本文整理汇总了Python中sklearn.ensemble.BaggingRegressor类的典型用法代码示例。如果您正苦于以下问题:Python BaggingRegressor类的具体用法?Python BaggingRegressor怎么用?Python BaggingRegressor使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了BaggingRegressor类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: model_fit_rf_bagging
def model_fit_rf_bagging():
def in_limits(x):
if x<1: return 1
if x>3: return 3
return x
print "STARTING MODEL"
X = full_data[['count_words','count_digits','match_d_title','match_d_description','match_w_title','match_w_description','match_d_attribute','match_w_attribute']].values
y = full_data['relevance'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
rf = RandomForestRegressor(n_estimators=15, max_depth=6, random_state=0)
clf = BaggingRegressor(rf, n_estimators=45, max_samples=0.1, random_state=25)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
in_limits = np.vectorize(in_limits,otypes=[np.float])
y_pred = in_limits(y_pred)
RMSE = mean_squared_error(y_test, y_pred)**0.5
print "RMSE: ",RMSE
# for the submission
real_X_test = real_full_test[['count_words','count_digits','match_d_title','match_d_description','match_w_title','match_w_description','match_d_attribute','match_w_attribute']].values
test_pred = clf.predict(real_X_test)
test_pred = in_limits(test_pred)
return test_pred
开发者ID:egarcialopez2014,项目名称:Kaggle_Home_depot,代码行数:28,代码来源:explore_script.py
示例2: train_model
def train_model(train, test, labels):
rf = RandomForestRegressor(n_estimators=15, max_depth=6, random_state=10)
#rf = RandomForestRegressor(n_estimators=45, max_depth=9, random_state=10)
clf = BaggingRegressor(rf, n_estimators=45, max_samples=0.2, random_state=25)
clf.fit(train, labels)
#clf = SVR(C=1.0, epsilon=0.2)
#clf.fit(train, labels)
#clf = GaussianNB()
#clf.fit(train, labels)
print "Good!"
predictions = clf.predict(test)
print predictions.shape
predictions = pd.DataFrame(predictions, columns = ['relevance'])
print "Good again!"
print "Predictions head -------"
print predictions.head()
print predictions.shape
print "TEST head -------"
print test.head()
print test.shape
#test['id'].to_csv("TEST_TEST.csv",index=False)
#predictions.to_csv("PREDICTIONS.csv",index=False)
#test = test.reset_index()
#predictions = predictions.reset_index()
#test = test.groupby(level=0).first()
#predictions = predictions.groupby(level=0).first()
predictions = pd.concat([test['id'],predictions], axis=1, verify_integrity=False)
print predictions
return predictions
开发者ID:ap-mishra,项目名称:KTHDRelevance,代码行数:29,代码来源:chunk_RF.py
示例3: train_bagging_xgboost
def train_bagging_xgboost(X, Y):
adaboost = BaggingRegressor(xgb.XGBRegressor(max_depth=6, learning_rate=0.02, n_estimators=300, silent=True,
objective='reg:linear', subsample=0.7, reg_alpha=0.8,
reg_lambda=0.8, booster="gblinear")
, max_features=0.7, n_estimators=30)
adaboost.fit(X, Y)
return adaboost
开发者ID:modkzs,项目名称:regression-predict,代码行数:7,代码来源:single_model.py
示例4: test_oob_score_regression
def test_oob_score_regression():
# Check that oob prediction is a good estimation of the generalization
# error.
rng = check_random_state(0)
X_train, X_test, y_train, y_test = train_test_split(boston.data,
boston.target,
random_state=rng)
clf = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
n_estimators=50,
bootstrap=True,
oob_score=True,
random_state=rng).fit(X_train, y_train)
test_score = clf.score(X_test, y_test)
assert_less(abs(test_score - clf.oob_score_), 0.1)
# Test with few estimators
assert_warns(UserWarning,
BaggingRegressor(base_estimator=DecisionTreeRegressor(),
n_estimators=1,
bootstrap=True,
oob_score=True,
random_state=rng).fit,
X_train,
y_train)
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:27,代码来源:test_bagging.py
示例5: test_bootstrap_samples
def test_bootstrap_samples():
"""Test that bootstraping samples generate non-perfect base estimators."""
rng = check_random_state(0)
X_train, X_test, y_train, y_test = train_test_split(boston.data,
boston.target,
random_state=rng)
base_estimator = DecisionTreeRegressor().fit(X_train, y_train)
# without bootstrap, all trees are perfect on the training set
ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
max_samples=1.0,
bootstrap=False,
random_state=rng).fit(X_train, y_train)
assert_equal(base_estimator.score(X_train, y_train),
ensemble.score(X_train, y_train))
# with bootstrap, trees are no longer perfect on the training set
ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
max_samples=1.0,
bootstrap=True,
random_state=rng).fit(X_train, y_train)
assert_greater(base_estimator.score(X_train, y_train),
ensemble.score(X_train, y_train))
开发者ID:2011200799,项目名称:scikit-learn,代码行数:26,代码来源:test_bagging.py
示例6: avmPredict
def avmPredict(params):
town = getPlace(params['lat'], params['long'])[0]
x, y, z = getXYZ(params['lat'], params['long'])
r = 1.0
data = []
target = []
header = []
with open('../../../data/working22.csv') as f:
f = csv.reader(f)
header = next(f)
for row in f:
t = (map(float, row[:3] + row[4:]), float(row[3]))
if weightF([x, y, z], t[0][0:3], r):
data.append(t[0])
target.append(t[1])
ensemble = BaggingRegressor()
ensemble.fit(data, target)
test = createTest(params)
return ensemble.predict(test)
开发者ID:pradyotprakash,项目名称:HDFCRed,代码行数:28,代码来源:avmPredict.py
示例7: fit
def fit(self):
"""Scale data and train the model with the indicated algorithm.
Do not forget to tune the hyperparameters.
Parameters
----------
algorithm : String,
"KernelRidge", "SVM", "LinearRegression", "Lasso", "ElasticNet", "NeuralNet", "BaggingNeuralNet", default = "SVM"
"""
self.X_scaler.fit(self.X_train)
self.Y_scaler.fit(self.y_train)
# scaling the data in all cases, it may not be used during the fit later
self.X_train_sc = self.X_scaler.transform(self.X_train)
self.y_train_sc = self.Y_scaler.transform(self.y_train)
self.X_test_sc = self.X_scaler.transform(self.X_test)
self.y_test_sc = self.Y_scaler.transform(self.y_test)
if self.algorithm == "KernelRidge":
clf_kr = KernelRidge(kernel=self.user_kernel)
self.model = sklearn.model_selection.GridSearchCV(clf_kr, cv=5, param_grid=self.param_kr)
elif self.algorithm == "SVM":
clf_svm = SVR(kernel=self.user_kernel)
self.model = sklearn.model_selection.GridSearchCV(clf_svm, cv=5, param_grid=self.param_svm)
elif self.algorithm == "Lasso":
clf_lasso = sklearn.linear_model.Lasso(alpha=0.1,random_state=self.rand_state)
self.model = sklearn.model_selection.GridSearchCV(clf_lasso, cv=5,
param_grid=dict(alpha=np.logspace(-5,5,30)))
elif self.algorithm == "ElasticNet":
clf_ElasticNet = sklearn.linear_model.ElasticNet(alpha=0.1, l1_ratio=0.5,random_state=self.rand_state)
self.model = sklearn.model_selection.GridSearchCV(clf_ElasticNet,cv=5,
param_grid=dict(alpha=np.logspace(-5,5,30)))
elif self.algorithm == "LinearRegression":
self.model = sklearn.linear_model.LinearRegression()
elif self.algorithm == "NeuralNet":
self.model = MLPRegressor(**self.param_neurons)
elif self.algorithm == "BaggingNeuralNet":
nn_m = MLPRegressor(**self.param_neurons)
self.model = BaggingRegressor(base_estimator = nn_m, **self.param_bag)
if self.scaling == True:
self.model.fit(self.X_train_sc, self.y_train_sc.reshape(-1,))
predict_train_sc = self.model.predict(self.X_train_sc)
self.prediction_train = self.Y_scaler.inverse_transform(predict_train_sc.reshape(-1,1))
predict_test_sc = self.model.predict(self.X_test_sc)
self.prediction_test = self.Y_scaler.inverse_transform(predict_test_sc.reshape(-1,1))
else:
self.model.fit(self.X_train, self.y_train.reshape(-1,))
self.prediction_train = self.model.predict(self.X_train)
self.prediction_test = self.model.predict(self.X_test)
开发者ID:charlesll,项目名称:rampy,代码行数:59,代码来源:ml_regressor.py
示例8: random_forest
def random_forest(X,Y,Xt):
print('learn')
rf = RandomForestRegressor(n_estimators=15, max_depth=6, random_state=0)
clf = BaggingRegressor(rf, n_estimators=45, max_samples=0.1, random_state=25)
clf.fit(X, Y)
print('predict')
Yp_clamped = clf.predict(Xt)
return Yp_clamped
开发者ID:mdaniluk,项目名称:KaggleHomeDepot,代码行数:8,代码来源:learn.py
示例9: test_sparse_regression
def test_sparse_regression():
# Check regression for various parameter settings on sparse input.
rng = check_random_state(0)
X_train, X_test, y_train, y_test = train_test_split(boston.data[:50],
boston.target[:50],
random_state=rng)
class CustomSVR(SVR):
"""SVC variant that records the nature of the training set"""
def fit(self, X, y):
super().fit(X, y)
self.data_type_ = type(X)
return self
parameter_sets = [
{"max_samples": 0.5,
"max_features": 2,
"bootstrap": True,
"bootstrap_features": True},
{"max_samples": 1.0,
"max_features": 4,
"bootstrap": True,
"bootstrap_features": True},
{"max_features": 2,
"bootstrap": False,
"bootstrap_features": True},
{"max_samples": 0.5,
"bootstrap": True,
"bootstrap_features": False},
]
for sparse_format in [csc_matrix, csr_matrix]:
X_train_sparse = sparse_format(X_train)
X_test_sparse = sparse_format(X_test)
for params in parameter_sets:
# Trained on sparse format
sparse_classifier = BaggingRegressor(
base_estimator=CustomSVR(),
random_state=1,
**params
).fit(X_train_sparse, y_train)
sparse_results = sparse_classifier.predict(X_test_sparse)
# Trained on dense format
dense_results = BaggingRegressor(
base_estimator=CustomSVR(),
random_state=1,
**params
).fit(X_train, y_train).predict(X_test)
sparse_type = type(X_train_sparse)
types = [i.data_type_ for i in sparse_classifier.estimators_]
assert_array_almost_equal(sparse_results, dense_results)
assert all([t == sparse_type for t in types])
assert_array_almost_equal(sparse_results, dense_results)
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:58,代码来源:test_bagging.py
示例10: procedureA
def procedureA(goldenFlag = False):
# Trains and generates a prediction file
# Uses hard heuristic for buy_or_not
popFlag = True
X, Y = getDataXY(currYearFlag = False, popFlag = popFlag)
X, Y = shuffle(X, Y, random_state = 0)
if popFlag:
encoder = oneHot(X[:, 2:])
Xt = encoder.transform(X[:, 2:])
Xt = np.hstack((X[:,:2], Xt))
else:
encoder = oneHot(X)
Xt = encoder.transform(X)
buySet = set()
for i in range(X.shape[0]):
tmpTup = (X[i][0], X[i][2])
buySet.add(tmpTup)
# Y_buy = [1] * Xt.shape[0]
min_max_scaler = preprocessing.MinMaxScaler()
# Xt = min_max_scaler.fit_transform(Xt)
if goldenFlag:
print Xt.shape
Xt = getGoldenX(Xt, 2, 2 + encoder.feature_indices_[1], 2 + encoder.feature_indices_[0], 2 + min(9, encoder.feature_indices_[1]))
split = 0.9
X_train, X_test = Xt[:(int(Xt.shape[0]*split)),:], Xt[int(Xt.shape[0]*split):, :]
Y_train, Y_test = Y[:(int(Y.shape[0]*split)),:], Y[int(Y.shape[0]*split):, :]
Y_train = Y_train.ravel()
Y_test = Y_test.ravel()
print X_train.shape
print X_test.shape
# clf = Ridge(alpha = 100)
# clf = SVR(C = 10.0, kernel = 'poly', degree = 2)
# clf = LinearSVR(C = 1.0)
clf = BaggingRegressor(DecisionTreeRegressor(), n_estimators = 125, n_jobs = 4, random_state = 0)
# clf = AdaBoostRegressor(DecisionTreeRegressor(), n_estimators = 100)
# clf = DecisionTreeRegressor()
# clf = RandomForestRegressor(random_state = 0, n_estimators = 200, n_jobs = 4)
clf.fit(X_train, Y_train.ravel())
Y_pred = clf.predict(X_test)
evaluatePred(Y_pred, Y_test)
return clf, encoder, min_max_scaler
开发者ID:nishantrai18,项目名称:miscProg,代码行数:53,代码来源:modelOrig.py
示例11: __init__
def __init__(self):
# self.clf = GradientBoostingRegressor(n_estimators=200, max_features="sqrt", max_depth=5)
# self.clf = LinearRegression()
self.clf = BaggingRegressor(LinearRegression())
# self.clf = GaussianProcess(theta0=4)
# self.sp = RandomizedLasso()
self.sp = SparseRandomProjection(n_components=5)
开发者ID:strongh,项目名称:RAMP_farley,代码行数:7,代码来源:regressor.py
示例12: test_single_estimator
def test_single_estimator():
# Check singleton ensembles.
rng = check_random_state(0)
X_train, X_test, y_train, y_test = train_test_split(boston.data,
boston.target,
random_state=rng)
clf1 = BaggingRegressor(base_estimator=KNeighborsRegressor(),
n_estimators=1,
bootstrap=False,
bootstrap_features=False,
random_state=rng).fit(X_train, y_train)
clf2 = KNeighborsRegressor().fit(X_train, y_train)
assert_array_almost_equal(clf1.predict(X_test), clf2.predict(X_test))
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:16,代码来源:test_bagging.py
示例13: train_model
def train_model(training, testing, window=5, n=5):
X_train, y_train = prepare_data(training)
X_test, y_test = prepare_data(testing)
rf = RandomForestRegressor()
rf.fit(X_train, y_train)
predrf = rf.predict(X_test)
print "mse for random forest regressor: ", mean_squared_error(predrf, y_test)
gb = GradientBoostingRegressor(n_estimators=100, learning_rate=0.025)
gb.fit(X_train, y_train)
predgb = gb.predict(X_test)
print "mse for gradient boosting regressor: ", mean_squared_error(predgb, y_test)
## plot feature importance using GBR results
fx_imp = pd.Series(gb.feature_importances_, index=['bb', 'momentum', 'sma', 'volatility'])
fx_imp /= fx_imp.max() # normalize
fx_imp.sort()
ax = fx_imp.plot(kind='barh')
fig = ax.get_figure()
fig.savefig("output/feature_importance.png")
adb = AdaBoostRegressor(DecisionTreeRegressor())
adb.fit(X_train, y_train)
predadb = adb.predict(X_test)
print "mse for adaboosting decision tree regressor: ", mean_squared_error(predadb, y_test)
scale = StandardScaler()
scale.fit(X_train)
X_trainscale = scale.transform(X_train)
X_testscale = scale.transform(X_test)
knn = BaggingRegressor(KNeighborsRegressor(n_neighbors=10), max_samples=0.5, max_features=0.5)
knn.fit(X_trainscale, y_train)
predknn = knn.predict(X_testscale)
print "mse for bagging knn regressor: ", mean_squared_error(predknn, y_test)
pred_test = 0.1*predrf+0.2*predgb+0.1*predadb+0.6*predknn
print "mse for ensemble all the regressors: ", mean_squared_error(pred_test, y_test)
result = testing.copy()
result.ix[5:-5, 'trend'] = pred_test
result.ix[10:, 'pred'] = pred_test * result.ix[5:-5, 'IBM'].values
result.ix[:-5, 'pred_date'] = result.index[5:]
return result
开发者ID:nilichen,项目名称:ML4Trading,代码行数:43,代码来源:code.py
示例14: procc_modelfusion
def procc_modelfusion(df_test, data_test):
from sklearn.ensemble import BaggingRegressor
from sklearn import linear_model
train_df = df.filter(regex='Survived|Age_.*|SibSp|Parch|Fare_.*|Cabin_.*|Embarked_.*|Sex_.*|Pclass.*|Mother|Child|Family|Title')
train_np = train_df.as_matrix()
# y即Survival结果
y = train_np[:, 0]
# X即特征属性值
X = train_np[:, 1:]
# fit到BaggingRegressor之中
clf = linear_model.LogisticRegression(C=1.0, penalty='l1', tol=1e-6)
bagging_clf = BaggingRegressor(clf, n_estimators=10, max_samples=0.8, max_features=1.0, bootstrap=True, bootstrap_features=False, n_jobs=-1)
bagging_clf.fit(X, y)
test = df_test.filter(regex='Age_.*|SibSp|Parch|Fare_.*|Cabin_.*|Embarked_.*|Sex_.*|Pclass.*|Mother|Child|Family|Title')
predictions = bagging_clf.predict(test)
result = pd.DataFrame({'PassengerId' : data_test['PassengerId'].as_matrix(), 'Survived':predictions.astype(np.int32)})
result.to_csv("logistic_regression_predictions3.csv", index=False)
开发者ID:52Pig,项目名称:algorithm,代码行数:21,代码来源:exam-titanic2.py
示例15: Regressor
class Regressor(BaseEstimator):
def __init__(self):
# self.clf = GradientBoostingRegressor(n_estimators=200, max_features="sqrt", max_depth=5)
# self.clf = LinearRegression()
self.clf = BaggingRegressor(LinearRegression())
# self.clf = GaussianProcess(theta0=4)
# self.sp = RandomizedLasso()
self.sp = SparseRandomProjection(n_components=5)
# self.sp = TruncatedSVD()
# self.sp = KernelPCA(n_components=3, tol=0.0001, kernel="poly")
# self.clf = ExtraTreesRegressor(n_estimators=200, max_features="sqrt", max_depth=5)
def fit(self, X, y):
# print(self.sp)
# Xr = self.sp.fit_transform(X, y)
self.clf.fit(X, y.ravel())
def predict(self, X):
# Xr = self.sp.transform(X)
return self.clf.predict(X)
开发者ID:strongh,项目名称:RAMP_farley,代码行数:21,代码来源:regressor.py
示例16: test_parallel_regression
def test_parallel_regression():
# Check parallel regression.
rng = check_random_state(0)
X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng)
ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=3, random_state=0).fit(X_train, y_train)
ensemble.set_params(n_jobs=1)
y1 = ensemble.predict(X_test)
ensemble.set_params(n_jobs=2)
y2 = ensemble.predict(X_test)
assert_array_almost_equal(y1, y2)
ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=1, random_state=0).fit(X_train, y_train)
y3 = ensemble.predict(X_test)
assert_array_almost_equal(y1, y3)
开发者ID:agamemnonc,项目名称:scikit-learn,代码行数:18,代码来源:test_bagging.py
示例17: runTests
def runTests():
# Generate the training samples, extract training features and target
trainSamples = GenSamples(numSamples)
trainFeatures = extractFeatures(trainSamples)
trainPred = extractPred(trainSamples)
# Generate the test samples, extracr test features and target
testSamples = GenSamples(numTestSamples)
testFeatures = extractFeatures(testSamples)
testPred = extractPred(testSamples)
R2List = OrderedDict()
R2List['TrainROI'] = []
R2List['TestROI'] = []
print 'Running Tests: '
for i in range(numTests):
# Bootstrap is True by default i.e., sampling with replacement
# Bootstrap features is False by default i.e., all features used
classifier = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
n_estimators=numTrees,
max_samples=int(0.5*numSamples),
max_features=int(1))
classifier.fit(trainFeatures, trainPred)
predictROI = {}
predictROI['Training'] = classifier.predict(trainFeatures)
predictROI['Test'] = classifier.predict(testFeatures)
R2 = {}
R2['Train'] = r2_score(trainPred, predictROI['Training'])
R2['Test'] = r2_score(testPred, predictROI['Test'])
R2List['TrainROI'].append(R2['Train'])
R2List['TestROI'].append(R2['Test'])
print 'Best Train ROI: ', max(R2List['TrainROI'])
print 'Best Test ROI: ', max(R2List['TestROI'])
开发者ID:Lordie12,项目名称:Research,代码行数:38,代码来源:FuncDTClassifier.py
示例18: test_bagging_regressor_with_missing_inputs
def test_bagging_regressor_with_missing_inputs():
# Check that BaggingRegressor can accept X with missing/infinite data
X = np.array([
[1, 3, 5],
[2, None, 6],
[2, np.nan, 6],
[2, np.inf, 6],
[2, np.NINF, 6],
])
y_values = [
np.array([2, 3, 3, 3, 3]),
np.array([
[2, 1, 9],
[3, 6, 8],
[3, 6, 8],
[3, 6, 8],
[3, 6, 8],
])
]
for y in y_values:
regressor = DecisionTreeRegressor()
pipeline = make_pipeline(
Imputer(),
Imputer(missing_values=np.inf),
Imputer(missing_values=np.NINF),
regressor
)
pipeline.fit(X, y).predict(X)
bagging_regressor = BaggingRegressor(pipeline)
y_hat = bagging_regressor.fit(X, y).predict(X)
assert_equal(y.shape, y_hat.shape)
# Verify that exceptions can be raised by wrapper regressor
regressor = DecisionTreeRegressor()
pipeline = make_pipeline(regressor)
assert_raises(ValueError, pipeline.fit, X, y)
bagging_regressor = BaggingRegressor(pipeline)
assert_raises(ValueError, bagging_regressor.fit, X, y)
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:38,代码来源:test_bagging.py
示例19: test_bootstrap_samples
def test_bootstrap_samples():
# Test that bootstrapping samples generate non-perfect base estimators.
rng = check_random_state(0)
X_train, X_test, y_train, y_test = train_test_split(boston.data,
boston.target,
random_state=rng)
base_estimator = DecisionTreeRegressor().fit(X_train, y_train)
# without bootstrap, all trees are perfect on the training set
ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
max_samples=1.0,
bootstrap=False,
random_state=rng).fit(X_train, y_train)
assert_equal(base_estimator.score(X_train, y_train),
ensemble.score(X_train, y_train))
# with bootstrap, trees are no longer perfect on the training set
ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
max_samples=1.0,
bootstrap=True,
random_state=rng).fit(X_train, y_train)
assert_greater(base_estimator.score(X_train, y_train),
ensemble.score(X_train, y_train))
# check that each sampling correspond to a complete bootstrap resample.
# the size of each bootstrap should be the same as the input data but
# the data should be different (checked using the hash of the data).
ensemble = BaggingRegressor(base_estimator=DummySizeEstimator(),
bootstrap=True).fit(X_train, y_train)
training_hash = []
for estimator in ensemble.estimators_:
assert estimator.training_size_ == X_train.shape[0]
training_hash.append(estimator.training_hash_)
assert len(set(training_hash)) == len(training_hash)
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:37,代码来源:test_bagging.py
示例20: BaggingRegressor
class BaggingRegressor(BaseEstimator):
"""
Usage:
```
"model": {
"class": "ume.ensemble.BaggingRegressor",
"params": {
"base_estimator": {
"class": "sklearn.svm.SVR",
"params": {
"kernel": "rbf",
"degree": 1,
"C": 1000000.0,
"epsilon": 0.01,
},
},
"bag_kwargs": {
"n_estimators": 100,
"n_jobs": 5,
"max_samples": 0.9,
},
}
}
```
"""
def __init__(self, base_estimator=None, bag_kwargs=None):
klass = dynamic_load(base_estimator['class'])
svr_reg = klass(**base_estimator['params'])
self.__clf = SK_BaggingRegressor(base_estimator=svr_reg, **bag_kwargs)
def fit(self, X, y):
return self.__clf.fit(X, y)
def predict(self, X):
return self.__clf.predict(X)
开发者ID:smly,项目名称:ume,代码行数:36,代码来源:ensemble.py
注:本文中的sklearn.ensemble.BaggingRegressor类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论