbose,
                              random_state    = self._random_state)

    def fit(self,waveforms):
        # TODO make sure there are more columns than rows (transpose if not)
        # normalize waveforms
        self._waveforms = waveforms
        self._DL.fit(self._waveforms)

    def fit_transform(self,waveforms):
        # TODO make sure there are more columns than rows (transpose if not)
        # normalize waveforms
        self._waveforms = waveforms
        self._A = self._DL.fit_transform(self._waveforms)
        return self._A

    def inverse_transform(self,A):
        # convert basis back to waveforms using fit
        new_waveforms = self._DL.inverse_transform(A)
        return new_waveforms

    def get_params(self):
        # TODO know what catalog was used! (include waveform metadata)
        params = self._DL.get_params()
        params['num_components'] = params.pop('n_components')
        params['Decompositon'] = self._decomposition
        return params

    def get_basis(self):
        """ Return the SPCA basis vectors (Z^\dagger)"""
        return self._DL.components_
开发者ID:bwengals,项目名称:ccsnmultivar,代码行数:73,代码来源:basis.py


示例16: xrange

audio = data["mfccs"]

image = np.zeros((1, 75 * 50))
for i in xrange(video.shape[2]):
    if i + 1 < video.shape[2]:
        image = np.vstack(
            (image, np.abs((video[:, :, i].reshape((1, 75 * 50)) - video[:, :, i + 1].reshape((1, 75 * 50)))))
        )
idx = np.random.shuffle([i for i in xrange(image[1:].shape[0])])
image = image[idx][0]
image = (image - np.min(image, axis=0)) / (np.max(image, axis=0) + 0.01)
audio = audio.T[idx, :][0]
print image.shape, audio.shape
fusion = np.hstack((image, audio))
# sparse code
video_learner = DictionaryLearning(n_components=784, alpha=0.5, max_iter=50, fit_algorithm="cd", verbose=1)
audio_learner = DictionaryLearning(n_components=10, alpha=0.5, max_iter=50, fit_algorithm="cd", verbose=1)
fusion_learner = DictionaryLearning(n_components=784, alpha=0.5, max_iter=50, fit_algorithm="cd", verbose=1)

video_learner.fit(image)
"""
# build model
face_rbm = RBM(n_components=100, verbose=2, batch_size=20, n_iter=10)
audio_rbm = RBM(n_components=100, verbose=2, batch_size=20, n_iter=10)

# fit model

face_rbm.fit(image)
audio_rbm.fit(audio)
print face_rbm.components_.shape, audio_rbm.components_.shape
开发者ID:saicoco,项目名称:face_audio_video,代码行数:30,代码来源:plot_feature.py


示例17: TruncatedSVD

new_U.dot(new_S)
#array([-2.20719466, -3.16170819, -4.11622173])


tsvd = TruncatedSVD(2)
tsvd.fit(iris_data)
tsvd.transform(iris_data)

#One advantage of TruncatedSVD over PCA is that TruncatedSVD can operate on sparse
#matrices while PCA cannot


#Decomposition分解 to classify分类 with DictionaryLearning

from sklearn.decomposition import DictionaryLearning
dl = DictionaryLearning(3)
transformed = dl.fit_transform(iris_data[::2])
transformed[:5]
#array([[ 0. , 6.34476574, 0. ],
#[ 0. , 5.83576461, 0. ],
#[ 0. , 6.32038375, 0. ],
#[ 0. , 5.89318572, 0. ],
#[ 0. , 5.45222715, 0. ]])

#Next, let's fit (not fit_transform) the testing set:
transformed = dl.transform(iris_data[1::2])


#Putting it all together with Pipelines

#Let's briefly load the iris dataset and seed it with some missing values:
开发者ID:chenzhongtao,项目名称:source,代码行数:31,代码来源:premodel.py


示例18: enumerate

pca.fit(mov)
#%%
import cv2
comps = np.reshape(pca.components_, [n_comps, 30, 30])
for count, comp in enumerate(comps):
    pl.subplot(4, 4, count + 1)
    blur = cv2.GaussianBlur(comp.astype(np.float32), (5, 5), 0)
    blur = np.array(blur / np.max(blur) * 255, dtype=np.uint8)
    ret3, th3 = cv2.threshold(
        blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    pl.imshow((th3 * comp).T)

#%%
n_comps = 3
dl = DictionaryLearning(n_comps, alpha=1, verbose=True)
comps = dl.fit_transform(Yr.T)
comps = np.reshape(comps, [30, 30, n_comps]).transpose([2, 0, 1])
for count, comp in enumerate(comps):
    pl.subplot(4, 4, count + 1)
    pl.imshow(comp)
#%%
N_ICA_COMPS = 8
ica = FastICA(N_ICA_COMPS, max_iter=10000, tol=10e-8)
ica.fit(pca.components_)
#%
comps = np.reshape(ica.components_, [N_ICA_COMPS, 30, 30])
for count, comp in enumerate(comps):
    idx = np.argmax(np.abs(comp))
    comp = comp * np.sign(comp.flatten()[idx])
    pl.subplot(4, 4, count + 1)
开发者ID:Peichao,项目名称:Constrained_NMF,代码行数:30,代码来源:online_testing.py


示例19: NMF

	from sklearn.decomposition import NMF

	nmfHOG = NMF(n_components=components)
	nmfHOF = NMF(n_components=components)

	nmfHOG.fit(np.array([x['hog'] for x in features]).T)
	nmfHOF.fit(np.array([x['hof'] for x in features]).T)

	hogComponents = icaHOG.components_.T
	hofComponents = icaHOF.components_.T

	return hogComponents, hofComponents	

if 0:
	from sklearn.decomposition import DictionaryLearning
	dicHOG = DictionaryLearning(25)
	dicHOG.fit(hogs)


def displayComponents(components):
	
	sides = ceil(np.sqrt(len(components)))
	for i in range(len(components)):
		subplot(sides, sides, i+1)
		imshow(hog2image(components[i], imageSize=[24,24],orientations=4))

	sides = ceil(np.sqrt(components.shape[1]))
	for i in range(components.shape[1]):
		subplot(sides, sides, i+1)
		imshow(hog2image(components[:,i], imageSize=[24,24],orientations=4))
开发者ID:MerDane,项目名称:pyKinectTools,代码行数:30,代码来源:FeatureUtils.py


示例20: interface

# sklearn utilities
from sklearn.decomposition import DictionaryLearning
from sklearn.preprocessing import normalize

def interface():
    args = argparse.ArgumentParser()
    # Required 
    args.add_argument('-i', '--data-matrix', help='Input data matrix', required=True)
    # Optional 
    args.add_argument('-d', '--dict-file', help='Dictionary encoder file (.pkl)', default='dict.pkl')
    args.add_argument('-n', '--num-atoms', help='Desired dictionary size', default=1000, type=int)
    args.add_argument('-a', '--alpha', help='Alpha (sparsity enforcement)', default=1.0, type=float)
    args = args.parse_args()
    return args

if __name__=="__main__":
    args = interface()

    # Load and preprocess the data
    sample_ids, matrix = parse_otu_matrix(args.data_matrix)
    matrix = normalize(matrix)

    # Learn a dictionary 
    dict_transformer = DictionaryLearning(n_components=args.num_atoms, alpha=args.alpha)
    dict_transformer.fit(matrix)

    # Save dictionary to file  
    save_object_to_file(dict_transformer, args.dict_file)

开发者ID:samfway,项目名称:classification,代码行数:28,代码来源:build_sparse_dictionary.py



注:本文中的sklearn.decomposition.DictionaryLearning类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python decomposition.FactorAnalysis类代码示例发布时间:2022-05-27
下一篇:
Python decomposition.sparse_encode函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap