本文整理汇总了Python中sklearn.linear_model.base.center_data函数的典型用法代码示例。如果您正苦于以下问题:Python center_data函数的具体用法?Python center_data怎么用?Python center_data使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了center_data函数的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_center_data_weighted
def test_center_data_weighted():
n_samples = 200
n_features = 2
rng = check_random_state(0)
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples)
sample_weight = rng.rand(n_samples)
expected_X_mean = np.average(X, axis=0, weights=sample_weight)
expected_y_mean = np.average(y, axis=0, weights=sample_weight)
# XXX: if normalize=True, should we expect a weighted standard deviation?
# Currently not weighted, but calculated with respect to weighted mean
# XXX: currently scaled to variance=n_samples
expected_X_std = (np.sqrt(X.shape[0]) *
np.mean((X - expected_X_mean) ** 2, axis=0) ** .5)
Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True,
normalize=False,
sample_weight=sample_weight)
assert_array_almost_equal(X_mean, expected_X_mean)
assert_array_almost_equal(y_mean, expected_y_mean)
assert_array_almost_equal(X_std, np.ones(n_features))
assert_array_almost_equal(Xt, X - expected_X_mean)
assert_array_almost_equal(yt, y - expected_y_mean)
Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True,
normalize=True,
sample_weight=sample_weight)
assert_array_almost_equal(X_mean, expected_X_mean)
assert_array_almost_equal(y_mean, expected_y_mean)
assert_array_almost_equal(X_std, expected_X_std)
assert_array_almost_equal(Xt, (X - expected_X_mean) / expected_X_std)
assert_array_almost_equal(yt, y - expected_y_mean)
开发者ID:Kappie,项目名称:support_vector_machine,代码行数:33,代码来源:test_base.py
示例2: test_center_data
def test_center_data():
n_samples = 200
n_features = 2
rng = check_random_state(0)
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples)
expected_X_mean = np.mean(X, axis=0)
# XXX: currently scaled to variance=n_samples
expected_X_std = np.std(X, axis=0) * np.sqrt(X.shape[0])
expected_y_mean = np.mean(y, axis=0)
Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=False,
normalize=False)
assert_array_almost_equal(X_mean, np.zeros(n_features))
assert_array_almost_equal(y_mean, 0)
assert_array_almost_equal(X_std, np.ones(n_features))
assert_array_almost_equal(Xt, X)
assert_array_almost_equal(yt, y)
Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True,
normalize=False)
assert_array_almost_equal(X_mean, expected_X_mean)
assert_array_almost_equal(y_mean, expected_y_mean)
assert_array_almost_equal(X_std, np.ones(n_features))
assert_array_almost_equal(Xt, X - expected_X_mean)
assert_array_almost_equal(yt, y - expected_y_mean)
Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True,
normalize=True)
assert_array_almost_equal(X_mean, expected_X_mean)
assert_array_almost_equal(y_mean, expected_y_mean)
assert_array_almost_equal(X_std, expected_X_std)
assert_array_almost_equal(Xt, (X - expected_X_mean) / expected_X_std)
assert_array_almost_equal(yt, y - expected_y_mean)
开发者ID:Kappie,项目名称:support_vector_machine,代码行数:34,代码来源:test_base.py
示例3: test_randomized_logistic_sparse
def test_randomized_logistic_sparse():
"""Check randomized sparse logistic regression on sparse data"""
iris = load_iris()
X = iris.data[:, [0, 2]]
y = iris.target
X = X[y != 2]
y = y[y != 2]
# center here because sparse matrices are usually not centered
X, y, _, _, _ = center_data(X, y, True, True)
X_sp = sparse.csr_matrix(X)
F, _ = f_classif(X, y)
scaling = 0.3
clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42,
scaling=scaling, n_resampling=50,
tol=1e-3)
feature_scores = clf.fit(X, y).scores_
clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42,
scaling=scaling, n_resampling=50,
tol=1e-3)
feature_scores_sp = clf.fit(X_sp, y).scores_
assert_array_equal(feature_scores, feature_scores_sp)
开发者ID:Big-Data,项目名称:scikit-learn,代码行数:25,代码来源:test_randomized_l1.py
示例4: fitting
def fitting(self,XTrain, YTrain, XTest,YTest):
YTrain_ = np.log(YTrain)
if np.isnan(YTrain_).any():
print("log y nan")
return
YTest_ = np.log(YTest)
if np.isnan(YTest_).any():
print("log y nan")
return
XTrain_transf = np.log(XTrain)
if np.isnan(XTrain_transf):
print("log x nan")
return
XTest_transf = np.log(XTest)
if np.isnan(XTest_transf):
print("log x nan")
return
##centratura dei dati
XTrain_transf, YTrain_, X_mean, y_mean, X_std = center_data(XTrain_transf, YTrain_, fit_intercept=True, normalize = True)
XTest_transf, YTest_ = center_test(XTest_transf,YTest_,X_mean,y_mean,X_std)
new_loss,_ = compute_lasso(XTrain_transf, YTrain_, XTest_transf, YTest_, score = "r2_score")
print("loss log(y) e log(x) :", new_loss )
开发者ID:marty10,项目名称:LASSO,代码行数:27,代码来源:Fit.py
示例5: __init__
def __init__(self, n_samples, n_features, interval, test_size = 0.33, normalize = True, centerdata = True, transformation=NullTransformation(), fit_intercept = True):
self.n_samples = n_samples
self.n_features = n_features
self.transformation = transformation
lower = interval[0]
upper = interval[1]
random.seed(1)
data = [np.array([random.uniform(lower, upper) for j in range(n_features)]) for i in range(n_samples)]
Y = map(lambda x : self.transformation.transform(x), data)
self.X = np.row_stack(data)
self.informative = Y[0][1]
self.Y = map(itemgetter(0), Y)
XTrain, XTest, YTrain, YTest = train_test_split(self.X, self.Y, test_size=test_size,random_state=0)
self.XTrain_orig = XTrain
self.XTest_orig = XTest
self.YTrain_orig = YTrain
self.YTest_orig = YTest
if centerdata==True:
self.XTrain, self.YTrain, X_mean, y_mean, X_std = center_data(XTrain, YTrain, fit_intercept=fit_intercept, normalize = normalize)
self.XTest, self.YTest = self.center_test(XTest,YTest,X_mean,y_mean,X_std)
else:
self.XTrain = XTrain
self.YTrain = YTrain
self.XTest = XTest
self.YTest = YTest
开发者ID:marty10,项目名称:LASSO,代码行数:26,代码来源:ExtractDataset.py
示例6: fit
def fit(self, X, y):
X, _, self.X_mean, _, self.X_std = center_data(X, y, True, True, copy=False)
X_t = self.pca.fit_transform(X)
evr = numpy.cumsum(self.pca.explained_variance_ratio_)
self.evr_idx = numpy.where(evr < self.explained_var)[0].max() + 1
X_t = X_t[:,:(self.evr_idx+1)]
print X.shape, X_t.shape, self.evr_idx
self.svr.fit(X_t, y)
开发者ID:liyi-1989,项目名称:pydownscale,代码行数:8,代码来源:pcasvr.py
示例7: cross_val
def cross_val(self, X, y, n_fold, n_iter, lambd, model=None):
"""
Perform general cross-validation
:param X: Feature matrix
:param y: Response
:param n_fold: how many cross-val runs
:param n_iter: training iterations
:param lambd: reguralization parameter
:param model: learning model *none* means current GraKeLasso
:return:
"""
X, y, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True, normalize=True)
train_prct = 1 - (n_fold / 100.0)
n_rows = np.floor(X.shape[0] * train_prct)
index = np.ones(n_rows, dtype=bool)
index = np.concatenate((index, np.zeros(X.shape[0] - n_rows - 1, dtype=bool)))
avg_error = 0.0
avg_theta = 0.0
for i in xrange(n_fold):
np.random.shuffle(index)
new_index = 1-index
new_index = np.array(new_index, dtype=bool)
num_test_examples = sum(new_index)
if model:
model.l1_ratio_ = lambd # if model has this property, i.e. ElasticNet
model.fit(X[index, :], y[index])
theta = model.coef_
y_temp = np.array(y[new_index])
y_temp.shape = num_test_examples
else:
theta = self.train(X[index, :], y[index], lambd, n_iter)
y_temp = np.array(y[new_index])
y_temp.shape = (num_test_examples, 1)
y_temp.shape = num_test_examples
logging.info("Theta: %s", theta)
predict = np.dot(X[new_index, :], theta)
errors = y_temp - predict
error = np.sqrt(1/(1.0*num_test_examples)*sum(np.square(errors)))
avg_error += error
avg_theta += 1.0 * (len([c for c in theta if c != 0])) / (1.0 * len(theta))
avg_theta = avg_theta / (1.0 * n_fold)
avg_error = avg_error / (1.0 * n_fold)
return avg_error, avg_theta
开发者ID:NetherNova,项目名称:grakelasso,代码行数:43,代码来源:grakelasso.py
示例8: print
print("transformation done")
X_transf, output_dict = enel_transf.transformPerTurbineLevel(
dict_sample_turb, enel_dict, X, power_curve, X_transf, output_dict
)
print("transformation per turbine done")
XTrain_transf = X_transf[: XTrain.shape[0], :]
XTest_transf = X_transf[XTrain.shape[0] :, :]
##center data
XTrain_noCenter, XVal_noCenter, YTrain_noCenter, YVal_noCenter = train_test_split(
XTrain_transf, YTrain, test_size=0.33, random_state=0
)
XTrain_, YTrain_, X_mean, y_mean, X_std = center_data(
XTrain_noCenter, YTrain_noCenter, fit_intercept=True, normalize=True
)
XVal_, YVal_ = center_test(XVal_noCenter, YVal_noCenter, X_mean, y_mean, X_std)
values_TM = []
start_loss, _ = compute_lasso(XTrain_, YTrain_, XVal_, YVal_, score="mean_squared_error", values_TM=[])
print("loss", start_loss)
n_features_transf = XTrain_.shape[1]
####generation blocks
r = np.random.RandomState(11)
r1 = np.random.RandomState(12)
r2 = np.random.RandomState(13)
r4 = np.random.RandomState(15)
开发者ID:marty10,项目名称:LASSO,代码行数:30,代码来源:Enel_cross_val_blocks_direction_versus_all_levels.py
示例9: NiftiMasker
y_test[y_test=='scissors']=1
y_test[y_test=='scrambledpix']=-1
y_test=np.array(y_test.astype('double'))
masker = NiftiMasker(mask_strategy='epi',standardize=True)
X_train = masker.fit_transform(X_train)
X_test = masker.transform(X_test)
mask = masker.mask_img_.get_data().astype(np.bool)
mask= _crop_mask(mask)
background_img = mean_img(data_files.func[0])
X_train, y_train, _, y_train_mean, _ = center_data(X_train, y_train, fit_intercept=True, normalize=False,copy=False)
X_test-=X_train.mean(axis=0)
X_test/=np.std(X_train,axis=0)
alpha=1
ratio=0.5
k=200
solver_params = dict(tol=1e-6, max_iter=5000,prox_max_iter=100)
init=None
w,obj,init=tvksp_solver(X_train,y_train,alpha,ratio,k,mask=mask,init=init,loss="logistic",verbose=1,**solver_params)
coef=w[:-1]
intercept=w[-1]
coef_img=masker.inverse_transform(coef)
y_pred=np.sign(X_test.dot(coef)+intercept)
开发者ID:eugenium,项目名称:StructuredSparsityRegularization,代码行数:31,代码来源:FMRI_Example.py
示例10: test_deprecation_center_data
def test_deprecation_center_data():
n_samples = 200
n_features = 2
w = 1.0 + rng.rand(n_samples)
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples)
param_grid = product([True, False], [True, False], [True, False],
[None, w])
for (fit_intercept, normalize, copy, sample_weight) in param_grid:
XX = X.copy() # such that we can try copy=False as well
X1, y1, X1_mean, X1_var, y1_mean = \
center_data(XX, y, fit_intercept=fit_intercept,
normalize=normalize, copy=copy,
sample_weight=sample_weight)
XX = X.copy()
X2, y2, X2_mean, X2_var, y2_mean = \
_preprocess_data(XX, y, fit_intercept=fit_intercept,
normalize=normalize, copy=copy,
sample_weight=sample_weight)
assert_array_almost_equal(X1, X2)
assert_array_almost_equal(y1, y2)
assert_array_almost_equal(X1_mean, X2_mean)
assert_array_almost_equal(X1_var, X2_var)
assert_array_almost_equal(y1_mean, y2_mean)
# Sparse cases
X = sparse.csr_matrix(X)
for (fit_intercept, normalize, copy, sample_weight) in param_grid:
X1, y1, X1_mean, X1_var, y1_mean = \
center_data(X, y, fit_intercept=fit_intercept, normalize=normalize,
copy=copy, sample_weight=sample_weight)
X2, y2, X2_mean, X2_var, y2_mean = \
_preprocess_data(X, y, fit_intercept=fit_intercept,
normalize=normalize, copy=copy,
sample_weight=sample_weight, return_mean=False)
assert_array_almost_equal(X1.toarray(), X2.toarray())
assert_array_almost_equal(y1, y2)
assert_array_almost_equal(X1_mean, X2_mean)
assert_array_almost_equal(X1_var, X2_var)
assert_array_almost_equal(y1_mean, y2_mean)
for (fit_intercept, normalize) in product([True, False], [True, False]):
X1, y1, X1_mean, X1_var, y1_mean = \
sparse_center_data(X, y, fit_intercept=fit_intercept,
normalize=normalize)
X2, y2, X2_mean, X2_var, y2_mean = \
_preprocess_data(X, y, fit_intercept=fit_intercept,
normalize=normalize, return_mean=True)
assert_array_almost_equal(X1.toarray(), X2.toarray())
assert_array_almost_equal(y1, y2)
assert_array_almost_equal(X1_mean, X2_mean)
assert_array_almost_equal(X1_var, X2_var)
assert_array_almost_equal(y1_mean, y2_mean)
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:68,代码来源:test_base.py
示例11: path_scores
def path_scores(solver, X, y, mask, alphas, l1_ratios, train, test,
solver_params, is_classif=False, n_alphas=10, eps=1E-3,
key=None, debias=False, Xmean=None,
screening_percentile=20., verbose=1):
"""Function to compute scores of different alphas in regression and
classification used by CV objects
Parameters
----------
X : 2D array of shape (n_samples, n_features)
Design matrix, one row per sample point.
y : 1D array of length n_samples
Response vector; one value per sample.
mask : 3D arrays of boolean
Mask defining brain regions that we work on.
alphas : list of floats
List of regularization parameters being considered.
train : array or list of integers
List of indices for the train samples.
test : array or list of integers
List of indices for the test samples.
l1_ratio : float in the interval [0, 1]; optional (default .5)
Constant that mixes L1 and TV (resp. Graph-Net) penalization.
l1_ratio == 0: just smooth. l1_ratio == 1: just lasso.
eps : float, optional (default 1e-3)
Length of the path. For example, ``eps=1e-3`` means that
``alpha_min / alpha_max = 1e-3``.
n_alphas : int, optional (default 10).
Generate this number of alphas per regularization path.
This parameter is mutually exclusive with the `alphas` parameter.
solver : function handle
See for example tv.TVl1Classifier documentation.
solver_params: dict
Dictionary of param-value pairs to be passed to solver.
"""
if l1_ratios is None:
raise ValueError("l1_ratios must be specified!")
# misc
_, n_features = X.shape
verbose = int(verbose if verbose is not None else 0)
# Univariate feature screening. Note that if we have only as few as 100
# features in the mask's support, then we should use all of them to
# learn the model i.e disable this screening)
do_screening = (n_features > 100) and screening_percentile < 100.
if do_screening:
X, mask, support = _univariate_feature_screening(
X, y, mask, is_classif, screening_percentile)
# crop the mask to have a tighter bounding box
mask = _crop_mask(mask)
# get train and test data
X_train, y_train = X[train].copy(), y[train].copy()
X_test, y_test = X[test].copy(), y[test].copy()
# it is essential to center the data in regression
X_train, y_train, _, y_train_mean, _ = center_data(
X_train, y_train, fit_intercept=True, normalize=False,
copy=False)
# misc
if isinstance(l1_ratios, numbers.Number):
l1_ratios = [l1_ratios]
l1_ratios = sorted(l1_ratios)[::-1] # from large to small l1_ratios
best_score = -np.inf
best_secondary_score = -np.inf
best_l1_ratio = l1_ratios[0]
best_alpha = None
best_init = None
all_test_scores = []
if len(test) > 0.:
# do l1_ratio path
for l1_ratio in l1_ratios:
this_test_scores = []
# make alpha grid
if alphas is None:
alphas_ = _space_net_alpha_grid(
X_train, y_train, l1_ratio=l1_ratio, eps=eps,
n_alphas=n_alphas, logistic=is_classif)
else:
alphas_ = alphas
alphas_ = sorted(alphas_)[::-1] # from large to small l1_ratios
# do alpha path
if best_alpha is None:
best_alpha = alphas_[0]
init = None
#.........这里部分代码省略.........
开发者ID:Naereen,项目名称:nilearn,代码行数:101,代码来源:space_net.py
示例12: _dense_fit
def _dense_fit(self, X, y, Xy=None, coef_init=None):
# copy was done in fit if necessary
X, y, X_mean, y_mean, X_std = center_data(
X, y, self.fit_intercept, self.normalize, copy=False)
if y.ndim == 1:
y = y[:, np.newaxis]
if Xy is not None and Xy.ndim == 1:
Xy = Xy[:, np.newaxis]
n_samples, n_features = X.shape
n_targets = y.shape[1]
precompute = self.precompute
if hasattr(precompute, '__array__') \
and not np.allclose(X_mean, np.zeros(n_features)) \
and not np.allclose(X_std, np.ones(n_features)):
# recompute Gram
precompute = 'auto'
Xy = None
coef_ = self._init_coef(coef_init, n_features, n_targets)
dual_gap_ = np.empty(n_targets)
eps_ = np.empty(n_targets)
l1_reg = self.alpha*self.l1_ratio * n_samples
l2_reg = 0.0#self.alpha * (1.0 - self.l1_ratio) * n_samples
# precompute if n_samples > n_features
if hasattr(precompute, '__array__'):
Gram = precompute
elif precompute or (precompute == 'auto' and n_samples > n_features):
Gram = np.dot(X.T, X)
else:
Gram = None
for k in xrange(n_targets):
if Gram is None:
coef_[k, :], dual_gap_[k], eps_[k] = \
cd_fast.enet_coordinate_descent(
coef_[k, :], l1_reg, l2_reg, X, y[:, k], self.max_iter,
self.tol, True)
else:
Gram = Gram.copy()
if Xy is None:
this_Xy = np.dot(X.T, y[:, k])
else:
this_Xy = Xy[:, k]
coef_[k, :], dual_gap_[k], eps_[k] = \
cd_fast.enet_coordinate_descent_gram(
coef_[k, :], l1_reg, l2_reg, Gram, this_Xy, y[:, k],
self.max_iter, self.tol, True)
if dual_gap_[k] > eps_[k]:
warnings.warn('Objective did not converge for ' +
'target %d, you might want' % k +
' to increase the number of iterations')
self.coef_, self.dual_gap_, self.eps_ = (np.squeeze(a) for a in
(coef_, dual_gap_, eps_))
self._set_intercept(X_mean, y_mean, X_std)
# return self for chaining fit and predict calls
return self
开发者ID:RainNo1,项目名称:InfoSystem,代码行数:65,代码来源:dictionary_learning_cnu.py
注:本文中的sklearn.linear_model.base.center_data函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论