本文整理汇总了Python中sklearn.ensemble.RandomTreesEmbedding类的典型用法代码示例。如果您正苦于以下问题:Python RandomTreesEmbedding类的具体用法?Python RandomTreesEmbedding怎么用?Python RandomTreesEmbedding使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了RandomTreesEmbedding类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_random_hasher_sparse_data
def test_random_hasher_sparse_data():
X, y = datasets.make_multilabel_classification(return_indicator=True,
random_state=0)
hasher = RandomTreesEmbedding(n_estimators=30, random_state=1)
X_transformed = hasher.fit_transform(X)
X_transformed_sparse = hasher.fit_transform(csc_matrix(X))
assert_array_equal(X_transformed_sparse.toarray(), X_transformed.toarray())
开发者ID:0x0all,项目名称:scikit-learn,代码行数:7,代码来源:test_forest.py
示例2: rt_embedding
def rt_embedding(X, n_estimators=100, max_depth=10, n_jobs=-1):
"""Embed data matrix X in a random forest.
Parameters
----------
X : array, shape (n_samples, n_features)
The data matrix.
n_estimators : int, optional
The number of trees in the embedding.
max_depth : int, optional
The maximum depth of each tree.
n_jobs : int, optional
Number of compute jobs when fitting the trees. -1 means number
of processors on the current computer.
Returns
-------
rt : RandomTreesEmbedding object
The embedding object.
X_transformed : sparse matrix
The transformed data.
"""
rt = RandomTreesEmbedding(n_estimators=n_estimators, max_depth=max_depth,
n_jobs=n_jobs)
X_transformed = rt.fit_transform(X)
return rt, X_transformed
开发者ID:koenvb,项目名称:microscopium,代码行数:26,代码来源:cluster.py
示例3: random_forest_embedding
def random_forest_embedding(self, data, n_estimators=30, random_state=0, max_depth=3, min_samples_leaf=1):
"""
learn a density with random forest representation
"""
"""
scikit-learn only supports axis-align sepration, let's first stick to this and see how it works
"""
# n_estimators = 400
# random_state = 0
# max_depth = 5
rf_mdl = RandomTreesEmbedding(
n_estimators=n_estimators,
random_state=random_state,
max_depth=max_depth,
min_samples_leaf=min_samples_leaf)
rf_mdl.fit(data)
indices = rf_mdl.apply(data)
samples_by_node = defaultdict(list)
idx_by_node = defaultdict(list)
#kde_by_node = defaultdict(KernelDensity)
for idx, sample, est_data in zip(range(len(data)), data, indices):
for est_ind, leaf in enumerate(est_data):
samples_by_node[ est_ind, leaf ].append(sample)
idx_by_node[ est_ind, leaf ].append(idx)
res_mdl = dict()
res_mdl['rf_mdl'] = rf_mdl
res_mdl['samples_dict'] = samples_by_node
res_mdl['idx_dict'] = idx_by_node
# res_mdl['kde_dict'] = kde_by_node
return res_mdl
开发者ID:navigator8972,项目名称:pytrajkin,代码行数:33,代码来源:pytrajkin_randemb.py
示例4: random_forest_embedding
def random_forest_embedding(data, n_estimators=400, random_state=0, max_depth=5, min_samples_leaf=1):
"""
learn a density with random forest representation
"""
"""
scikit-learn only supports axis-align sepration, let's first stick to this and see how it works
"""
# n_estimators = 400
# random_state = 0
# max_depth = 5
rf_mdl = RandomTreesEmbedding(
n_estimators=n_estimators,
random_state=random_state,
max_depth=max_depth,
min_samples_leaf=min_samples_leaf)
rf_mdl.fit(data)
# forestClf.fit(trainingData, trainingLabels)
# indices = forestClf.apply(trainingData)
# samples_by_node = defaultdict(list)
# for est_ind, est_data in enumerate(indices.T):
# for sample_ind, leaf in enumerate(est_data):
# samples_by_node[ est_ind, leaf ].append(sample_ind)
# indexOfSamples = samples_by_node[0,10]
# # samples_by_node[treeIndex, leafIndex within that tree]
# leafNodeSamples = trainingAngles[indexOfSamples]
# kde = KernelDensity(kernel='gaussian', bandwidth=0.2).fit(leafNodeSamples)
indices = rf_mdl.apply(data)
samples_by_node = defaultdict(list)
idx_by_node = defaultdict(list)
kde_by_node = defaultdict(KernelDensity)
for idx, sample, est_data in zip(range(len(data)), data, indices):
for est_ind, leaf in enumerate(est_data):
samples_by_node[ est_ind, leaf ].append(sample)
idx_by_node[ est_ind, leaf ].append(idx)
#Kernel Density Estimation for each leaf node
# for k,v in samples_by_node.iteritems():
# est_ind, leaf = k
# params = {'bandwidth': np.logspace(-1, 1, 20)}
# grid = GridSearchCV(KernelDensity(), params)
# grid.fit(v)
# kde_by_node[ est_ind, leaf ] = grid.best_estimator_
res_mdl = dict()
res_mdl['rf_mdl'] = rf_mdl
res_mdl['samples_dict'] = samples_by_node
res_mdl['idx_dict'] = idx_by_node
# res_mdl['kde_dict'] = kde_by_node
return res_mdl
开发者ID:navigator8972,项目名称:nao_writing,代码行数:54,代码来源:utils.py
示例5: test_random_trees_dense_type
def test_random_trees_dense_type():
# Test that the `sparse_output` parameter of RandomTreesEmbedding
# works by returning a dense array.
# Create the RTE with sparse=False
hasher = RandomTreesEmbedding(n_estimators=10, sparse_output=False)
X, y = datasets.make_circles(factor=0.5)
X_transformed = hasher.fit_transform(X)
# Assert that type is ndarray, not scipy.sparse.csr.csr_matrix
assert_equal(type(X_transformed), np.ndarray)
开发者ID:henrywoo,项目名称:scikit-learn,代码行数:11,代码来源:test_forest.py
示例6: test_random_trees_dense_equal
def test_random_trees_dense_equal():
# Test that the `sparse_output` parameter of RandomTreesEmbedding
# works by returning the same array for both argument values.
# Create the RTEs
hasher_dense = RandomTreesEmbedding(n_estimators=10, sparse_output=False, random_state=0)
hasher_sparse = RandomTreesEmbedding(n_estimators=10, sparse_output=True, random_state=0)
X, y = datasets.make_circles(factor=0.5)
X_transformed_dense = hasher_dense.fit_transform(X)
X_transformed_sparse = hasher_sparse.fit_transform(X)
# Assert that dense and sparse hashers have same array.
assert_array_equal(X_transformed_sparse.toarray(), X_transformed_dense)
开发者ID:nelson-liu,项目名称:scikit-learn,代码行数:13,代码来源:test_forest.py
示例7: do_TRT
def do_TRT(ne = 10, md = 3):
from sklearn.ensemble import RandomTreesEmbedding
from sklearn.naive_bayes import BernoulliNB
train_X, train_Y, test_X, test_Y = analysis_glass()
all_X = np.vstack((train_X, test_X))
hasher = RandomTreesEmbedding(n_estimators=ne,\
random_state=0, max_depth=md)
all_X_trans = hasher.fit_transform(all_X)
train_X_trans = all_X[0:149, :]
test_X_trans = all_X[149:, :]
nb = BernoulliNB()
nb.fit(train_X_trans, train_Y)
return nb.score(test_X_trans, test_Y)
开发者ID:peipei1109,项目名称:DecisionTrees,代码行数:15,代码来源:DT.py
示例8: test_random_hasher
def test_random_hasher():
# test random forest hashing on circles dataset
# make sure that it is linearly separable.
# even after projected to two pca dimensions
hasher = RandomTreesEmbedding(n_estimators=30, random_state=0)
X, y = datasets.make_circles(factor=0.5)
X_transformed = hasher.fit_transform(X)
# test fit and transform:
hasher = RandomTreesEmbedding(n_estimators=30, random_state=0)
assert_array_equal(hasher.fit(X).transform(X).toarray(), X_transformed.toarray())
# one leaf active per data point per forest
assert_equal(X_transformed.shape[0], X.shape[0])
assert_array_equal(X_transformed.sum(axis=1), hasher.n_estimators)
pca = RandomizedPCA(n_components=2)
X_reduced = pca.fit_transform(X_transformed)
linear_clf = LinearSVC()
linear_clf.fit(X_reduced, y)
assert_equal(linear_clf.score(X_reduced, y), 1.0)
开发者ID:neufang,项目名称:scikit-learn,代码行数:20,代码来源:test_forest.py
示例9: cluster_training
def cluster_training(self, train, distance=False):
'''
This is the basic clustering function
'''
self.train_matrix = train.train
'''
Step one is to make sure that their is a distance matrix in place.
It is best to feed an existing distance matrix if one is available.
'''
if distance is False:
self.p_feat_matrix = self.tools.pairwise_distance_matrix(train.train, 'jaccard')
else:
self.p_feat_matrix = distance
'''
Step two is to cluster your data using a random trees embedding. This a
random ensemble of trees. This is a transformation on the data, into a
high dimensional, sparse space
'''
self.clf = RandomTreesEmbedding(n_estimators=512, random_state=self.seed, max_depth=5)
#self.clf.fit(self.train_matrix)
X_transformed = self.clf.fit_transform(self.train_matrix)
'''
Step three performs truncated SVD (similar to PCA). It operates on the sample
vectors directly, rather than the covariance matrix. It takes the first two
components. Essentially this reduces the sparse embedding to a low dimensional
representation.
'''
self.svd = TruncatedSVD(n_components=2)
self.svd.clf = self.svd.fit(X_transformed)
self.model = self.svd.clf.transform(X_transformed)
'''
The next step is to take the transformed model and the original dataset and
determine the max silhouette_score of clusters
'''
(self.cluster_assignment,
self.cluster_num,
self.cluster_score) = self.tools.identify_accurate_number_of_clusters(self.model, self.compounds)
self.individualclusters = []
'''
The individual datapoints are assessed with regard to the best clustering scheme
'''
for i in range(self.cluster_num):
self.individualclusters.append([])
for j in range(len(self.cluster_assignment)):
if self.cluster_assignment[j] == i:
self.individualclusters[i].append(self.model[j, :])
self.individualclusters[i] = np.array(self.individualclusters[i])
'''
Finally, this clustering scheme is used to generate a one class Support
Vector Machine decision boundary.
'''
(self.clf_OCSVM,
self.OCSVM_model) = self.tools.determine_test_similarity(self.individualclusters)
开发者ID:sandialabs,项目名称:BioCompoundML,代码行数:53,代码来源:cluster.py
示例10: __init__
def __init__(self, coordinator, base_classifier, n_estimators=10,
max_depth=5, min_samples_split=2, min_samples_leaf=1,
n_jobs=-1, random_state=None, verbose=0, min_density=None):
Classifier.__init__(self, coordinator, base_classifier)
self.histoSize = 0
self._visualBagger = RandomTreesEmbedding(n_estimators=n_estimators,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
min_density=min_density)
开发者ID:jm-begon,项目名称:masterthesis,代码行数:13,代码来源:Classifier.py
示例11: cluster_testing
def cluster_testing(self, testing):
'''Create RandomTreesEmbedding of data'''
clf = RandomTreesEmbedding(n_estimators=512, random_state=self.seed, max_depth=5)
'''Fit testing data to training model'''
clf.fit = self.clf.fit(testing)
X_transformed = self.clf.fit_transform(testing)
n_components = 2
'''SVD transform data'''
svd = TruncatedSVD(n_components=n_components)
svd.clf = svd.fit(X_transformed)
svd.model = svd.clf.transform(X_transformed)
'''Train transformed data using original model'''
train_transformed = clf.fit.transform(self.train_matrix)
train_model = svd.clf.transform(train_transformed)
'''Generate One Class SVM rejection criteria'''
(clf_OCSVM_t, OCSVMmodel_t) = self.tools.determine_testing_data_similarity(train_model)
predicted = []
'''Remove testing compounds outside rejection margin'''
for i in range(len(svd.model)):
p = OCSVMmodel_t.predict(svd.model[i, :].reshape(1, -1))
pred = OCSVMmodel_t.decision_function(svd.model[i, :].reshape(1, -1)).ravel()
if (p == 1):
predicted.append(i)
return predicted
开发者ID:sandialabs,项目名称:BioCompoundML,代码行数:24,代码来源:cluster.py
示例12: EnsembleIOC
class EnsembleIOC(BaseEstimator, RegressorMixin):
def __init__(self, n_estimators=20,
max_depth=5, min_samples_split=10, min_samples_leaf=10,
random_state=0,
em_itrs=5,
regularization=0.05,
passive_dyn_func=None,
passive_dyn_ctrl=None,
passive_dyn_noise=None,
verbose=False):
'''
n_estimators - number of ensembled models
... - a batch of parameters used for RandomTreesEmbedding, see relevant documents
em_itrs - maximum number of EM iterations to take
regularization - small positive scalar to prevent singularity of matrix inversion
passive_dyn_func - function to evaluate passive dynamics; None for MaxEnt model
passive_dyn_ctrl - function to return the control matrix which might depend on the state...
passive_dyn_noise - covariance of a Gaussian noise; only applicable when passive_dyn is Gaussian; None for MaxEnt model
note this implies a dynamical system with constant input gain. It is extendable to have state dependent
input gain then we need covariance for each data point
verbose - output training information
'''
BaseEstimator.__init__(self)
self.n_estimators=n_estimators
self.max_depth=max_depth
self.min_samples_split=min_samples_split
self.min_samples_leaf=min_samples_leaf
self.random_state=random_state
self.em_itrs=em_itrs
self.reg=regularization
self.passive_dyn_func=passive_dyn_func
self.passive_dyn_ctrl=passive_dyn_ctrl
self.passive_dyn_noise=passive_dyn_noise
self.verbose=verbose
return
def fit(self, X, y=None):
'''
y could be the array of starting state of the demonstrated trajectories/policies
if it is None, it implicitly implies a MaxEnt model. Other wise, it serves as the feature mapping
of the starting state. This data might also be potentially used for learning the passive dynamics
for a pure model-free learning with some regressors and regularization.
'''
#check parameters...
assert(type(self.n_estimators)==int)
assert(self.n_estimators > 0)
assert(type(self.max_depth)==int)
assert(self.max_depth > 0)
assert(type(self.min_samples_split)==int)
assert(self.min_samples_split > 0)
assert(type(self.min_samples_leaf)==int)
assert(self.min_samples_leaf > 0)
assert(type(self.em_itrs)==int)
#an initial partitioning of data with random forest embedding
self.random_embedding_mdl_ = RandomTreesEmbedding(
n_estimators=self.n_estimators,
max_depth=self.max_depth,
min_samples_split=self.min_samples_split,
min_samples_leaf=self.min_samples_leaf,
random_state=self.random_state
)
#we probably do not need the data type to differentiate it is a demonstration
#of trajectory or commanded state, do we?
if self.passive_dyn_func is not None and self.passive_dyn_ctrl is not None and self.passive_dyn_noise is not None:
self.random_embedding_mdl_.fit(X[:, X.shape[1]/2:])
indices = self.random_embedding_mdl_.apply(X[:, X.shape[1]/2:])
# X_tmp = np.array(X)
# X_tmp[:, X.shape[1]/2:] = X_tmp[:, X.shape[1]/2:] - X_tmp[:, :X.shape[1]/2]
# self.random_embedding_mdl_.fit(X_tmp)
# indices = self.random_embedding_mdl_.apply(X_tmp)
else:
self.random_embedding_mdl_.fit(X)
#figure out indices
indices = self.random_embedding_mdl_.apply(X)
partitioned_data = defaultdict(list)
leaf_idx = defaultdict(set)
weight_idx = defaultdict(float)
#group data belongs to the same partition and have the weights...
#is weight really necessary for EM steps? Hmm, seems to be for the initialization
#d_idx: data index; p_idx: partition index (comprised of estimator index and leaf index)
for d_idx, d, p_idx in zip(range(len(X)), X, indices):
for e_idx, l_idx in enumerate(p_idx):
partitioned_data[e_idx, l_idx].append(d)
leaf_idx[e_idx] |= {l_idx}
for e_idx, l_idx in enumerate(p_idx):
weight_idx[e_idx, l_idx] = float(len(partitioned_data[e_idx, l_idx])) / len(X)
# weight_idx[e_idx, l_idx] = 1. / len(p_idx)
#for each grouped data, solve an easy IOC problem by assuming quadratic cost-to-go function
#note that, if the passive dynamics need to be learned, extra steps is needed to train a regressor with weighted data
#otherwise, just a simply gaussian for each conditional probability distribution model
self.estimators_ = []
#.........这里部分代码省略.........
开发者ID:KlasKronander,项目名称:ensemble_ioc,代码行数:101,代码来源:ensemble_ioc.py
示例13: make_circles
space with an ExtraTreesClassifier forests learned on the
original data.
"""
import pylab as pl
import numpy as np
from sklearn.datasets import make_circles
from sklearn.ensemble import RandomTreesEmbedding, ExtraTreesClassifier
from sklearn.decomposition import RandomizedPCA
from sklearn.naive_bayes import BernoulliNB
# make a synthetic dataset
X, y = make_circles(factor=0.5, random_state=0, noise=0.05)
# use RandomTreesEmbedding to transform data
hasher = RandomTreesEmbedding(n_estimators=10, random_state=0, max_depth=3)
X_transformed = hasher.fit_transform(X)
# Visualize result using PCA
pca = RandomizedPCA(n_components=2)
X_reduced = pca.fit_transform(X_transformed)
# Learn a Naive Bayes classifier on the transformed data
nb = BernoulliNB()
nb.fit(X_transformed, y)
# Learn an ExtraTreesClassifier for comparison
trees = ExtraTreesClassifier(max_depth=3, n_estimators=10, random_state=0)
trees.fit(X, y)
开发者ID:Calvin-O,项目名称:scikit-learn,代码行数:30,代码来源:plot_random_forest_embedding.py
示例14: Clustering
class Clustering():
def __init__(self, compounds, output=False, seed=False):
np.random.seed(seed=seed)
self.seed = seed
self.compounds = compounds
self.count = 0
self.count_1 = 0
self.output = output
self.tools = clustertools()
if self.output is not False:
self.figures = clusterfigures(self.compounds)
self.testcompound = []
def cluster_training(self, train, distance=False):
'''
This is the basic clustering function
'''
self.train_matrix = train.train
'''
Step one is to make sure that their is a distance matrix in place.
It is best to feed an existing distance matrix if one is available.
'''
if distance is False:
self.p_feat_matrix = self.tools.pairwise_distance_matrix(train.train, 'jaccard')
else:
self.p_feat_matrix = distance
'''
Step two is to cluster your data using a random trees embedding. This a
random ensemble of trees. This is a transformation on the data, into a
high dimensional, sparse space
'''
self.clf = RandomTreesEmbedding(n_estimators=512, random_state=self.seed, max_depth=5)
#self.clf.fit(self.train_matrix)
X_transformed = self.clf.fit_transform(self.train_matrix)
'''
Step three performs truncated SVD (similar to PCA). It operates on the sample
vectors directly, rather than the covariance matrix. It takes the first two
components. Essentially this reduces the sparse embedding to a low dimensional
representation.
'''
self.svd = TruncatedSVD(n_components=2)
self.svd.clf = self.svd.fit(X_transformed)
self.model = self.svd.clf.transform(X_transformed)
'''
The next step is to take the transformed model and the original dataset and
determine the max silhouette_score of clusters
'''
(self.cluster_assignment,
self.cluster_num,
self.cluster_score) = self.tools.identify_accurate_number_of_clusters(self.model, self.compounds)
self.individualclusters = []
'''
The individual datapoints are assessed with regard to the best clustering scheme
'''
for i in range(self.cluster_num):
self.individualclusters.append([])
for j in range(len(self.cluster_assignment)):
if self.cluster_assignment[j] == i:
self.individualclusters[i].append(self.model[j, :])
self.individualclusters[i] = np.array(self.individualclusters[i])
'''
Finally, this clustering scheme is used to generate a one class Support
Vector Machine decision boundary.
'''
(self.clf_OCSVM,
self.OCSVM_model) = self.tools.determine_test_similarity(self.individualclusters)
def cluster_testing(self, testing):
'''Create RandomTreesEmbedding of data'''
clf = RandomTreesEmbedding(n_estimators=512, random_state=self.seed, max_depth=5)
'''Fit testing data to training model'''
clf.fit = self.clf.fit(testing)
X_transformed = self.clf.fit_transform(testing)
n_components = 2
'''SVD transform data'''
svd = TruncatedSVD(n_components=n_components)
svd.clf = svd.fit(X_transformed)
svd.model = svd.clf.transform(X_transformed)
'''Train transformed data using original model'''
train_transformed = clf.fit.transform(self.train_matrix)
train_model = svd.clf.transform(train_transformed)
'''Generate One Class SVM rejection criteria'''
(clf_OCSVM_t, OCSVMmodel_t) = self.tools.determine_testing_data_similarity(train_model)
predicted = []
'''Remove testing compounds outside rejection margin'''
for i in range(len(svd.model)):
p = OCSVMmodel_t.predict(svd.model[i, :].reshape(1, -1))
pred = OCSVMmodel_t.decision_function(svd.model[i, :].reshape(1, -1)).ravel()
if (p == 1):
predicted.append(i)
return predicted
开发者ID:sandialabs,项目名称:BioCompoundML,代码行数:91,代码来源:cluster.py
示例15: docopt
--n_estimators=<n> Number of trees in the forest [default:10]
"""
import pandas as pd
import sys
import numpy as np
import cPickle
from sklearn.ensemble import RandomTreesEmbedding
from docopt import docopt
arguments = docopt(__doc__)
input_path = arguments["<training_set>"]
n = int(arguments["--n_estimators"])
output_path = arguments["<mapper_path>"]
print "Reading Data"
data = pd.read_csv(input_path,header=None).values[:,1:]
print "Constructing Mapper"
mapper = RandomTreesEmbedding(n_estimators=n)
mapper.fit(data)
print "Saving Mapper to {}".format(output_path)
with open(output_path,"w") as f:
cPickle.dump(mapper,f)
开发者ID:celestrist,项目名称:image_retrieval,代码行数:27,代码来源:make_mapper.py
示例16: random_forest_embedding
def random_forest_embedding():
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_circles
from sklearn.ensemble import RandomTreesEmbedding, ExtraTreesClassifier
from sklearn.decomposition import TruncatedSVD
from sklearn.naive_bayes import BernoulliNB
#建立数据集
X, y = make_circles(factor = 0.5, random_state = 0, noise = 0.05)
#print y
#print X.shape #X 是100 * 2, y是100 * 1 (0,1数组)
#Transform data
hasher = RandomTreesEmbedding(n_estimators = 10, random_state = 0, max_depth = 3) #设置参数,生成model
X_transformed = hasher.fit_transform(X)
#print X_transformed[99]
#print X_transformed.shape #100 * 74 ? 可能是如下原因 -- 为什么利用高维稀疏表示之后可以有助于分类?
#RandomTreesEmbedding provides a way to map data to a very high-dimensional,
#sparse representation, which might be beneficial for classification.
pca = TruncatedSVD(n_components = 2)
X_reduced = pca.fit_transform(X_transformed)
#print X_reduced #这里是X_reduced 是 100 * 2
#Learn a Naive bayes classifier on the transformed data
nb = BernoulliNB()
nb.fit(X_transformed, y) #利用高维稀疏矩阵和y进行训练
#Learn a ExtraTreesClassifier for comparison
trees = ExtraTreesClassifier(max_depth = 3, n_estimators = 10, random_state = 0)
trees.fit(X, y) #这里是利用原始的2维X和y进行训练
#scatter plot of original and reduced data
fig = plt.figure(figsize = (9, 8))
ax = plt.subplot(221)
ax.scatter(X[:, 0], X[:, 1], c = y, s = 50) #X[:, 0]是X坐标 X[:, 1]是Y坐标, y是label
ax.set_title("Original Data(2d)")
ax.set_xticks(())
ax.set_yticks(())
ax = plt.subplot(222)
#注意虽然X在转化之后了,但是对应的label没有变,所以可以根据label来分析transfrom的效果
ax.scatter(X_reduced[:, 0], X_reduced[:, 1], c = y, s = 50)
ax.set_title("pca reduction (2d) of transformed data (%dd)" % X_transformed.shape[1])
ax.set_xticks(())
ax.set_yticks(())
#Plot the decision in original space
h = 0.01
x_min, x_max = X[:, 0].min() - 0.5, X[:,0].max() + 0.5
y_min, y_max = X[:, 1].min() - 0.5, X[:,1].max() + 0.5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
#transform grid using RandomTreesEmbedding
#利用nb来做predict
transformed_grid = hasher.transform(np.c_[xx.ravel(), yy.ravel()])
y_grid_pred = nb.predict_proba(transformed_grid)[:, 1]
ax = plt.subplot(223)
ax.set_title("Naive Bayes on Transformed data")
ax.pcolormesh(xx, yy, y_grid_pred.reshape(xx.shape))
ax.scatter(X[:, 0], X[:, 1], c = y, s = 50) #X[:, 0]是X坐标 X[:, 1]是Y坐标, y是label
ax.set_ylim(-1.4, 1.4)
ax.set_xlim(-1.4, 1.4)
ax.set_xticks(())
ax.set_yticks(())
#transform grid using ExtraTreesClassifier
#利用trees做predict
y_grid_pred = trees.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
ax = plt.subplot(224)
ax.set_title("ExtraTrees predictions")
ax.pcolormesh(xx, yy, y_grid_pred.reshape(xx.shape))
ax.scatter(X[:, 0], X[:, 1], c = y, s = 50) #X[:, 0]是X坐标 X[:, 1]是Y坐标, y是label
ax.set_ylim(-1.4, 1.4)
ax.set_xlim(-1.4, 1.4)
ax.set_xticks(())
ax.set_yticks(())
plt.tight_layout()
plt.show()
开发者ID:hyliu0302,项目名称:scikit-learn-notes,代码行数:95,代码来源:myScikitLearnFcns.py
示例17: make_classification
from sklearn.cross_validation import train_test_split
from sklearn.metrics import roc_curve
n_estimator = 10
X, y = make_classification(n_samples=80000)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)
# It is important to train the ensemble of trees on a different subset
# of the training data than the linear regression model to avoid
# overfitting, in particular if the total number of leaves is
# similar to the number of training samples
X_train, X_train_lr, y_train, y_train_lr = train_test_split(X_train,
y_train,
test_size=0.5)
# Unsupervised transformation based on totally random trees
rt = RandomTreesEmbedding(max_depth=3, n_estimators=n_estimator)
rt_lm = LogisticRegression()
rt.fit(X_train, y_train)
rt_lm.fit(rt.transform(X_train_lr), y_train_lr)
y_pred_rt = rt_lm.predict_proba(rt.transform(X_test))[:, 1]
fpr_rt_lm, tpr_rt_lm, _ = roc_curve(y_test, y_pred_rt)
# Supervised transformation based on random forests
rf = RandomForestClassifier(max_depth=3, n_estimators=n_estimator)
rf_enc = OneHotEncoder()
rf_lm = LogisticRegression()
rf.fit(X_train, y_train)
rf_enc.fit(rf.apply(X_train))
rf_lm.fit(rf_enc.transform(rf.apply(X_train_lr)), y_train_lr)
开发者ID:bwignall,项目名称:scikit-learn,代码行数:31,代码来源:plot_feature_transformation.py
示例18: fit
def fit(self, X, y=None):
'''
y could be the array of starting state of the demonstrated trajectories/policies
if it is None, it implicitly implies a MaxEnt model. Other wise, it serves as the feature mapping
of the starting state. This data might also be potentially used for learning the passive dynamics
for a pure model-free learning with some regressors and regularization.
'''
#check parameters...
assert(type(self.n_estimators)==int)
assert(self.n_estimators > 0)
assert(type(self.max_depth)==int)
assert(self.max_depth > 0)
assert(type(self.min_samples_split)==int)
assert(self.min_samples_split > 0)
assert(type(self.min_samples_leaf)==int)
assert(self.min_samples_leaf > 0)
assert(type(self.em_itrs)==int)
#an initial partitioning of data with random forest embedding
self.random_embedding_mdl_ = RandomTreesEmbedding(
n_estimators=self.n_estimators,
max_depth=self.max_depth,
min_samples_split=self.min_samples_split,
min_samples_leaf=self.min_samples_leaf,
random_state=self.random_state
)
#we probably do not need the data type to differentiate it is a demonstration
#of trajectory or commanded state, do we?
if self.passive_dyn_func is not None and self.passive_dyn_ctrl is not None and self.passive_dyn_noise is not None:
self.random_embedding_mdl_.fit(X[:, X.shape[1]/2:])
indices = self.random_embedding_mdl_.apply(X[:, X.shape[1]/2:])
# X_tmp = np.array(X)
# X_tmp[:, X.shape[1]/2:] = X_tmp[:, X.shape[1]/2:] - X_tmp[:, :X.shape[1]/2]
# self.random_embedding_mdl_.fit(X_tmp)
# indices = self.random_embedding_mdl_.apply(X_tmp)
else:
self.random_embedding_mdl_.fit(X)
#figure out indices
indices = self.random_embedding_mdl_.apply(X)
partitioned_data = defaultdict(list)
leaf_idx = defaultdict(set)
weight_idx = defaultdict(float)
#group data belongs to the same partition and have the weights...
#is weight really necessary for EM steps? Hmm, seems to be for the initialization
#d_idx: data index; p_idx: partition index (comprised of estimator index and leaf index)
for d_idx, d, p_idx in zip(range(len(X)), X, indices):
for e_idx, l_idx in enumerate(p_idx):
partitioned_data[e_idx, l_idx].append(d)
leaf_idx[e_idx] |= {l_idx}
for e_idx, l_idx in enumerate(p_idx):
weight_idx[e_idx, l_idx] = float(len(partitioned_data[e_idx, l_idx])) / len(X)
# weight_idx[e_idx, l_idx] = 1. / len(p_idx)
#for each grouped data, solve an easy IOC problem by assuming quadratic cost-to-go function
#note that, if the passive dynamics need to be learned, extra steps is needed to train a regressor with weighted data
#otherwise, just a simply gaussian for each conditional probability distribution model
self.estimators_ = []
#another copy to store the parameters all together, for EM/evaluation on all of the models
self.estimators_full_ = defaultdict(list)
#<hyin/Feb-6th-2016> an estimator and leaf indexed structure to record the passive likelihood of data...
passive_likelihood_dict = defaultdict(list)
for e_idx in range(self.n_estimators):
#for each estimator
estimator_parms = defaultdict(list)
for l_idx in leaf_idx[e_idx]:
if self.verbose:
print 'Processing {0}-th estimator and {1}-th leaf...'.format(e_idx, l_idx)
#and for each data partition
data_partition=np.array(partitioned_data[e_idx, l_idx])
if self.passive_dyn_func is not None and self.passive_dyn_ctrl is not None and self.passive_dyn_noise is not None:
X_new = data_partition[:, data_partition.shape[1]/2:]
X_old = data_partition[:, 0:data_partition.shape[1]/2]
X_new_passive = np.array([self.passive_dyn_func(X_old[sample_idx]) for sample_idx in range(data_partition.shape[0])])
passive_likelihood = _passive_dyn_likelihood(X_new, X_new_passive, self.passive_dyn_noise, self.passive_dyn_ctrl, self.reg)
weights = passive_likelihood / np.sum(passive_likelihood)
weighted_mean = np.sum((weights*X_new.T).T, axis=0)
estimator_parms['means'].append(weighted_mean)
estimator_parms['covars'].append(_frequency_weighted_covariance(X_new, weighted_mean, weights, spherical=False))
#for full estimators
self.estimators_full_['means'].append(estimator_parms['means'][-1])
self.estimators_full_['covars'].append(estimator_parms['covars'][-1])
#<hyin/Feb-6th-2016> also remember the data weight according to the passive likelihood
#this could be useful if the weights according to the passive likelihood is desired for other applications
#to evaluate some statistics within the data parition
passive_likelihood_dict[e_idx, l_idx] = weights
else:
estimator_parms['means'].append(np.mean(data_partition, axis=0))
estimator_parms['covars'].append(np.cov(data_partition.T))
#for full estimators
self.estimators_full_['means'].append(estimator_parms['means'][-1])
#.........这里部分代码省略.........
开发者ID:KlasKronander,项目名称:ensemble_ioc,代码行数:101,代码来源:ensemble_ioc.py
示例19: UnsupervisedVisualBagClassifier
class UnsupervisedVisualBagClassifier(Classifier):
"""
===============================
UnsupervisedVisualBagClassifier
===============================
1. Unsupervised
2. Binary bag of words
3. Totally random trees
"""
def __init__(self, coordinator, base_classifier, n_estimators=10,
max_depth=5, min_samples_split=2, min_samples_leaf=1,
n_jobs=-1, random_state=None, verbose=0, min_density=None):
Classifier.__init__(self, coordinator, base_classifier)
self.histoSize = 0
self._visualBagger = RandomTreesEmbedding(n_estimators=n_estimators,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
min_density=min_density)
def _preprocess(self, image_buffer, learningPhase):
if learningPhase:
self.setTask(1, "Extracting the features (model creation)")
else:
self.setTask(1, "Extracting the features (prediction)")
X_pred, y = self._coord.process(image_buffer,
learningPhase=learningPhase)
y_user = self._convertLabel(y)
#Cleaning up
self._coord.clean(y)
del y
self.endTask()
#Bag-of-word transformation
self.setTask(1, "Transforming data into bag-of-words (Tree part)")
X2 = None
if learningPhase:
X2 = self._visualBagger.fit_transform(X_pred, y_user)
self.histoSize = X2.shape[1]
else:
X2 = self._visualBagger.transform(X_pred)
#Cleaning up
self._coord.clean(X_pred)
del X_pred
del y_user
self.endTask()
nbFactor = X2.shape[0] // len(image_buffer)
if not sps.isspmatrix_csr(X2):
X2 = X2.tocsr()
if nbFactor == 1:
return X2
self.setTask(len(image_buffer), "Transforming data into bag-of-words (Histogram part)")
nbTrees = self._visualBagger.n_estimators
X3 = computeHistogram(len(image_buffer), nbFactor, nbTrees, X2)
self.endTask()
#Cleaning up
del X2 # Should be useless
return X3
def fit_histogram(self, hist, y):
#Delegating the classification
self.setTask(1, "Learning the model")
self._classifier.fit(hist, y)
self.endTask()
return self
def fit(self, image_buffer):
"""
Fits the data contained in the :class:`ImageBuffer` instance
Parameters
-----------
image_buffer : :class:`ImageBuffer`
The data to learn from
Return
-------
self : :class:`Classifier`
This instance
#.........这里部分代码省略.........
开发者ID:jm-begon,项目名称:masterthesis,代码行数:101,代码来源:Classifier.py
示例20: RandomTreesEmbedding
#featuresnp = np.array(features[0:2000]+features[-2000:], dtype='float32')
#targetnp = np.array(target[0:2000]+target[-2000:], dtype='int32')
featuresnp = np.array(features,
|
请发表评论