• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python ridge.RidgeClassifier类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.linear_model.ridge.RidgeClassifier的典型用法代码示例。如果您正苦于以下问题:Python RidgeClassifier类的具体用法?Python RidgeClassifier怎么用?Python RidgeClassifier使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了RidgeClassifier类的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_class_weights

def test_class_weights():
    """
    Test class weights.
    """
    X = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0], [1.0, 0.0]])
    y = [1, 1, 1, -1, -1]

    clf = RidgeClassifier(class_weight=None)
    clf.fit(X, y)
    assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1]))

    # we give a small weights to class 1
    clf = RidgeClassifier(class_weight={1: 0.001})
    clf.fit(X, y)

    # now the hyperplane should rotate clock-wise and
    # the prediction on this point should shift
    assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1]))
开发者ID:buhrmann,项目名称:scikit-learn,代码行数:18,代码来源:test_ridge.py


示例2: test_class_weights

def test_class_weights():
    # Test class weights.
    X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
                  [1.0, 1.0], [1.0, 0.0]])
    y = [1, 1, 1, -1, -1]

    clf = RidgeClassifier(class_weight=None)
    clf.fit(X, y)
    assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1]))

    # we give a small weights to class 1
    clf = RidgeClassifier(class_weight={1: 0.001})
    clf.fit(X, y)

    # now the hyperplane should rotate clock-wise and
    # the prediction on this point should shift
    assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1]))

    # check if class_weight = 'balanced' can handle negative labels.
    clf = RidgeClassifier(class_weight='balanced')
    clf.fit(X, y)
    assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1]))

    # class_weight = 'balanced', and class_weight = None should return
    # same values when y has equal number of all labels
    X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0]])
    y = [1, 1, -1, -1]
    clf = RidgeClassifier(class_weight=None)
    clf.fit(X, y)
    clfa = RidgeClassifier(class_weight='balanced')
    clfa.fit(X, y)
    assert_equal(len(clfa.classes_), 2)
    assert_array_almost_equal(clf.coef_, clfa.coef_)
    assert_array_almost_equal(clf.intercept_, clfa.intercept_)
开发者ID:BobChew,项目名称:scikit-learn,代码行数:34,代码来源:test_ridge.py



注:本文中的sklearn.linear_model.ridge.RidgeClassifier类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python ridge.RidgeClassifierCV类代码示例发布时间:2022-05-27
下一篇:
Python ridge.RidgeCV类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap