• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python linear_model.SGDClassifier类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.linear_model.SGDClassifier的典型用法代码示例。如果您正苦于以下问题:Python SGDClassifier类的具体用法?Python SGDClassifier怎么用?Python SGDClassifier使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了SGDClassifier类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: sgd_classifier

def sgd_classifier(V_train, y_train, V_val, y_val, V_test, y_test):

    t0 = time.time()

    print 'Building Random Forest model'

    clf = SGDClassifier(n_iter = 50)

    #clf = grid_search.GridSearchCV(svm_clf, parameters)                                                                                                                            

    clf.fit(V_train, y_train)

    #print clf.best_params_                                                                                                                                                         

    t1 = time.time()
    print 'Building Random Forest model ... Done', str(int((t1 - t0)*100)/100.)
    print ''

    p_val =clf.predict(V_val)

    print 'Training accuracy on validation set', accuracy_score(y_val, p_val)

    p_test = clf.predict(V_test)

    print 'Accuracy on testing set'

    print classification_report(y_test, p_test)
开发者ID:HACP,项目名称:RHETORICS,代码行数:27,代码来源:MLlib.py


示例2: run_online_classifier

def run_online_classifier():
    vect = HashingVectorizer(
        decode_error='ignore',
        n_features=2**21,
        preprocessor=None,
        tokenizer=tokenizer_streaming,
    )
    clf = SGDClassifier(loss='log', random_state=1, n_iter=1)

    csv_filename = os.path.join('datasets', 'movie_data.csv')
    doc_stream = stream_docs(path=csv_filename)

    classes = np.array([0, 1])
    for _ in range(45):
        X_train, y_train = get_minibatch(doc_stream, size=1000)
        if X_train is None:
            break
        else:
            X_train = vect.transform(X_train)
            clf.partial_fit(X_train, y_train, classes=classes)

    X_test, y_test = get_minibatch(doc_stream, size=5000)
    X_test = vect.transform(X_test)
    print("Test accuracy: %.3f" % clf.score(X_test, y_test))

    clf = clf.partial_fit(X_test, y_test)
开发者ID:jeremyn,项目名称:python-machine-learning-book,代码行数:26,代码来源:chapter_8.py


示例3: test_underflow_or_overlow

def test_underflow_or_overlow():
    with np.errstate(all="raise"):
        # Generate some weird data with hugely unscaled features
        rng = np.random.RandomState(0)
        n_samples = 100
        n_features = 10

        X = rng.normal(size=(n_samples, n_features))
        X[:, :2] *= 1e300
        assert_true(np.isfinite(X).all())

        # Use MinMaxScaler to scale the data without introducing a numerical
        # instability (computing the standard deviation naively is not possible
        # on this data)
        X_scaled = MinMaxScaler().fit_transform(X)
        assert_true(np.isfinite(X_scaled).all())

        # Define a ground truth on the scaled data
        ground_truth = rng.normal(size=n_features)
        y = (np.dot(X_scaled, ground_truth) > 0.0).astype(np.int32)
        assert_array_equal(np.unique(y), [0, 1])

        model = SGDClassifier(alpha=0.1, loss="squared_hinge", n_iter=500)

        # smoke test: model is stable on scaled data
        model.fit(X_scaled, y)
        assert_true(np.isfinite(model.coef_).all())

        # model is numerically unstable on unscaled data
        msg_regxp = (
            r"Floating-point under-/overflow occurred at epoch #.*"
            " Scaling input data with StandardScaler or MinMaxScaler"
            " might help."
        )
        assert_raises_regexp(ValueError, msg_regxp, model.fit, X, y)
开发者ID:richlewis42,项目名称:scikit-learn,代码行数:35,代码来源:test_sgd.py


示例4: __init__

class LightModel:
    def __init__(self,learningRate, numEpochs, ppenalty="l1", mustShuffle=True):
        #Init scikit models
        self.Classifier = SGDClassifier(penalty=ppenalty, loss='log', alpha=learningRate, n_iter = numEpochs, shuffle=mustShuffle)
    def train(self, gen,  v=False):
        i = 0
        for x, y in gen: #For each batch
            self.Classifier.partial_fit(x, y, [0,1])
            i += len(x)
            if v : print(str(datetime.now())[:-7] , "example:", i)
            
    def test(self, gen,  v=False):

        #init target and prediction arrays
        ytot = np.array([])
        ptot = np.array([])
        #Get prediction for each batch
        i = 0
        for x,y in gen:
            p = self.Classifier.predict_proba(x)
            p = p.T[1].T #Keep column corresponding to probability of class 1
            #Stack target and prediction for later analysis
            ytot = np.hstack((ytot, y)) 
            ptot = np.hstack((ptot, p))
            i += y.shape[0]
            if v : print(str(datetime.now())[:-7] , "example:", i)
        if v: print("Score:", self.score(ytot, ptot))
        
        return (ytot, ptot)
    def score(self, target, prediction):
        return llfun(target, prediction)
开发者ID:EtienneDesticourt,项目名称:Kaggle-Avazu,代码行数:31,代码来源:LightModel.py


示例5: validate

def validate():
  """
  Runs a 10-fold cross validation on the classifier, reporting
  accuracy.
  """
  trainDf = pd.read_csv("../NewData/train.csv")
  X = np.matrix(pd.DataFrame(trainDf, index=None,
    columns=["invited", "user_reco", "evt_p_reco", "evt_c_reco",
    "user_pop", "frnd_infl", "evt_pop"]))
  y = np.array(trainDf.interested)
  nrows = len(trainDf)
  kfold = KFold(nrows, 10)
  avgAccuracy = 0
  run = 0
  for train, test in kfold:
    Xtrain, Xtest, ytrain, ytest = X[train], X[test], y[train], y[test]
    clf = SGDClassifier(loss="log", penalty="l2")
    clf.fit(Xtrain, ytrain)
    accuracy = 0
    ntest = len(ytest)
    for i in range(0, ntest):
      yt = clf.predict(Xtest[i, :])
      if yt == ytest[i]:
        accuracy += 1
    accuracy = accuracy / ntest
    print "accuracy (run %d): %f" % (run, accuracy)
    avgAccuracy += accuracy
    run += 1
  print "Average accuracy", (avgAccuracy / run)
开发者ID:ChrisBg,项目名称:mlia-examples,代码行数:29,代码来源:RecoWeights.py


示例6: do_classify

def do_classify():
    corpus = MyCorpus()
    # tfidf_model = TfidfModel(corpus)
    corpus_idf = tfidf_model[corpus]
    # corpus_lsi = lsi_model[corpus_idf]
    num_terms = len(corpus.dictionary)
    # num_terms = 400
    corpus_sparse = matutils.corpus2csc(corpus_idf, num_terms).transpose(copy=False)
    # print corpus_sparse.shape
    # corpus_dense = matutils.corpus2dense(corpus_idf, len(corpus.dictionary))
    # print corpus_dense.shape
    penalty = "l2"
    clf = SGDClassifier(loss="hinge", penalty=penalty, alpha=0.0001, n_iter=50, fit_intercept=True)
    # clf = LinearSVC(loss='l2', penalty=penalty, dual=False, tol=1e-3)
    y = np.array(corpus.cls_y)
    # print y.shape
    clf.fit(corpus_sparse, y)
    filename = os.path.join(HERE, "sgdc_clf.pkl")
    _ = joblib.dump(clf, filename, compress=9)
    print "train completely"

    X_test = []
    X_label = []
    for obj in SogouCorpus.objects.filter(id__in=corpus.test_y):
        X_test.append(obj.tokens)
        X_label.append(cls_ids[obj.classify])
        # result = classifier.predict(obj.tokens)
    test_corpus = [dictionary.doc2bow(s.split(",")) for s in X_test]
    test_corpus = tfidf_model[test_corpus]
    test_corpus = matutils.corpus2csc(test_corpus, num_terms).transpose(copy=False)
    pred = clf.predict(test_corpus)
    score = metrics.f1_score(X_label, pred)
    print ("f1-score:   %0.3f" % score)
开发者ID:jannson,项目名称:Similar,代码行数:33,代码来源:summ.py


示例7: classify_reviews

def classify_reviews():
	import featurizer
	import gen_training_data
	import numpy as np
	from sklearn.naive_bayes import MultinomialNB
	from sklearn.linear_model import SGDClassifier

	data = gen_training_data.gen_data();
	stemmed_data = featurizer.stem(data);
	tfidf= featurizer.tfidf(data);
	clf = MultinomialNB().fit(tfidf['train_tfidf'], data['training_labels']);
	predicted = clf.predict(tfidf['test_tfidf']);
	num_wrong = 0;
	tot = 0;
	for expected, guessed in zip(data['testing_labels'], predicted):
		if(expected-guessed != 0):	
			num_wrong += 1;

	print("num_wrong: %d",num_wrong)

	sgd_clf = SGDClassifier(loss='hinge', penalty='l2', alpha=1e-3, n_iter=5, random_state=42);
	_ = sgd_clf.fit(tfidf['train_tfidf'], data['training_labels']);
	sgd_pred = sgd_clf.predict(tfidf['test_tfidf']);
	print np.mean(sgd_pred == data['testing_labels']);

	stem_tfidf = featurizer.tfidf(stemmed_data);
	_ = sgd_clf.fit(stem_tfidf['train_tfidf'], data['training_labels']);
	sgd_stem_prd = sgd_clf.predict(stem_tfidf['test_tfidf']);
	print np.mean(sgd_stem_prd==data['testing_labels']);
开发者ID:JT17,项目名称:445Project,代码行数:29,代码来源:classifier.py


示例8: train

def train(docs, labels, regu=1, bg_weight=.1):
    '''
    :param docs: iterator of (title, body) pairs
    :param labels: integer labels for docs (0 is weakly-negative)
    :return: model
    '''
    num_topics=50
    feas = map(extract_words,  docs)
    labels = np.array(list(labels), dtype=int)
    idf=train_idf(feas)
    X,vocab=extract_feas(feas, idf)
    #lda=train_lda(X, vocab, num_topics)
    #X=transform_lda(X, lda)
    # set up sample weights
    weights = balance_weights(labels, bg_weight)
    labels=labels.copy()
    labels[labels == 0] = 1
    model=SGDClassifier(loss='log',
                        alpha=regu/len(labels),
                        fit_intercept=True,
                        n_iter=100,
                        shuffle=True)
    model.fit(X, labels, sample_weight=weights)
    #print accuracy(labels, model.predict(X))
    return dict(idf=idf, logreg=model, lda=None)
开发者ID:jseppanen,项目名称:textpile,代码行数:25,代码来源:model.py


示例9: crossvalidate

def crossvalidate(feas, labels, param):
    labels = np.array(list(labels), dtype=int)
    accs = []
    for train_ids, valid_ids in StratifiedKFold(labels, 10):
        idf=train_idf([feas[i] for i in train_ids])
        X,vocab=extract_feas(feas, idf)
        #lda=train_lda(X, vocab, num_topics)
        #X=transform_lda(X, lda)
        labels_train = labels[train_ids].copy()
        weights = balance_weights(labels_train, param['bg_weight'])
        labels_train[labels_train == 0] = 1
        model=SGDClassifier(loss='log',
                            alpha=param['regu']/len(labels_train),
                            fit_intercept=True,
                            shuffle=True, n_iter=50)
        model.fit(X[train_ids], labels_train, sample_weight=weights)
        pp = model.predict_proba(X[valid_ids])
        pred_labels = np.argmax(pp, 1)
        pred_labels = model.classes_[pred_labels]
        #a=accuracy(labels[valid_ids], pred_labels, 1)
        # return all scores for "good" class
        assert model.classes_[1] == 2
        pred_scores = pp[:,1]
        a=avg_precision(labels[valid_ids], pred_scores)
        print '%.2f' % a,
        accs.append(a)
    return np.mean(accs)
开发者ID:jseppanen,项目名称:textpile,代码行数:27,代码来源:model.py


示例10: plot_sgd_classifier

def plot_sgd_classifier(num_samples, clt_std):
    #generation of data
    X, y = make_blobs(n_samples=num_samples, centers=2, cluster_std=clt_std)

    #fitting of data using logistic regression
    clf = SGDClassifier(loss='log', alpha=0.01)
    clf.fit(X, y)

    #plotting of data
    x_ = np.linspace(min(X[:, 0]), max(X[:, 0]), 10)
    y_ = np.linspace(min(X[:, 1]), max(X[:, 1]), 10)

    X_, Y_ = np.meshgrid(x_, y_)
    Z = np.empty(X_.shape)

    for (i, j), val in np.ndenumerate(X_):
        x1 = val
        x2 = Y_[i, j]
        conf_score = clf.decision_function([x1, x2])
        Z[i, j] = conf_score[0]

    levels = [-1.0, 0, 1.0]
    colors = 'k'
    linestyles = ['dashed', 'solid', 'dashed']

    ax = plt.axes()
    plt.xlabel('X1')
    plt.ylabel('X2')
    ax.contour(X_, Y_, Z, colors=colors,
               levels=levels, linestyles=linestyles, labels='Boundary')
    ax.scatter(X[:, 0], X[:, 1], c=y)
开发者ID:abinashpanda,项目名称:ml_tutorial,代码行数:31,代码来源:SGD_Classification.py


示例11: kernelsvm

class kernelsvm():
    def __init__(self, theta0, alpha, loss_metric):
        self.theta0 = theta0
        self.alpha = alpha
        self.loss_metric = loss_metric
    def fit(self, X, y, idx_SR):
        n_SR = len(idx_SR)
        self.feature_map_nystroem = General_Nystroem(kernel='rbf', gamma=self.theta0, n_components=n_SR)
        X_features = self.feature_map_nystroem.fit_transform(X,idx_SR)
        print("fitting SGD")
        self.clf = SGDClassifier(loss=self.loss_metric,alpha=self.alpha)
        self.clf.fit(X_features, y)
        print("fitting SGD finished")
    def predict(self, X):
        print("Predicting")
        X_transform = self.feature_map_nystroem.transform(X)
        return self.clf.predict(X_transform), X_transform
    def decision_function(self, X):
        # X should be the transformed input!
        return self.clf.decision_function(X)
    def err_rate(self, y_true, y_pred):
        acc = accuracy_score(y_true, y_pred)
        err_rate = 1.0-acc
        return err_rate
    def get_params(self):
        return self.clf.get_params()
开发者ID:Zheng-JIA,项目名称:kernelsubsampling,代码行数:26,代码来源:svm.py


示例12: run_SGD

def run_SGD(X, y, n_tr, n_te):
  X_tr, y_tr, X_te, y_te = X[:n_tr], y[:n_tr], X[-n_te:], y[-n_te:]
  penalties = ['hinge', 'log']
  for p in penalties:
    model = SGDClassifier(loss=p, penalty=None, n_iter=100).fit(X_tr, y_tr)
    print 'Training, validation accuracy is %6.4f and %6.4f for %s loss' % \
        (model.score(X_tr, y_tr), model.score(X_te, y_te), p)
开发者ID:joshua924,项目名称:MachineLearningProject_Team509,代码行数:7,代码来源:train.py


示例13: stochasticGD

def stochasticGD(input_file,Output,test_size):
    lvltrace.lvltrace("LVLEntree dans stochasticGD split_test")
    ncol=tools.file_col_coma(input_file)
    data = np.loadtxt(input_file, delimiter=',', usecols=range(ncol-1))
    X = data[:,1:]
    y = data[:,0]
    n_samples, n_features = X.shape
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
    print X_train.shape, X_test.shape
    clf = SGDClassifier(loss="hinge", penalty="l2")
    clf.fit(X_train,y_train)
    y_pred = clf.predict(X_test)
    print "Stochastic Gradient Descent "
    print "classification accuracy:", metrics.accuracy_score(y_test, y_pred)
    print "precision:", metrics.precision_score(y_test, y_pred)
    print "recall:", metrics.recall_score(y_test, y_pred)
    print "f1 score:", metrics.f1_score(y_test, y_pred)
    print "\n"
    results = Output+"Stochastic_GD_metrics_test.txt"
    file = open(results, "w")
    file.write("Stochastic Gradient Descent estimator accuracy\n")
    file.write("Classification Accuracy Score: %f\n"%metrics.accuracy_score(y_test, y_pred))
    file.write("Precision Score: %f\n"%metrics.precision_score(y_test, y_pred))
    file.write("Recall Score: %f\n"%metrics.recall_score(y_test, y_pred))
    file.write("F1 Score: %f\n"%metrics.f1_score(y_test, y_pred))
    file.write("\n")
    file.write("True Value, Predicted Value, Iteration\n")
    for n in xrange(len(y_test)):
        file.write("%f,%f,%i\n"%(y_test[n],y_pred[n],(n+1)))
    file.close()
    title = "Stochastic Gradient Descent %f"%test_size
    save = Output + "Stochastic_GD_confusion_matrix"+"_%s.png"%test_size
    plot_confusion_matrix(y_test, y_pred,title,save)
开发者ID:xaviervasques,项目名称:Neuron_Morpho_Classification_ML,代码行数:33,代码来源:supervised_split_test.py


示例14: train_stochaticGradientDescent

def train_stochaticGradientDescent(X, y, loss='hinge', penalty='l2', alpha=0.0001, l1_ratio=0.15,
                                   fit_intercept=True, n_iter=5, shuffle=True, verbose=0,
                                   epsilon=0.1, n_jobs=1, random_state=None, learning_rate='optimal',
                                   eta0=0.0, power_t=0.5, class_weight=None, warm_start=False,
                                   average=False):
    clf = SGDClassifier(loss=loss,
                        penalty=penalty,
                        alpha=alpha,
                        l1_ratio=l1_ratio,
                        fit_intercept=fit_intercept,
                        n_iter=n_iter,
                        shuffle=shuffle,
                        verbose=verbose,
                        epsilon=epsilon,
                        n_jobs=n_jobs,
                        random_state=random_state,
                        learning_rate=learning_rate,
                        eta0=eta0,
                        power_t=power_t,
                        class_weight=class_weight,
                        warm_start=warm_start,
                        average=average
                        )
    clf = clf.fit(X,y)
    return clf
开发者ID:LatencyTDH,项目名称:Pykit-Learn,代码行数:25,代码来源:classification_utils.py


示例15: SGD

def SGD(x, y):
#Using Stochastic Gradient Descent of Sklearn
	from sklearn.linear_model import SGDClassifier
	clf = SGDClassifier()
	clf.fit(x, y)

	return clf.predict(x)
开发者ID:keymanesh,项目名称:Coursera_Stanford_Machine-Learning,代码行数:7,代码来源:plotData.py


示例16: train_vectorized

def train_vectorized(feats, Y, model_path=None, grid=False):

    # Vectorize labels
    labels = [ labels_map[y] for y in Y ]
    Y = np.array( labels )

    # Vectorize feature dictionary
    vec = DictVectorizer()
    X = vec.fit_transform(feats)
    norm_mat( X , axis=0 , copy=False)

    # Grid Search
    if grid:
        print 'Performing Grid Search'
        clf = do_grid_search(X, Y)
    else:
        #clf = LinearSVC(C=0.1, class_weight='auto')
        #clf = LogisticRegression(C=0.1, class_weight='auto')
        clf = SGDClassifier(penalty='elasticnet',alpha=0.001, l1_ratio=0.85, n_iter=1000,class_weight='auto')
        clf.fit(X, Y)


    # Save model
    if model_path:
        with open(model_path+'.dict' , 'wb') as f:
            pickle.dump(vec, f)

        with open(model_path+'.model', 'wb') as f:
            pickle.dump(clf, f)


    # return model
    return vec, clf
开发者ID:smartinsightsfromdata,项目名称:SemEval-2015,代码行数:33,代码来源:train.py


示例17: buildModel

def buildModel(size):
	with open('Sentiment Analysis Dataset.csv', 'rb') as csvfile:
		pos_tweets =[]
		neg_tweets =[]
		spamreader = csv.reader(csvfile, delimiter=',')
		for row in spamreader:
			if row[1] == '1':
				if not (len(pos_tweets) > size):
					pos_tweets.append(_cleanTweet(row[3]))
			else:
				if not (len(neg_tweets) > size):
					neg_tweets.append(_cleanTweet(row[3]))
	y = np.concatenate((np.ones(len(pos_tweets[0:size])), np.zeros(len(neg_tweets[0:size]))))
	x_train, x_test, y_train, y_test = train_test_split(np.concatenate((pos_tweets[0:size], neg_tweets[0:size])), y, test_size=0.2)
	x_train = _cleanText(x_train)
	x_test = _cleanText(x_test)
	n_dim = 100
	#Initialize model and build vocab
	imdb_w2v = Word2Vec(size=n_dim, min_count=10)
	imdb_w2v.build_vocab(x_train)
	imdb_w2v.train(x_train)
	train_vecs = np.concatenate([buildWordVector(z, n_dim,imdb_w2v) for z in x_train])
	train_vecs = scale(train_vecs)
	#Train word2vec on test tweets
	imdb_w2v.train(x_test)
	#Build test tweet vectors then scale
	test_vecs = np.concatenate([buildWordVector(z, n_dim,imdb_w2v) for z in x_test])
	test_vecs = scale(test_vecs)
	lr = SGDClassifier(loss='log', penalty='l1')
	lr.fit(train_vecs, y_train)
	imdb_w2v.save("imdb_w2v")
	f = open("Accuracy.txt","w")
	f.write(str(lr.score(test_vecs, y_test))+" "+str(size*2))
	f.close()
开发者ID:phugiadang,项目名称:CSCI-4308-Open-Sources-Data-Analytics,代码行数:34,代码来源:TweetAnalWord2Vec.py


示例18: runSGDPipeline

def runSGDPipeline(entries, langs):
	t0 = time()
	sgd_pipeline = Pipeline([('vect', CountVectorizer(ngram_range=(1,1), max_features=n_features)),
                      ('tfidf', TfidfTransformer(use_idf=True)),
                      ('clf', SGDClassifier(loss='squared_hinge', penalty='l2',
                                            alpha=0.001, n_iter=5, random_state=42))])

	vect = CountVectorizer(ngram_range=(1,1), max_features=n_features)
	X_train_counts = vect.fit_transform(entries)
	tfidf = TfidfTransformer(use_idf=True).fit(X_train_counts)
	X_train_tfidf = tfidf.fit_transform(X_train_counts)

	clf = SGDClassifier(loss='squared_hinge', penalty='l2', alpha=0.001, n_iter=5, random_state=42)
	clf.fit(X_train_tfidf, langs)

	X_new_counts = vect.transform(entries)
	X_new_tfidf = tfidf.transform(X_new_counts)
	predicted = clf.predict(X_new_tfidf.toarray())

	print(np.mean(predicted == langs))
	print(metrics.classification_report(langs, predicted, target_names=langs))
	print(metrics.confusion_matrix(langs, predicted))
	print("Took %s seconds." % (time()-t0))
	print("n_samples: %d, n_features: %d" % X_train_tfidf.shape)
	return sgd_pipeline
开发者ID:squidnee,项目名称:lingo-bean,代码行数:25,代码来源:baselineClassifications.py


示例19: predict_domains_for_documents

def predict_domains_for_documents(test_domain=CORE_DOMAINS[0], avg=True):
    X, y, vectorizer = _get_study_level_X_y(test_domain=test_domain)
    score_f = lambda y_true, y_pred: metrics.precision_recall_fscore_support(
        y_true, y_pred, average=None
    )  # , average="macro")
    # score_f = sklearn.metrics.f1_score

    # note that asarray call below, which seems necessary for
    # reasons that escape me (see here
    # https://github.com/scikit-learn/scikit-learn/issues/2508)

    clf = SGDClassifier(loss="hinge", penalty="l2", alpha=0.01)
    # pdb.set_trace()
    cv_res = cross_validation.cross_val_score(
        clf,
        X,
        np.asarray(y),
        score_func=score_f,
        # sklearn.metrics.precision_recall_fscore_support,
        cv=5,
    )
    # pdb.set_trace()
    if avg:
        cv_res = sum(cv_res) / float(cv_res.shape[0])
    # metrics.precision_recall_fscore_support

    # if dump_output:
    #    np.savetxt(test_domain.replace(" ", "_") + ".csv", cv_res, delimiter=',', fmt='%2.2f')

    print cv_res

    ### train on all
    model = clf.fit(X, y)
    informative_features = show_most_informative_features(vectorizer, model, n=50)
    return (cv_res, informative_features, y)
开发者ID:rossmounce,项目名称:cochrane-nlp,代码行数:35,代码来源:quality.py


示例20: main

def main(date):
    """
    Runs linear regression (classification) between the herbicide 
    resistance classes based on all wavelengths. The weights
    associated with each wavelength are then plotted, allowing
    the user to see the contribution to classification by each
    wavelength.

    :param date: (string) Data collection date YYYY_MMDD

    :return: (None)
    """
    
    # Load the training data from disk   
    X, y = FileIO.loadTrainingData(date)
    X = np.nan_to_num(X)

    # Train the classifier on the loaded data
    clf = SGDClassifier()
    clf.fit(X, y)

    # Plot the feature weights to visualize feature contributions
    featureWeights = np.fabs(clf.coef_)

    for i in xrange(3):
        plt.plot(WAVELENGTHS, featureWeights[i])
        plt.title("Linear Classifier Weights for " + RESISTANCE_STRINGS[INDEX_TO_LABEL[i]] + " vs Others")
        plt.xlabel("Wavelength (nm)")
        plt.ylabel("Absolute Weight")
        plt.show()
开发者ID:adonelick,项目名称:HyperspectralWeeds,代码行数:30,代码来源:wavelengthRegression.py



注:本文中的sklearn.linear_model.SGDClassifier类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python linear_model.SGDRegressor类代码示例发布时间:2022-05-27
下一篇:
Python linear_model.RidgeClassifier类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap