• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python joblib.hash函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.externals.joblib.hash函数的典型用法代码示例。如果您正苦于以下问题:Python hash函数的具体用法?Python hash怎么用?Python hash使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了hash函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: check_estimators_overwrite_params

def check_estimators_overwrite_params(name, Estimator):
    X, y = make_blobs(random_state=0, n_samples=9)
    y = multioutput_estimator_convert_y_2d(name, y)
    # some want non-negative input
    X -= X.min()
    with warnings.catch_warnings(record=True):
        # catch deprecation warnings
        estimator = Estimator()

    set_fast_parameters(estimator)
    set_random_state(estimator)

    # Make a physical copy of the orginal estimator parameters before fitting.
    params = estimator.get_params()
    original_params = deepcopy(params)

    # Fit the model
    estimator.fit(X, y)

    # Compare the state of the model parameters with the original parameters
    new_params = estimator.get_params()
    for param_name, original_value in original_params.items():
        new_value = new_params[param_name]

        # We should never change or mutate the internal state of input
        # parameters by default. To check this we use the joblib.hash function
        # that introspects recursively any subobjects to compute a checksum.
        # The only exception to this rule of immutable constructor parameters
        # is possible RandomState instance but in this check we explicitly
        # fixed the random_state params recursively to be integer seeds.
        assert_equal(hash(new_value), hash(original_value),
                     "Estimator %s should not change or mutate "
                     " the parameter %s from %s to %s during fit."
                     % (name, param_name, original_value, new_value))
开发者ID:Afey,项目名称:scikit-learn,代码行数:34,代码来源:estimator_checks.py


示例2: test_check_estimator_clones

def test_check_estimator_clones():
    # check that check_estimator doesn't modify the estimator it receives
    from sklearn.datasets import load_iris
    iris = load_iris()

    for Estimator in [GaussianMixture, LinearRegression,
                      RandomForestClassifier, NMF, SGDClassifier,
                      MiniBatchKMeans]:
        with ignore_warnings(category=FutureWarning):
            # when 'est = SGDClassifier()'
            est = Estimator()
        set_checking_parameters(est)
        set_random_state(est)
        # without fitting
        old_hash = joblib.hash(est)
        check_estimator(est)
        assert_equal(old_hash, joblib.hash(est))

        with ignore_warnings(category=FutureWarning):
            # when 'est = SGDClassifier()'
            est = Estimator()
        set_checking_parameters(est)
        set_random_state(est)
        # with fitting
        est.fit(iris.data + 10, iris.target)
        old_hash = joblib.hash(est)
        check_estimator(est)
        assert_equal(old_hash, joblib.hash(est))
开发者ID:ZIP97,项目名称:scikit-learn,代码行数:28,代码来源:test_estimator_checks.py


示例3: test_new_img_like_side_effect

def test_new_img_like_side_effect():
    img1 = Nifti1Image(np.ones((2, 2, 2, 2)), affine=np.eye(4))
    hash1 = joblib.hash(img1)
    new_img_like(img1, np.ones((2, 2, 2, 2)), img1.affine.copy(),
                 copy_header=True)
    hash2 = joblib.hash(img1)
    assert_equal(hash1, hash2)
开发者ID:banilo,项目名称:nilearn,代码行数:7,代码来源:test_niimg.py


示例4: test_joblib_cache

def test_joblib_cache():
    if not LooseVersion(nibabel.__version__) > LooseVersion('1.1.0'):
        # Old nibabel do not pickle
        raise SkipTest
    from sklearn.externals.joblib import hash, Memory
    mask = np.zeros((40, 40, 40))
    mask[20, 20, 20] = 1
    mask_img = Nifti1Image(mask, np.eye(4))

    with testing.write_tmp_imgs(mask_img, create_files=True)\
            as filename:
        masker = NiftiMasker(mask_img=filename)
        masker.fit()
        mask_hash = hash(masker.mask_img_)
        masker.mask_img_.get_data()
        assert_true(mask_hash == hash(masker.mask_img_))

    # Test a tricky issue with memmapped joblib.memory that makes
    # imgs return by inverse_transform impossible to save
    cachedir = mkdtemp()
    try:
        masker.memory = Memory(cachedir=cachedir, mmap_mode='r',
                               verbose=0)
        X = masker.transform(mask_img)
        # inverse_transform a first time, so that the result is cached
        out_img = masker.inverse_transform(X)
        out_img = masker.inverse_transform(X)
        out_img.to_filename(os.path.join(cachedir, 'test.nii'))
    finally:
        shutil.rmtree(cachedir, ignore_errors=True)
开发者ID:bcipolli,项目名称:nilearn,代码行数:30,代码来源:test_nifti_masker.py


示例5: hash_X_y

def hash_X_y(X, y, n_samples=10, n_features=5):
    """Compute hash of the input arrays.

    Parameters
    ----------
    X : ndarray, shape (n_samples, n_features)
        The ``X`` array.

    y : ndarray, shape (n_samples)
        The ``y`` array.

    n_samples : int, optional
        The number of samples to use to compute the hash. Default is 100.

    n_features : int, optional
        The number of features to use to compute the hash. Default is 10.

    Returns
    -------
    X_hash: str
        Hash identifier of the ``X`` matrix.
    y_hash: str
        Hash identifier of the ``y`` matrix.
    """
    row_idx = slice(None, None, max(1, X.shape[0] // n_samples))
    col_idx = slice(None, None, max(1, X.shape[1] // n_features))

    return joblib.hash(X[row_idx, col_idx]), joblib.hash(y[row_idx])
开发者ID:glemaitre,项目名称:imbalanced-learn,代码行数:28,代码来源:validation.py


示例6: test_hash_X_y

def test_hash_X_y():
    rng = check_random_state(0)
    X = rng.randn(2000, 20)
    y = np.array([0] * 500 + [1] * 1500)
    assert hash_X_y(X, y, 10, 10) == (joblib.hash(X[::200, ::2]),
                                      joblib.hash(y[::200]))

    X = rng.randn(5, 2)
    y = np.array([0] * 2 + [1] * 3)
    # all data will be used in this case
    assert hash_X_y(X, y) == (joblib.hash(X), joblib.hash(y))
开发者ID:zzhhoubin,项目名称:imbalanced-learn,代码行数:11,代码来源:test_validation.py


示例7: test_joblib_cache

def test_joblib_cache():
    from sklearn.externals.joblib import hash
    # Dummy mask
    mask = np.zeros((40, 40, 40))
    mask[20, 20, 20] = 1
    mask_img = Nifti1Image(mask, np.eye(4))

    with write_tmp_imgs(mask_img, create_files=True) as filename:
        masker = MultiNiftiMasker(mask_img=filename)
        masker.fit()
        mask_hash = hash(masker.mask_img_)
        masker.mask_img_.get_data()
        assert_true(mask_hash == hash(masker.mask_img_))
        # enables to delete "filename" on windows
        del masker
开发者ID:TheChymera,项目名称:nilearn,代码行数:15,代码来源:test_multi_nifti_masker.py


示例8: test_joblib_cache

def test_joblib_cache():
    if not LooseVersion(nibabel.__version__) > LooseVersion('1.1.0'):
        # Old nibabel do not pickle
        raise SkipTest
    from sklearn.externals.joblib import hash
    # Dummy mask
    mask = np.zeros((40, 40, 40))
    mask[20, 20, 20] = 1
    mask_img = Nifti1Image(mask, np.eye(4))

    with testing.write_tmp_imgs(mask_img, create_files=True)\
                as filename:
        masker = MultiNiftiMasker(mask_img=filename)
        masker.fit()
        mask_hash = hash(masker.mask_img_)
        masker.mask_img_.get_data()
        assert_true(mask_hash == hash(masker.mask_img_))
开发者ID:ofercoq,项目名称:nilearn,代码行数:17,代码来源:test_multi_nifti_masker.py


示例9: evaluate_one

def evaluate_one(model_class, parameters, cv_split):
    split_idx, (X_train, X_val, y_train, y_val) = cv_split
    model = model_class(**parameters).fit(X_train, y_train)

    train_score = model.score(X_train, y_train)
    validation_score = model.score(X_val, y_val)

    results = {
        'train_score': train_score,
        'val_score': validation_score,
        'parameters': parameters,
        'parameters_hash': hash(parameters),
    }
    return results
开发者ID:ahmadia,项目名称:scipy-2016-parallel,代码行数:14,代码来源:cv_params_demo.py


示例10: test_copy_img_side_effect

def test_copy_img_side_effect():
    img1 = Nifti1Image(np.ones((2, 2, 2, 2)), affine=np.eye(4))
    hash1 = joblib.hash(img1)
    niimg.copy_img(img1)
    hash2 = joblib.hash(img1)
    assert_equal(hash1, hash2)
开发者ID:banilo,项目名称:nilearn,代码行数:6,代码来源:test_niimg.py


示例11: enumerate

if not os.path.exists(GRID_JOBS_FOLDER):
    os.makedirs(GRID_JOBS_FOLDER)


params = {
    'max_features': [10, 20, 50, 100],
    'max_depth': [2, 3, 4, 5],
    'subsample': [0.5, 0.8, 1.0],
    'loss': ['ls', 'huber', 'quantile'],
    'learning_rate': [0.05, 0.1, 0.5],
}

for i, param in enumerate(ParameterGrid(params)):
    params_description = json.dumps(param)
    job_id = joblib.hash(params_description)
    job_folder = GRID_JOBS_FOLDER + '/' + job_id
    if not os.path.exists(job_folder):
        os.makedirs(job_folder)
    with open(job_folder + '/parameters.json', 'wb') as f:
        f.write(params_description.encode('utf-8'))

    data_filenames = {'train': TRAIN_SAMPLE_DATA, 'validation': VALI_DATA}
    with open(job_folder + '/data.json', 'wb') as f:
        f.write(json.dumps(data_filenames).encode('utf-8'))

    cmd = 'qsub -V -cwd letor_gridpoint.py {}'.format(job_folder)
    os.system(cmd)

    # if i > 100:
    #     break
开发者ID:FZambia,项目名称:notebooks,代码行数:30,代码来源:letor_gridsearch.py



注:本文中的sklearn.externals.joblib.hash函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python joblib.load函数代码示例发布时间:2022-05-27
下一篇:
Python joblib.dump函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap