• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python ridge.Ridge类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.linear_model.ridge.Ridge的典型用法代码示例。如果您正苦于以下问题:Python Ridge类的具体用法?Python Ridge怎么用?Python Ridge使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了Ridge类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_raises_value_error_if_sample_weights_greater_than_1d

def test_raises_value_error_if_sample_weights_greater_than_1d():
    # Sample weights must be either scalar or 1D

    n_sampless = [2, 3]
    n_featuress = [3, 2]

    rng = np.random.RandomState(42)

    for n_samples, n_features in zip(n_sampless, n_featuress):
        X = rng.randn(n_samples, n_features)
        y = rng.randn(n_samples)
        sample_weights_OK = rng.randn(n_samples) ** 2 + 1
        sample_weights_OK_1 = 1.0
        sample_weights_OK_2 = 2.0
        sample_weights_not_OK = sample_weights_OK[:, np.newaxis]
        sample_weights_not_OK_2 = sample_weights_OK[np.newaxis, :]

        ridge = Ridge(alpha=1)

        # make sure the "OK" sample weights actually work
        ridge.fit(X, y, sample_weights_OK)
        ridge.fit(X, y, sample_weights_OK_1)
        ridge.fit(X, y, sample_weights_OK_2)

        def fit_ridge_not_ok():
            ridge.fit(X, y, sample_weights_not_OK)

        def fit_ridge_not_ok_2():
            ridge.fit(X, y, sample_weights_not_OK_2)

        assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok)

        assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok_2)
开发者ID:honorLX,项目名称:scikit-learn,代码行数:33,代码来源:test_ridge.py


示例2: _test_ridge_loo

def _test_ridge_loo(filter_):
    # test that can work with both dense or sparse matrices
    n_samples = X_diabetes.shape[0]

    ret = []

    ridge_gcv = _RidgeGCV(fit_intercept=False)
    ridge = Ridge(fit_intercept=False)

    # generalized cross-validation (efficient leave-one-out)
    K, v, Q = ridge_gcv._pre_compute(X_diabetes, y_diabetes)
    errors, c = ridge_gcv._errors(v, Q, y_diabetes, 1.0)
    values, c = ridge_gcv._values(K, v, Q, y_diabetes, 1.0)

    # brute-force leave-one-out: remove one example at a time
    errors2 = []
    values2 = []
    for i in range(n_samples):
        sel = np.arange(n_samples) != i
        X_new = X_diabetes[sel]
        y_new = y_diabetes[sel]
        ridge.fit(X_new, y_new)
        value = ridge.predict([X_diabetes[i]])[0]
        error = (y_diabetes[i] - value) ** 2
        errors2.append(error)
        values2.append(value)

    # check that efficient and brute-force LOO give same results
    assert_almost_equal(errors, errors2)
    assert_almost_equal(values, values2)

    # check best alpha
    ridge_gcv.fit(filter_(X_diabetes), y_diabetes)
    best_alpha = ridge_gcv.best_alpha
    ret.append(best_alpha)

    # check that we get same best alpha with custom loss_func
    ridge_gcv2 = _RidgeGCV(fit_intercept=False, loss_func=mean_squared_error)
    ridge_gcv2.fit(filter_(X_diabetes), y_diabetes)
    assert_equal(ridge_gcv2.best_alpha, best_alpha)

    # check that we get same best alpha with sample weights
    ridge_gcv.fit(filter_(X_diabetes), y_diabetes,
                  sample_weight=np.ones(n_samples))
    assert_equal(ridge_gcv.best_alpha, best_alpha)

    # simulate several responses
    Y = np.vstack((y_diabetes, y_diabetes)).T

    ridge_gcv.fit(filter_(X_diabetes), Y)
    Y_pred = ridge_gcv.predict(filter_(X_diabetes))
    ridge_gcv.fit(filter_(X_diabetes), y_diabetes)
    y_pred = ridge_gcv.predict(filter_(X_diabetes))

    assert_array_almost_equal(np.vstack((y_pred, y_pred)).T,
                              Y_pred, decimal=5)

    return ret
开发者ID:cdegroc,项目名称:scikit-learn,代码行数:58,代码来源:test_ridge.py


示例3: test_ridge_singular

def test_ridge_singular():
    # test on a singular matrix
    rng = np.random.RandomState(0)
    n_samples, n_features = 6, 6
    y = rng.randn(n_samples // 2)
    y = np.concatenate((y, y))
    X = rng.randn(n_samples // 2, n_features)
    X = np.concatenate((X, X), axis=0)

    ridge = Ridge(alpha=0)
    ridge.fit(X, y)
    assert_greater(ridge.score(X, y), 0.9)
开发者ID:BobChew,项目名称:scikit-learn,代码行数:12,代码来源:test_ridge.py


示例4: test_dtype_match_cholesky

def test_dtype_match_cholesky():
    # Test different alphas in cholesky solver to ensure full coverage.
    # This test is separated from test_dtype_match for clarity.
    rng = np.random.RandomState(0)
    alpha = (1.0, 0.5)

    n_samples, n_features, n_target = 6, 7, 2
    X_64 = rng.randn(n_samples, n_features)
    y_64 = rng.randn(n_samples, n_target)
    X_32 = X_64.astype(np.float32)
    y_32 = y_64.astype(np.float32)

    # Check type consistency 32bits
    ridge_32 = Ridge(alpha=alpha, solver='cholesky')
    ridge_32.fit(X_32, y_32)
    coef_32 = ridge_32.coef_

    # Check type consistency 64 bits
    ridge_64 = Ridge(alpha=alpha, solver='cholesky')
    ridge_64.fit(X_64, y_64)
    coef_64 = ridge_64.coef_

    # Do all the checks at once, like this is easier to debug
    assert coef_32.dtype == X_32.dtype
    assert coef_64.dtype == X_64.dtype
    assert ridge_32.predict(X_32).dtype == X_32.dtype
    assert ridge_64.predict(X_64).dtype == X_64.dtype
    assert_almost_equal(ridge_32.coef_, ridge_64.coef_, decimal=5)
开发者ID:Moler1995,项目名称:scikit-learn,代码行数:28,代码来源:test_ridge.py


示例5: test_dtype_match

def test_dtype_match(solver):
    rng = np.random.RandomState(0)
    alpha = 1.0

    n_samples, n_features = 6, 5
    X_64 = rng.randn(n_samples, n_features)
    y_64 = rng.randn(n_samples)
    X_32 = X_64.astype(np.float32)
    y_32 = y_64.astype(np.float32)

    # Check type consistency 32bits
    ridge_32 = Ridge(alpha=alpha, solver=solver, max_iter=500, tol=1e-10,)
    ridge_32.fit(X_32, y_32)
    coef_32 = ridge_32.coef_

    # Check type consistency 64 bits
    ridge_64 = Ridge(alpha=alpha, solver=solver, max_iter=500, tol=1e-10,)
    ridge_64.fit(X_64, y_64)
    coef_64 = ridge_64.coef_

    # Do the actual checks at once for easier debug
    assert coef_32.dtype == X_32.dtype
    assert coef_64.dtype == X_64.dtype
    assert ridge_32.predict(X_32).dtype == X_32.dtype
    assert ridge_64.predict(X_64).dtype == X_64.dtype
    assert_allclose(ridge_32.coef_, ridge_64.coef_, rtol=1e-4)
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:26,代码来源:test_ridge.py


示例6: test_dtype_match

def test_dtype_match():
    rng = np.random.RandomState(0)
    alpha = 1.0

    n_samples, n_features = 6, 5
    X_64 = rng.randn(n_samples, n_features)
    y_64 = rng.randn(n_samples)
    X_32 = X_64.astype(np.float32)
    y_32 = y_64.astype(np.float32)

    solvers = ["svd", "sparse_cg", "cholesky", "lsqr"]
    for solver in solvers:

        # Check type consistency 32bits
        ridge_32 = Ridge(alpha=alpha, solver=solver)
        ridge_32.fit(X_32, y_32)
        coef_32 = ridge_32.coef_

        # Check type consistency 64 bits
        ridge_64 = Ridge(alpha=alpha, solver=solver)
        ridge_64.fit(X_64, y_64)
        coef_64 = ridge_64.coef_

        # Do the actual checks at once for easier debug
        assert coef_32.dtype == X_32.dtype
        assert coef_64.dtype == X_64.dtype
        assert ridge_32.predict(X_32).dtype == X_32.dtype
        assert ridge_64.predict(X_64).dtype == X_64.dtype
        assert_almost_equal(ridge_32.coef_, ridge_64.coef_, decimal=5)
开发者ID:Moler1995,项目名称:scikit-learn,代码行数:29,代码来源:test_ridge.py


示例7: test_ridge_sample_weights

def test_ridge_sample_weights():
    rng = np.random.RandomState(0)

    for solver in ("cholesky", ):
        for n_samples, n_features in ((6, 5), (5, 10)):
            for alpha in (1.0, 1e-2):
                y = rng.randn(n_samples)
                X = rng.randn(n_samples, n_features)
                sample_weight = 1 + rng.rand(n_samples)

                coefs = ridge_regression(X, y,
                                         alpha=alpha,
                                         sample_weight=sample_weight,
                                         solver=solver)
                # Sample weight can be implemented via a simple rescaling
                # for the square loss.
                coefs2 = ridge_regression(
                    X * np.sqrt(sample_weight)[:, np.newaxis],
                    y * np.sqrt(sample_weight),
                    alpha=alpha, solver=solver)
                assert_array_almost_equal(coefs, coefs2)

                # Test for fit_intercept = True
                est = Ridge(alpha=alpha, solver=solver)
                est.fit(X, y, sample_weight=sample_weight)

                # Check using Newton's Method
                # Quadratic function should be solved in a single step.
                # Initialize
                sample_weight = np.sqrt(sample_weight)
                X_weighted = sample_weight[:, np.newaxis] * (
                    np.column_stack((np.ones(n_samples), X)))
                y_weighted = y * sample_weight

                # Gradient is (X*coef-y)*X + alpha*coef_[1:]
                # Remove coef since it is initialized to zero.
                grad = -np.dot(y_weighted, X_weighted)

                # Hessian is (X.T*X) + alpha*I except that the first
                # diagonal element should be zero, since there is no
                # penalization of intercept.
                diag = alpha * np.ones(n_features + 1)
                diag[0] = 0.
                hess = np.dot(X_weighted.T, X_weighted)
                hess.flat[::n_features + 2] += diag
                coef_ = - np.dot(linalg.inv(hess), grad)
                assert_almost_equal(coef_[0], est.intercept_)
                assert_array_almost_equal(coef_[1:], est.coef_)
开发者ID:BobChew,项目名称:scikit-learn,代码行数:48,代码来源:test_ridge.py


示例8: test_fit_simple_backupsklearn

def test_fit_simple_backupsklearn():
    df = pd.read_csv("./open_data/simple.txt", delim_whitespace=True)
    X = np.array(df.iloc[:, :df.shape[1] - 1], dtype='float32', order='C')
    y = np.array(df.iloc[:, df.shape[1] - 1], dtype='float32', order='C')
    Solver = h2o4gpu.Ridge

    enet = Solver(glm_stop_early=False)
    print("h2o4gpu fit()")
    enet.fit(X, y)
    print("h2o4gpu predict()")
    print(enet.predict(X))
    print("h2o4gpu score()")
    print(enet.score(X,y))

    enet_wrapper = Solver(normalize=True, random_state=1234)
    print("h2o4gpu scikit wrapper fit()")
    enet_wrapper.fit(X, y)
    print("h2o4gpu scikit wrapper predict()")
    print(enet_wrapper.predict(X))
    print("h2o4gpu scikit wrapper score()")
    print(enet_wrapper.score(X, y))

    from sklearn.linear_model.ridge import Ridge
    enet_sk = Ridge(normalize=True, random_state=1234)
    print("Scikit fit()")
    enet_sk.fit(X, y)
    print("Scikit predict()")
    print(enet_sk.predict(X))
    print("Scikit score()")
    print(enet_sk.score(X, y))

    enet_sk_coef = csr_matrix(enet_sk.coef_, dtype=np.float32).toarray()

    print(enet_sk.coef_)

    print(enet_sk_coef)

    print(enet_wrapper.coef_)

    print(enet_sk.intercept_)
    print(enet_wrapper.intercept_)

    print(enet_sk.n_iter_)
    print(enet_wrapper.n_iter_)

    print("Coeffs, intercept, and n_iters should match")
    assert np.allclose(enet_wrapper.coef_, enet_sk_coef)
    assert np.allclose(enet_wrapper.intercept_, enet_sk.intercept_)
开发者ID:wamsiv,项目名称:h2o4gpu,代码行数:48,代码来源:test_ridge_sklearn_wrapper.py


示例9: test_ridge_intercept

def test_ridge_intercept():
    # Test intercept with multiple targets GH issue #708
    rng = np.random.RandomState(0)
    n_samples, n_features = 5, 10
    X = rng.randn(n_samples, n_features)
    y = rng.randn(n_samples)
    Y = np.c_[y, 1. + y]

    ridge = Ridge()

    ridge.fit(X, y)
    intercept = ridge.intercept_

    ridge.fit(X, Y)
    assert_almost_equal(ridge.intercept_[0], intercept)
    assert_almost_equal(ridge.intercept_[1], intercept + 1.)
开发者ID:BobChew,项目名称:scikit-learn,代码行数:16,代码来源:test_ridge.py


示例10: _test_tolerance

def _test_tolerance(filter_):
    ridge = Ridge(tol=1e-5)
    ridge.fit(filter_(X_diabetes), y_diabetes)
    score = ridge.score(filter_(X_diabetes), y_diabetes)

    ridge2 = Ridge(tol=1e-3)
    ridge2.fit(filter_(X_diabetes), y_diabetes)
    score2 = ridge2.score(filter_(X_diabetes), y_diabetes)

    assert_true(score >= score2)
开发者ID:BobChew,项目名称:scikit-learn,代码行数:10,代码来源:test_ridge.py


示例11: _test_tolerance

def _test_tolerance(filter_):
    ridge = Ridge(tol=1e-5, fit_intercept=False)
    ridge.fit(filter_(X_diabetes), y_diabetes)
    score = ridge.score(filter_(X_diabetes), y_diabetes)

    ridge2 = Ridge(tol=1e-3, fit_intercept=False)
    ridge2.fit(filter_(X_diabetes), y_diabetes)
    score2 = ridge2.score(filter_(X_diabetes), y_diabetes)

    assert score >= score2
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:10,代码来源:test_ridge.py


示例12: test_ridge_vs_lstsq

def test_ridge_vs_lstsq():
    """On alpha=0., Ridge and OLS yield the same solution."""

    # we need more samples than features
    n_samples, n_features = 5, 4
    y = rng.randn(n_samples)
    X = rng.randn(n_samples, n_features)

    ridge = Ridge(alpha=0., fit_intercept=False)
    ols = LinearRegression(fit_intercept=False)

    ridge.fit(X, y)
    ols.fit(X, y)
    assert_almost_equal(ridge.coef_, ols.coef_)

    ridge.fit(X, y)
    ols.fit(X, y)
    assert_almost_equal(ridge.coef_, ols.coef_)
开发者ID:Jetafull,项目名称:scikit-learn,代码行数:18,代码来源:test_ridge.py


示例13: test_ridge_sample_weights

def test_ridge_sample_weights():
    # TODO: loop over sparse data as well
    # Note: parametrizing this test with pytest results in failed
    #       assertions, meaning that is is not extremely robust

    rng = np.random.RandomState(0)
    param_grid = product((1.0, 1e-2), (True, False),
                         ('svd', 'cholesky', 'lsqr', 'sparse_cg'))

    for n_samples, n_features in ((6, 5), (5, 10)):

        y = rng.randn(n_samples)
        X = rng.randn(n_samples, n_features)
        sample_weight = 1.0 + rng.rand(n_samples)

        for (alpha, intercept, solver) in param_grid:

            # Ridge with explicit sample_weight
            est = Ridge(alpha=alpha, fit_intercept=intercept,
                        solver=solver, tol=1e-6)
            est.fit(X, y, sample_weight=sample_weight)
            coefs = est.coef_
            inter = est.intercept_

            # Closed form of the weighted regularized least square
            # theta = (X^T W X + alpha I)^(-1) * X^T W y
            W = np.diag(sample_weight)
            if intercept is False:
                X_aug = X
                I = np.eye(n_features)
            else:
                dummy_column = np.ones(shape=(n_samples, 1))
                X_aug = np.concatenate((dummy_column, X), axis=1)
                I = np.eye(n_features + 1)
                I[0, 0] = 0

            cf_coefs = linalg.solve(X_aug.T.dot(W).dot(X_aug) + alpha * I,
                                    X_aug.T.dot(W).dot(y))

            if intercept is False:
                assert_array_almost_equal(coefs, cf_coefs)
            else:
                assert_array_almost_equal(coefs, cf_coefs[1:])
                assert_almost_equal(inter, cf_coefs[0])
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:44,代码来源:test_ridge.py


示例14: test_sparse_design_with_sample_weights

def test_sparse_design_with_sample_weights():
    # Sample weights must work with sparse matrices

    n_sampless = [2, 3]
    n_featuress = [3, 2]

    rng = np.random.RandomState(42)

    sparse_matrix_converters = [sp.coo_matrix,
                                sp.csr_matrix,
                                sp.csc_matrix,
                                sp.lil_matrix,
                                sp.dok_matrix
                                ]

    sparse_ridge = Ridge(alpha=1., fit_intercept=False)
    dense_ridge = Ridge(alpha=1., fit_intercept=False)

    for n_samples, n_features in zip(n_sampless, n_featuress):
        X = rng.randn(n_samples, n_features)
        y = rng.randn(n_samples)
        sample_weights = rng.randn(n_samples) ** 2 + 1
        for sparse_converter in sparse_matrix_converters:
            X_sparse = sparse_converter(X)
            sparse_ridge.fit(X_sparse, y, sample_weight=sample_weights)
            dense_ridge.fit(X, y, sample_weight=sample_weights)

            assert_array_almost_equal(sparse_ridge.coef_, dense_ridge.coef_,
                                      decimal=6)
开发者ID:BobChew,项目名称:scikit-learn,代码行数:29,代码来源:test_ridge.py


示例15: _test_multi_ridge_diabetes

def _test_multi_ridge_diabetes(filter_):
    # simulate several responses
    Y = np.vstack((y_diabetes, y_diabetes)).T
    n_features = X_diabetes.shape[1]

    ridge = Ridge(fit_intercept=False)
    ridge.fit(filter_(X_diabetes), Y)
    assert_equal(ridge.coef_.shape, (2, n_features))
    Y_pred = ridge.predict(filter_(X_diabetes))
    ridge.fit(filter_(X_diabetes), y_diabetes)
    y_pred = ridge.predict(filter_(X_diabetes))
    assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3)
开发者ID:honorLX,项目名称:scikit-learn,代码行数:12,代码来源:test_ridge.py


示例16: test_ridge_fit_intercept_sparse

def test_ridge_fit_intercept_sparse():
    X, y = make_regression(n_samples=1000, n_features=2, n_informative=2, bias=10.0, random_state=42)
    X_csr = sp.csr_matrix(X)

    dense = Ridge(alpha=1.0, tol=1.0e-15, solver="sag", fit_intercept=True)
    sparse = Ridge(alpha=1.0, tol=1.0e-15, solver="sag", fit_intercept=True)
    dense.fit(X, y)
    sparse.fit(X_csr, y)
    assert_almost_equal(dense.intercept_, sparse.intercept_)
    assert_array_almost_equal(dense.coef_, sparse.coef_)

    # test the solver switch and the corresponding warning
    sparse = Ridge(alpha=1.0, tol=1.0e-15, solver="lsqr", fit_intercept=True)
    assert_warns(UserWarning, sparse.fit, X_csr, y)
    assert_almost_equal(dense.intercept_, sparse.intercept_)
    assert_array_almost_equal(dense.coef_, sparse.coef_)
开发者ID:honorLX,项目名称:scikit-learn,代码行数:16,代码来源:test_ridge.py


示例17: test_n_iter

def test_n_iter():
    # Test that self.n_iter_ is correct.
    n_targets = 2
    X, y = X_diabetes, y_diabetes
    y_n = np.tile(y, (n_targets, 1)).T

    for max_iter in range(1, 4):
        for solver in ('sag', 'saga', 'lsqr'):
            reg = Ridge(solver=solver, max_iter=max_iter, tol=1e-12)
            reg.fit(X, y_n)
            assert_array_equal(reg.n_iter_, np.tile(max_iter, n_targets))

    for solver in ('sparse_cg', 'svd', 'cholesky'):
        reg = Ridge(solver=solver, max_iter=1, tol=1e-1)
        reg.fit(X, y_n)
        assert_equal(reg.n_iter_, None)
开发者ID:Moler1995,项目名称:scikit-learn,代码行数:16,代码来源:test_ridge.py


示例18: test_ridge_fit_intercept_sparse

def test_ridge_fit_intercept_sparse():
    X, y = make_regression(n_samples=1000, n_features=2, n_informative=2,
                           bias=10., random_state=42)

    X_csr = sp.csr_matrix(X)

    for solver in ['sag', 'sparse_cg']:
        dense = Ridge(alpha=1., tol=1.e-15, solver=solver, fit_intercept=True)
        sparse = Ridge(alpha=1., tol=1.e-15, solver=solver, fit_intercept=True)
        dense.fit(X, y)
        with pytest.warns(None) as record:
            sparse.fit(X_csr, y)
        assert len(record) == 0
        assert_almost_equal(dense.intercept_, sparse.intercept_)
        assert_array_almost_equal(dense.coef_, sparse.coef_)

    # test the solver switch and the corresponding warning
    for solver in ['saga', 'lsqr']:
        sparse = Ridge(alpha=1., tol=1.e-15, solver=solver, fit_intercept=True)
        assert_raises_regex(ValueError, "In Ridge,", sparse.fit, X_csr, y)
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:20,代码来源:test_ridge.py


示例19: test_ridge_shapes

def test_ridge_shapes():
    # Test shape of coef_ and intercept_
    rng = np.random.RandomState(0)
    n_samples, n_features = 5, 10
    X = rng.randn(n_samples, n_features)
    y = rng.randn(n_samples)
    Y1 = y[:, np.newaxis]
    Y = np.c_[y, 1 + y]

    ridge = Ridge()

    ridge.fit(X, y)
    assert_equal(ridge.coef_.shape, (n_features,))
    assert_equal(ridge.intercept_.shape, ())

    ridge.fit(X, Y1)
    assert_equal(ridge.coef_.shape, (1, n_features))
    assert_equal(ridge.intercept_.shape, (1, ))

    ridge.fit(X, Y)
    assert_equal(ridge.coef_.shape, (2, n_features))
    assert_equal(ridge.intercept_.shape, (2, ))
开发者ID:BobChew,项目名称:scikit-learn,代码行数:22,代码来源:test_ridge.py


示例20: eval_aggr_shifts

def eval_aggr_shifts(X, y, ignore_rows):
    eps = 1e-6
    pred = []
    real = []
    
    for inst_n in ignore_rows:
        X = np.concatenate((X[:inst_n], X[inst_n+1:]))
        y = np.concatenate((y[:inst_n], y[inst_n+1:]))
    
    n = X.shape[0]
    for inst_n in range(n):
        x_i = X[inst_n]
        y_i = y[inst_n]
        
        X_train = np.concatenate((X[:inst_n], X[inst_n+1:]))
        y_train = np.concatenate((y[:inst_n], y[inst_n+1:]))
        
        y_train = np.array([max(eps, min(1 - eps, val)) for val in y_train])
        y_train = np.log(y_train / (1 - y_train))
        
        model = Ridge(alpha=.2, fit_intercept=True, normalize=True)
        #model = Lasso(alpha=.001, fit_intercept=True, normalize=True)
        model.fit(X_train, y_train)
        
        y_hat = model.predict(x_i.reshape(1, -1))[0]
        
        y_i1 = max(eps, min(1 - eps, y_i))
        y_i1 = np.log(y_i1 / (1 - y_i1))
        print('inst: ' + str(inst_n) + ', prediction: ' + str(y_hat) + ', err: ' + str(y_hat - y_i1))
        
        pred.append(1 / (1 + exp(-y_hat)))
        real.append(y_i)
        
    model = Ridge(alpha=.2, fit_intercept=True, normalize=True)
    model.fit(X, y)
        
    return pred, real, model.coef_
开发者ID:lstopar,项目名称:HellaParserModeler,代码行数:37,代码来源:model_agg.py



注:本文中的sklearn.linear_model.ridge.Ridge类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python ridge.RidgeCV类代码示例发布时间:2022-05-27
下一篇:
Python ridge.ridge_regression函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap