本文整理汇总了Python中sklearn.ensemble.GradientBoostingRegressor类的典型用法代码示例。如果您正苦于以下问题:Python GradientBoostingRegressor类的具体用法?Python GradientBoostingRegressor怎么用?Python GradientBoostingRegressor使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了GradientBoostingRegressor类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: train_model
def train_model(features, label, params):
#Preprocessing
#scaled_features = preprocessing.scale(features);
scaled_features = features;
total_rmse = 0.0;
count = 0;
kf = KFold(len(scaled_features), n_folds=10);
for train_index, validation_index in kf:
X_train, X_validation = scaled_features[train_index], scaled_features[validation_index];
Y_train, Y_validation = label[train_index], label[validation_index];
#estimator = SVR(**params)
#estimator = RandomForestRegressor(**params)
estimator = GradientBoostingRegressor(**params)
estimator.fit(X_train, Y_train);
current_rmse = calculate_RMSE(estimator, X_validation, Y_validation);
total_rmse += current_rmse;
count += 1;
#Average across all samples
avg_current_rmse = total_rmse / float(count);
print("Avg Current RMSE " + str(avg_current_rmse));
return (params, avg_current_rmse);
开发者ID:Amortized,项目名称:Restaurant-Revenue-Predictor,代码行数:31,代码来源:process.py
示例2: test_gradient_boosting_validation_fraction
def test_gradient_boosting_validation_fraction():
X, y = make_classification(n_samples=1000, random_state=0)
gbc = GradientBoostingClassifier(n_estimators=100,
n_iter_no_change=10,
validation_fraction=0.1,
learning_rate=0.1, max_depth=3,
random_state=42)
gbc2 = clone(gbc).set_params(validation_fraction=0.3)
gbc3 = clone(gbc).set_params(n_iter_no_change=20)
gbr = GradientBoostingRegressor(n_estimators=100, n_iter_no_change=10,
learning_rate=0.1, max_depth=3,
validation_fraction=0.1,
random_state=42)
gbr2 = clone(gbr).set_params(validation_fraction=0.3)
gbr3 = clone(gbr).set_params(n_iter_no_change=20)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
# Check if validation_fraction has an effect
gbc.fit(X_train, y_train)
gbc2.fit(X_train, y_train)
assert gbc.n_estimators_ != gbc2.n_estimators_
gbr.fit(X_train, y_train)
gbr2.fit(X_train, y_train)
assert gbr.n_estimators_ != gbr2.n_estimators_
# Check if n_estimators_ increase monotonically with n_iter_no_change
# Set validation
gbc3.fit(X_train, y_train)
gbr3.fit(X_train, y_train)
assert gbr.n_estimators_ < gbr3.n_estimators_
assert gbc.n_estimators_ < gbc3.n_estimators_
开发者ID:amueller,项目名称:scikit-learn,代码行数:34,代码来源:test_gradient_boosting.py
示例3: test_feature_importance_regression
def test_feature_importance_regression():
"""Test that Gini importance is calculated correctly.
This test follows the example from [1]_ (pg. 373).
.. [1] Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements
of statistical learning. New York: Springer series in statistics.
"""
california = fetch_california_housing()
X, y = california.data, california.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
reg = GradientBoostingRegressor(loss='huber', learning_rate=0.1,
max_leaf_nodes=6, n_estimators=100,
random_state=0)
reg.fit(X_train, y_train)
sorted_idx = np.argsort(reg.feature_importances_)[::-1]
sorted_features = [california.feature_names[s] for s in sorted_idx]
# The most important feature is the median income by far.
assert sorted_features[0] == 'MedInc'
# The three subsequent features are the following. Their relative ordering
# might change a bit depending on the randomness of the trees and the
# train / test split.
assert set(sorted_features[1:4]) == {'Longitude', 'AveOccup', 'Latitude'}
开发者ID:amueller,项目名称:scikit-learn,代码行数:26,代码来源:test_gradient_boosting.py
示例4: gbdt_model
def gbdt_model(trains):
trains = np.array(trains)
gbdt=GradientBoostingRegressor(
loss='ls',
learning_rate=0.1,
n_estimators=100,
subsample=1,
min_samples_split=2,
min_samples_leaf=1,
max_depth=3,
init=None,
random_state=None,
max_features=None,
alpha=0.9,
verbose=0,
max_leaf_nodes=None,
warm_start=False
)
# pdb.set_trace()
train_set = trains[:, :-1]
label_set = trains[:, -1]
gbdt.fit(train_set, label_set)
return gbdt
开发者ID:fengkaicnic,项目名称:pyml,代码行数:27,代码来源:gbdt_model.py
示例5: gbm_fit
def gbm_fit(params, cv_folds):
gbm = GradientBoostingRegressor(**params)
gbm.fit(x_train, y_train)
# Check accuracy of model
# No need for validation data because of cross validation
# Training data is split up into cv_folds folds:
# Model trained on (cv_folds - 1) of the folds; last fold is saved as validation set
cv_scores_mse = cross_validation.cross_val_score(gbm, x_train, y_train, cv=cv_folds, scoring='mean_squared_error')
print '\nModel Report'
print ('MSE Score: Mean - %.7g | Std - %.7g | Min - %.7g | Max - %.7g' %
(np.mean(cv_scores_mse), np.std(cv_scores_mse), np.min(cv_scores_mse), np.max(cv_scores_mse)))
feat_imp = pd.Series(gbm.feature_importances_, features).sort_values(ascending=False)
feat_imp.plot(kind='bar', title='Feature Importances')
plt.ylabel('Feature Importance Score')
plt.show()
# Check actual performance on test data
final_predictions = gbm.predict(x_test)
test['health_score_in_week'] = final_predictions
test.to_csv(output_file, columns=['user_id', 'date', 'steps', 'total_sleep', 'resting_hr',
'step_week_slope', 'sleep_week_slope', 'hr_week_slope',
'curr_health_score', 'health_score_in_week'])
# Save the model to file 'health_prediction.pkl'
joblib.dump(gbm, 'health_prediction.pkl', compress=1)
开发者ID:Fitomo,项目名称:Prediction-Service,代码行数:26,代码来源:predicted_health_algorithm.py
示例6: GBRModel
def GBRModel(X_train,X_cv,y_train,y_cv):
targets = get_target_array()
#print len(train_features)
#print train_features[0]
#print len(test_features)
n_estimators = [50, 100]#, 1500, 5000]
max_depth = [3,8]
best_GBR = None
best_mse = float('inf')
best_score = -float('inf')
print "################# Performing Gradient Boosting Regression ####################### \n\n\n\n"
for estm in n_estimators:
for cur_depth in max_depth:
#random_forest = RandomForestRegressor(n_estimators=estm)
regr_GBR = GradientBoostingRegressor(n_estimators=estm, max_depth= cur_depth)
predictor = regr_GBR.fit(X_train,y_train)
score = regr_GBR.score(X_cv,y_cv)
mse = np.mean((regr_GBR.predict(X_cv) - y_cv) **2)
print "Number of estimators used: ",estm
print "Tree depth used: ",cur_depth
print "Residual sum of squares: %.2f "%mse
print "Variance score: %.2f \n"%score
if best_score <= score:
if best_mse > mse:
best_mse = mse
best_score = score
best_GBR = predictor
print "\nBest score: ",best_score
print "Best mse: ",best_mse
return best_GBR
开发者ID:SaarthakKhanna2104,项目名称:Home-Depot-Product-Search-Relevance,代码行数:34,代码来源:GBR.py
示例7: gradient_boosting
def gradient_boosting(features_values_temp, rows_temp, columns_temp, prediction_values_temp, kernel, threshold):
#kernel: linear, poly, rbf, sigmoid, precomputed
rows = 0
while rows_temp > 0:
rows = rows + 1
rows_temp = rows_temp - 1
columns = 0
while columns_temp > 0:
columns = columns + 1
columns_temp = columns_temp - 1
features_values = [x for x in features_values_temp]
prediction_values = [y for y in prediction_values_temp]
rotated = convert_list_to_matrix(features_values, rows, columns)
scores = np.array(prediction_values)
threshold = float(threshold)
estimator = SVR(kernel=kernel) # try to change to the model for which the test is gonna run (lasso, ridge, etc.)
X, y = make_friedman1(n_samples=1200, random_state=0, noise=1.0)
X_train, X_test = X[:200], X[200:]
y_train, y_test = y[:200], y[200:]
est = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=1, random_state=0, loss='ls').fit(X_train, y_train)
mean_squared_error(y_test, est.predict(X_test))
开发者ID:adityasubramanian,项目名称:kaggle_titanic,代码行数:30,代码来源:feature_selection.py
示例8: fit
def fit(filename, treename, inputsname, targetname, workingpoint=0.9, test=False):
# Reading inputs and targets
ninputs = len(inputsname)
branches = copy.deepcopy(inputsname)
branches.append(targetname)
data = root2array(filename, treename=treename, branches=branches)
data = data.view((np.float64, len(data.dtype.names)))
# Extract and format inputs and targets from numpy array
inputs = data[:, range(ninputs)].astype(np.float32)
targets = data[:, [ninputs]].astype(np.float32).ravel()
# if test requested, use 60% of events for training and 40% for testing
inputs_train = inputs
targets_train = targets
if test:
inputs_train, inputs_test, targets_train, targets_test = cross_validation.train_test_split(inputs, targets, test_size=0.4, random_state=0)
# Define and fit quantile regression (quantile = workingpoint)
# Default training parameters are used
regressor = GradientBoostingRegressor(loss='quantile', alpha=workingpoint)
regressor.fit(inputs_train, targets_train)
if test:
# Compare regression prediction with the true value and count the fraction of time it falls below
# This should give the working point value
predict_test = regressor.predict(inputs_test)
compare = np.less(targets_test, predict_test)
print 'Testing regression with inputs', inputsname, 'and working point', workingpoint
print ' Test efficiency =', float(list(compare).count(True))/float(len(compare))
# TODO: add 1D efficiency graphs vs input variables
return regressor
开发者ID:jbsauvan,项目名称:L1T-Utilities,代码行数:28,代码来源:quantile_regression.py
示例9: impute
def impute(df,imp_val,headers):
if np.isnan(imp_val):
imp_val = -500
log("imputing...",1)
model = GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, init=None, random_state=None, max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False, presort='auto')
data = np.array(df[headers].get_values())
data[np.isnan(data)] = -500
for col in range(0,len(headers)):
#print "Working on column: "+str(col)
##for the current column, remove rows where the current (row,column) value is not equal to zero
##this way we are only training on data with non-zero target values
reduced_data = data[np.logical_not(data[:,col] == imp_val)] #remove row if row,col_num value is zero
target_set = reduced_data[:,col]
training_set = np.delete(reduced_data,col,1)
model.fit(training_set,target_set)
row_num=0
for row in data:
remaining = np.delete(row,col,0)
if data[row_num,col] == imp_val:
data[row_num,col] = model.predict(remaining)
row_num+=1
cntr=0
for h in headers:
df[h] = data[:,cntr];cntr+=1
return df
开发者ID:reventropy,项目名称:maxquant_differential_analysis,代码行数:27,代码来源:mq_diff_1.7.py
示例10: modelTheData
def modelTheData(data,target):
# params = {'n_estimators': 400, 'max_depth': 4, 'min_samples_split': 2,
# 'subsample': 0.5,'min_samples_leaf': 2,
# 'learning_rate': 0.01, 'loss': 'ls'}
#beijing
myMachine = GradientBoostingRegressor(alpha=0.9, init=None, learn_rate=None,
learning_rate=0.05, loss='ls', max_depth=1, max_features=None,
min_samples_leaf=2, min_samples_split=2, n_estimators=300,
random_state=None, subsample=0.5, verbose=0)
#shanghai
# myMachine = GradientBoostingRegressor(alpha=0.9, init=None, learn_rate=None,
# learning_rate=0.05, loss='ls', max_depth=3, max_features=None,
# min_samples_leaf=2, min_samples_split=2, n_estimators=500,
# random_state=None, subsample=0.5, verbose=0)
# myMachine = GradientBoostingRegressor(**params)
myMachine.fit(data,target)
return myMachine
开发者ID:wybert,项目名称:PMpredict,代码行数:27,代码来源:modelSHData.py
示例11: build_models
def build_models(self):
self.remove_columns(
[
"institute_latitude",
"institute_longitude",
"institute_state",
"institute_country",
"var10",
"var11",
"var12",
"var13",
"var14",
"var15",
"instructor_past_performance",
"instructor_association_industry_expert",
"secondary_area",
"var24",
]
)
model1 = GradientBoostingRegressor(learning_rate=0.1, n_estimators=200, subsample=0.8)
model2 = RandomForestRegressor(n_estimators=50)
model3 = ExtraTreesRegressor(n_estimators=50)
model1.fit(self.X, self.y)
model2.fit(self.X, self.y)
model3.fit(self.X, self.y)
return [model1, model2, model3]
开发者ID:numb3r33,项目名称:predict-grants,代码行数:30,代码来源:model.py
示例12: fit
def fit(self,data_train,target):
self.target_train = target
self.catcol = data_train.filter(like='var').columns.tolist()
#start_gbr_tr = time.clock()
self.gbr = GradientBoostingRegressor(n_estimators =self.nest,max_depth=7)
self.gbr.fit(data_train,self.target_train)
self.transformed_train_gbr = self.gbr.transform(data_train,threshold="0.35*mean")
self.gbr_tr_fit = GradientBoostingRegressor(n_estimators =self.nest,max_depth=7)
self.gbr_tr_fit.fit(self.transformed_train_gbr,self.target_train)
#end_gbr_tr = time.clock()
#print >> log, "time_gbr_tr = ", end_gbr_tr-start_gbr_tr
#start_xfr_tr = time.clock()
self.xfr= ExtraTreesRegressor(n_estimators =self.nest,max_depth=7)
self.xfr.fit(data_train,self.target_train)
self.transformed_train_xfr = self.xfr.transform(data_train,threshold="0.35*mean")
self.xfr_tr_fit = ExtraTreesRegressor(n_estimators =self.nest,max_depth=7)
self.xfr_tr_fit.fit(self.transformed_train_xfr,self.target_train)
#end_xfr_tr = time.clock()
#print >> log, "time_xfr_tr = ", end_xfr_tr-start_xfr_tr
#start_gbr_cat = time.clock()
self.gbr_cat_fit = GradientBoostingRegressor(n_estimators =self.nest,max_depth=7)
self.gbr_cat_fit.fit(data_train[self.catcol],self.target_train)
#end_gbr_cat = time.clock()
#print >> log, "time_gbr_cat = ", end_gbr_cat-start_gbr_cat
#start_xfr_cat = time.clock()
self.xfr_cat_fit = ExtraTreesRegressor(n_estimators =self.nest,max_depth=7)
self.xfr_cat_fit.fit(data_train[self.catcol],self.target_train)
#end_xfr_cat = time.clock()
#print >> log, "time_xfr_cat = ", end_xfr_cat-start_xfr_cat
return self
开发者ID:kirilligum,项目名称:cdips-fire,代码行数:33,代码来源:cvbari.py
示例13: gbdrtrain
def gbdrtrain(x, y, pre_x):
x, pre_x = datscater(x, pre_x)
clf = GradientBoostingRegressor(n_estimators=740, min_samples_leaf = 0.8, min_samples_split = 40, learning_rate=0.1,max_depth=7, random_state=400, loss='huber').fit(x, y)
# clf = GradientBoostingRegressor(n_estimators=200,max_leaf_nodes =20, learning_rate=0.1,max_depth=6, random_state=400, loss='ls').fit(x, y)
pred = clf.predict(pre_x)
return pred
开发者ID:pthaike,项目名称:comp,代码行数:7,代码来源:predict.py
示例14: train
def train(targets, features, model_file, params):
model = GradientBoostingRegressor(**params)
print "Training hard..."
model.fit(features, targets)
print "Saving model..."
pickle.dump(model, open(model_file, 'wb'))
return model
开发者ID:DenXX,项目名称:irlab,代码行数:7,代码来源:train.py
示例15: add_new_weak_learner
def add_new_weak_learner(self):
'''
Summary:
Adds a new function, h, to self.weak_learners by solving for Eq. 1 using multiple additive regression trees:
[Eq. 1] h = argmin_h (sum_i Q_A(s_i,a_i) + h(s_i, a_i) - (r_i + max_b Q_A(s'_i, b)))
'''
if len(self.most_recent_episode) == 0:
# If this episode contains no data, don't do anything.
return
# Build up data sets of features and loss terms
data = np.zeros((len(self.most_recent_episode), self.max_state_features + 1))
total_loss = np.zeros(len(self.most_recent_episode))
for i, experience in enumerate(self.most_recent_episode):
# Grab the experience.
s, a, r, s_prime = experience
# Pad in case the state features are too short (as in Atari sometimes).
features = self._pad_features_with_zeros(s, a)
loss = (r + self.gamma * self.get_max_q_value(s_prime) - self.get_q_value(s, a))
# Add to relevant lists.
data[i] = features
total_loss[i] = loss
# Compute new regressor and add it to the weak learners.
estimator = GradientBoostingRegressor(loss='ls', n_estimators=1, max_depth=self.max_depth)
estimator.fit(data, total_loss)
self.weak_learners.append(estimator)
开发者ID:david-abel,项目名称:simple_rl,代码行数:32,代码来源:GradientBoostingAgentClass.py
示例16: CaGBMModel
def CaGBMModel(X_train, Y_train, X_test, Y_test, cv_iterator):
#===========================================================================
# modelCV = GradientBoostingRegressor(subsample = 1, random_state = 42)
# param_grid = {'loss':['ls'],
# 'learning_rate':[0.1],
# 'n_estimators':[100],
# 'max_depth':[5, 50, 150],
# 'min_samples_split':[2],
# 'min_samples_leaf':[5, 15, 30],
# 'max_features':["auto"]
# }
#
# search = GridSearchCV(modelCV, param_grid, scoring="mean_squared_error", cv=cv_iterator, n_jobs = -1)
# search.fit(X_train, Y_train["P"])
# search.grid_scores_
# model = search.best_estimator_
# mse = search.best_score_
# print (time.strftime("%H:%M:%S"))
#===========================================================================
gbm = GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=100, max_depth=50, min_samples_leaf=20, max_features=None, random_state=76)
gbm.fit(X_train, Y_train["Ca"])
yhat_gbm = gbm.predict(X_test)
test_error = math.sqrt(mean_squared_error(Y_test["Ca"], yhat_gbm))
return gbm, test_error
开发者ID:pkravik,项目名称:kaggle,代码行数:27,代码来源:ca_models.py
示例17: grid_search
def grid_search():
results_list_of_tuples = list()
num_folds = 3
best_result = tuple()
for item1 in gd_grid['learning_rate']:
for item2 in gd_grid['max_depth']:
for item3 in gd_grid['min_samples_leaf']:
for item4 in gd_grid['n_estimators']:
for item5 in gd_grid['random_state']:
instance = 'LR {}, max_depth {}, min_samp_leaf {}, n_est {}, rs {}'.format(item1, item2, item3, item4, item5)
print instance
gbrt = GradientBoostingRegressor(random_state=item5, n_estimators=item4, min_samples_leaf=item3, max_depth=item2, learning_rate=item1 )
kf = KFold(X.shape[0], n_folds=num_folds)
mse_list = []
for train_index, test_index in kf:
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
w_train, w_test = weights[train_index], weights[test_index]
gbrt.fit(X_train, y_train, w_train)
y_pred = gbrt.predict(X_test)
mse = mean_squared_error(y_test, y_pred, sample_weight=w_test)
mse_list.append(mse)
kf_mse = np.mean(np.array(mse_list))
results_list_of_tuples.append((instance, kf_mse))
return results_list_of_tuples
开发者ID:jerrystsai,项目名称:project-upwork,代码行数:27,代码来源:gbrt.py
示例18: testingGBM
def testingGBM(X_train, Y_train, X_test, Y_test):
params = {'verbose':2, 'n_estimators':100, 'max_depth':50, 'min_samples_leaf':20, 'learning_rate':0.1, 'loss':'ls', 'max_features':None}
test_init = Ridge(alpha = 0.1, normalize = True, fit_intercept=True)
gbm2 = GradientBoostingRegressor(**params)
gbm2.fit(X_train, Y_train["Ca"])
yhat_gbm = gbm2.predict(X_test)
mean_squared_error(Y_test["Ca"], yhat_gbm)
math.sqrt(mean_squared_error(Y_test["Ca"], yhat_gbm))
test_score = np.zeros((params['n_estimators'],), dtype=np.float64)
for i, y_pred in enumerate(gbm2.staged_decision_function(X_test)):
test_score[i]=mean_squared_error(Y_test["Ca"], y_pred)
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.title('Deviance')
plt.plot(np.arange(params['n_estimators']) + 1, gbm2.train_score_, 'b-',
label='Training Set Deviance')
plt.plot(np.arange(params['n_estimators']) + 1, test_score, 'r-',
label='Test Set Deviance')
plt.legend(loc='upper right')
plt.xlabel('Boosting Iterations')
plt.ylabel('Deviance')
plt.show()
开发者ID:pkravik,项目名称:kaggle,代码行数:26,代码来源:ca_models.py
示例19: pipeline
def pipeline():
val = data[data.watch==0]
val_a_b = val[['item_id','store_code','a','b']]
val_x = val.drop(['label','watch','item_id','store_code','a','b'],axis=1)
train = data[data.watch!=0]
train_y = train.label
a = list(train.a)
b = list(train.b)
train_weight = []
for i in range(len(a)):
train_weight.append(min(a[i],b[i]))
train_weight = np.array(train_weight)
train_x = train.drop(['label','watch','item_id','store_code','a','b'],axis=1)
train_x.fillna(train_x.median(),inplace=True)
val_x.fillna(val_x.median(),inplace=True)
model = GradientBoostingRegressor(loss='lad',learning_rate=0.01,n_estimators=400,subsample=0.75,max_depth=6,random_state=1024, max_features=0.75)
#train
model.fit(train_x,train_y, sample_weight=train_weight)
#predict val set
val_a_b['pred'] = model.predict(val_x)
val_a_b.to_csv('gbrt_3.csv',index=None)
开发者ID:foxchopin,项目名称:CaiNiao-DemandForecast-StoragePlaning,代码行数:31,代码来源:gbrt.py
示例20: train_and_score
def train_and_score(i):
global X_train
global X_test
global Y_train
global dist_train
global dist_test
# GBR performed best but we experimented with other models as well (see the paper)
cl = GradientBoostingRegressor(n_estimators=100, loss='ls', learning_rate=0.1)
# we add user distance from i-th branch (for which we do prediction) to train set
dist_from_target_branch_train = dist_train[:,i].reshape((len(dist_train[:,i]),1)) # dist from i-th branch
X_train = np.hstack((X_train, dist_from_target_branch_train))
# we add mean user activity distance from i-th branch (for which we do prediction) to train set
ab_dist_train = act_branch_dist_train[:,i].reshape((len(act_branch_dist_train[:,i]),1)) # dist from i-th branch
X_train = np.hstack((X_train, ab_dist_train))
# we also experimented with Standard Scaler, without much success
# mmscaler_train = StandardScaler()
# X_train = mmscaler_train.fit_transform(X_train)
cl.fit(X_train,Y_train[:,i])
# same as above for test set
dist_from_target_branch_test = dist_test[:,i].reshape((len(dist_test[:,i]),1)) # dist from i-th branch
X_test = np.hstack((X_test, dist_from_target_branch_test))
ab_dist_test = act_branch_dist_test[:,i].reshape((len(act_branch_dist_test[:,i]),1)) # dist from i-th branch
X_test = np.hstack((X_test, ab_dist_test))
# mmscaler_test = StandardScaler()
# X_test = mmscaler_test.fit_transform(X_test)
return cl.predict(X_test)
开发者ID:SandraMNE,项目名称:ECMLChallenge2016,代码行数:33,代码来源:t1_mpp2.py
注:本文中的sklearn.ensemble.GradientBoostingRegressor类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论