• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python manifold.TSNE类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.manifold.TSNE的典型用法代码示例。如果您正苦于以下问题:Python TSNE类的具体用法?Python TSNE怎么用?Python TSNE使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了TSNE类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: display_closestwords_tsnescatterplot

def display_closestwords_tsnescatterplot(model, word):
    arr = np.empty((0,300), dtype='f')
    word_labels = [word]

    # get close words
    close_words = model.similar_by_word(word)
    
    # add the vector for each of the closest words to the array
    arr = np.append(arr, np.array([model[word]]), axis=0)
    for wrd_score in close_words:
        wrd_vector = model[wrd_score[0]]
        word_labels.append(wrd_score[0])
        arr = np.append(arr, np.array([wrd_vector]), axis=0)
        
    # find tsne coords for 2 dimensions
    tsne = TSNE(n_components=2, random_state=0)
    np.set_printoptions(suppress=True)
    Y = tsne.fit_transform(arr)

    x_coords = Y[:, 0]
    y_coords = Y[:, 1]
    # display scatter plot
    plt.scatter(x_coords, y_coords)

    for label, x, y in zip(word_labels, x_coords, y_coords):
        plt.annotate(label, xy=(x, y), xytext=(0, 0), textcoords='offset points')
    plt.xlim(x_coords.min()+0.00005, x_coords.max()+0.00005)
    plt.ylim(y_coords.min()+0.00005, y_coords.max()+0.00005)
    plt.show()
开发者ID:rasoolims,项目名称:scripts,代码行数:29,代码来源:tsne_word2vec.py


示例2: plot_data

def plot_data(data, has_label=True):
	import numpy as np
	import seaborn as sns
	from sklearn.manifold import TSNE
	from sklearn.decomposition import PCA

	if not has_label:
		data = data.copy()
		data['label'] = np.zeros([len(data),1])

	LIMIT = 4000
	if data.shape[0] > LIMIT:
		dt = data.sample(n=LIMIT, replace=False)
		X = dt.ix[:,:-1]
		labels = dt.ix[:,-1]
	else:
		X = data.ix[:,:-1]
		labels = data.ix[:,-1]

	tsne_model = TSNE(n_components=2, random_state=0)
	np.set_printoptions(suppress=True)
	points1 = tsne_model.fit_transform(X)
	df1 = pd.DataFrame(data=np.column_stack([points1,labels]), columns=["x","y","class"])
	sns.lmplot("x", "y", data=df1, hue='class', fit_reg=False, palette=sns.color_palette('colorblind'))
	sns.plt.title('TNSE')

	pca = PCA(n_components=2)
	pca.fit(X)
	points2 = pca.transform(X)
	df2 = pd.DataFrame(data=np.column_stack([points2,labels]), columns=["x","y","class"])
	sns.lmplot("x", "y", data=df2, hue='class', fit_reg=False, palette=sns.color_palette('colorblind'))
	sns.plt.title('PCA')
开发者ID:omid55,项目名称:teams_in_games,代码行数:32,代码来源:plot_data.py


示例3: make_tsne_plot

def make_tsne_plot(model, rel_wds, plot_lims, title):

    dim = 30
    X, keys = make_data_matrix(model)

    # first we actually do PCA to reduce the
    # dimensionality to make tSNE easier to calculate
    X_std = StandardScaler().fit_transform(X)
    sklearn_pca = PCA(n_components=2)
    X = sklearn_pca.fit_transform(X_std)[:,:dim]

    # do downsample
    k = 5000
    sample = []
    important_words = []
    r_wds = [word[0] for word in rel_wds]
    for i, key in enumerate(keys):
        if key in r_wds:
            sample.append(i)
    sample = np.concatenate((np.array(sample),
                np.random.choice(len(keys), k-10, replace = False),
             ))
    X = X[sample,:]
    keys = [keys[i] for i in sample]



    # Do tSNE
    tsne = TSNE(n_components=2, random_state=0, metric="cosine")
    X_transf = tsne.fit_transform(X)

    k_means = KMeans(n_clusters=8)
    labels = k_means.fit_predict(X_transf)

    scatter_plot(X_transf[:,0], X_transf[:,1],  rel_wds, labels, title, keys, plot_lims)
开发者ID:quinngroup,项目名称:sm_w2v,代码行数:35,代码来源:plot_utils.py


示例4: t_sne_view

def t_sne_view(norm_table, subj_cond, cohorts, image_type):

    # t-SNE analysis: Use stochastic neighbor embedding to reduce dimensionality of
    # data set to two dimensions in a non-linear, distance dependent fashion

    # Perform PCA data reduction if dimensionality of feature space is large:
    if len(norm_table.columns) > 12:
        pca = PCA(n_components = 12)
        pca.fit(norm_table.as_matrix())
        
        raw_data = pca.transform(norm_table.as_matrix())
    else:
        raw_data = norm_table.as_matrix()
 
    # Transform data into a two-dimensional embedded space:
    tsne = TSNE(n_components = 2, perplexity = 40.0, early_exaggeration= 2.0, 
        learning_rate = 100.0, init = 'pca')

    tsne_data = tsne.fit_transform(raw_data)

    # Prepare for normalization and view:
    cols = ['t-SNE', 'Cluster Visualization']
    tsne_table = pd.DataFrame(tsne_data, index = norm_table.index, columns = cols)
           
    # The output is no longer centered or normalized, so shift & scale it before display:
    tsne_avg = ppmi.data_stats(tsne_table, subj_cond, cohorts)
    tsne_norm_table = ppmi.normalize_table(tsne_table, tsne_avg)       
    
    # Send out to graphics rendering engine:

    if (image_type == 'Gauss'):
        return scg.scatter_gauss(tsne_norm_table[cols[0]], tsne_norm_table[cols[1]], subj_cond)
    elif (image_type == 'Scatter'):
        return scg.scatter_plain(tsne_norm_table[cols[0]], tsne_norm_table[cols[1]], subj_cond)
开发者ID:bayesimpact,项目名称:PD-Learn,代码行数:34,代码来源:PPMI_learn.py


示例5: perform_AE

def perform_AE(X, dim=2, tsne=False):
    y = np.zeros(shape=X.shape[0], dtype=int)
    
    if tsne:
        hidden_layers = [X.shape[1], 500, 100, 32]
        encoder_weights, decoder_weights = pretrain(X, hidden_layers)
        X_32d = ae(X, encoder_weights, decoder_weights, hidden_layers)

        ae_tsne = TSNE(n_components=dim, learning_rate=800, verbose=1)
        X_2d = ae_tsne.fit_transform(X_32d)

        method = 'ae_tsne_scaled'
    ### END - if tsne

    else:
        hidden_layers = [X.shape[1], 500, 100, 20, dim]
        encoder_weights, decoder_weights = pretrain(X, hidden_layers)
        X_2d = ae(X, encoder_weights, decoder_weights, hidden_layers)
        
        method = 'ae_scaled'
    ### END - else

    print('***** ' + method + ' *****')
    cluster(X_2d, method)
    np.save("{0}_{1}_X_2d".format(species, method), X_2d)
开发者ID:Wangmoaza,项目名称:tetra,代码行数:25,代码来源:species_reduction.py


示例6: visualize_latent_rep

def visualize_latent_rep(args, model, x_latent):
    print("pca_on=%r pca_comp=%d tsne_comp=%d tsne_perplexity=%f tsne_lr=%f" % (
        args.use_pca,
        args.pca_components,
        args.tsne_components,
        args.tsne_perplexity,
        args.tsne_lr
    ))

    if args.use_pca:
        pca = PCA(n_components = args.pca_components)
        x_latent = pca.fit_transform(x_latent)

    figure(figsize=(6, 6))
    scatter(x_latent[:, 0], x_latent[:, 1], marker='.')
    show()

    tsne = TSNE(n_components = args.tsne_components,
                perplexity = args.tsne_perplexity,
                learning_rate = args.tsne_lr,
                n_iter = args.tsne_iterations,
                verbose = 4)
    x_latent_proj = tsne.fit_transform(x_latent)
    del x_latent

    figure(figsize=(6, 6))
    scatter(x_latent_proj[:, 0], x_latent_proj[:, 1], marker='.')
    show()
开发者ID:HFooladi,项目名称:keras-molecules,代码行数:28,代码来源:sample_latent.py


示例7: vizualize_clusters

def vizualize_clusters(X, y, py, hist=None):
    """ Using T-SNE to visualize the site clusters.
        Plot and save the scatter (and the histogramm).
    """
    model = TSNE(n_components=2, random_state=0)

    fig = model.fit_transform(X, y)
    fig1 = model.fit_transform(X, py)

    pyplot.figure(figsize=(16, 8))
    pyplot.subplot(121)

    classes = list(set(y))
    for c, color in zip(classes, plt.colors.cnames.iteritems()):
        indeces = [i for i, p in enumerate(y) if p == c]
        pyplot.scatter(fig[indeces, 0], fig[indeces, 1], marker="o", c=color[0])

    pyplot.subplot(122)

    clusters = list(set(py))
    for c, color in zip(clusters, plt.colors.cnames.iteritems()):
        indeces = [i for i, p in enumerate(py) if p == c]
        pyplot.scatter(fig1[indeces, 0], fig1[indeces, 1], marker="o", c=color[0])

    # pyplot.show()
    pyplot.savefig("clusters" + "_scatter.png")

    if hist is not None:
        pyplot.figure(figsize=(4, 4))
        pyplot.xticks(clusters)

        pyplot.bar(clusters, hist, align="center")
        # pyplot.show()
        pyplot.savefig("clusters" + "_hist.png")
开发者ID:favorart,项目名称:InfoSearch1,代码行数:34,代码来源:vizualize.py


示例8: tsnePlot

def tsnePlot(plotname, modelName, word, dest):
    
    """Plots a tsne graph of words most similar to the word passed in the argument (as represented in the model previously calculated)"""
    
    model = word2vec.Word2Vec.load(modelName)
    words = [model.most_similar(word)[i][0] for i in range(0, len(model.most_similar(word)))]
    words.append(word)

    #nested list constaining 100 dimensional word vectors of each most-similar word
    
    word_vectors = [model[word] for word in words]
    word_vectors = np.array(word_vectors)

    tsne_model = TSNE(n_components=2, random_state=0)
    Y = tsne_model.fit_transform(word_vectors)
    sb.plt.plot(Y[:,0], Y[:,1], 'o') 

    for word, x, y in zip(words, Y[:,0], Y[:,1]):  
        sb.plt.annotate(word, (x, y), size=12)
        #sb.plt.pause(10)

    plotname = plotname + ".png"

    if not os.path.exists(dest):
        os.makedirs(dest)

    path = os.path.join(dest, plotname)

    sb.plt.savefig(path)
开发者ID:h-i-r-a,项目名称:megacityGazing,代码行数:29,代码来源:megaCity.py


示例9: reduce_dimentionality

 def reduce_dimentionality(self):
     self.vectors = []
     for key in self.selected_words:
         self.vectors.append(self.model[key])
     tnse_model = TSNE(n_components=2, random_state=0)
     np.set_printoptions(suppress=True)
     self.reduced_vectors = tnse_model.fit_transform(self.vectors)
开发者ID:mhbashari,项目名称:Persian-NLP-Visualization,代码行数:7,代码来源:BaseTools.py


示例10: plotTSNEDecisionBoundaries

def plotTSNEDecisionBoundaries(): 
    
    tsne = TSNE()
    tsne_data = tsne.fit_transform(feature_set)
    x_min,x_max = tsne_data[:,0].min()-1, tsne_data[:,0].max() + 1
    y_min,y_max = tsne_data[:,1].min()-1, tsne_data[:,1].max() + 1
    step_size = 2.0
    
    xx,yy = np.meshgrid(np.arange(x_min,x_max,step_size),np.arange(y_min,y_max,step_size))
    
    for index,classifier in enumerate(classifiers):
        
        plt.subplot(2,3,index+1)
        plt.subplots_adjust(wspace=0.5,hspace=0.5)
        classifier.fit(tsne_data,class_labels)
        
        Z = classifier.predict(zip(xx.ravel(),yy.ravel()))
        Z = Z.reshape(xx.shape)
        
        plt.contourf(xx,yy,Z,cmap=plt.cm.Paired,alpha=0.7)
        plt.scatter(tsne_data[:,0],tsne_data[:,1],c=class_labels,cmap=plt.cm.rainbow,alpha=0.6)
        plt.xlabel("Feature 1")
        plt.ylabel("Feature 2")
        plt.xlim(x_min,x_max)
        plt.ylim(y_min,y_max)
        plt.xticks(())
        plt.yticks(())
        plt.title(classifier_names[index])
        
    plt.show()
开发者ID:rupakc,项目名称:UCI-Data-Analysis,代码行数:30,代码来源:badge.py


示例11: tsne_plot

def tsne_plot(model):
    #"Creates and TSNE model and plots it"
    labels = []
    tokens = []

    for word in model.wv.vocab:
        tokens.append(model[word])
        labels.append(word)

    tsne_model = TSNE(perplexity=40, n_components=2, init='pca', n_iter=2500, random_state=23)
    new_values = tsne_model.fit_transform(tokens)

    x = []
    y = []
    for value in new_values:
        x.append(value[0])
        y.append(value[1])

    plt.figure(figsize=(16, 16))
    for i in range(len(x)):
        plt.scatter(x[i], y[i])
        plt.annotate(labels[i],
                     xy=(x[i], y[i]),
                     xytext=(5, 2),
                     textcoords='offset points',
                     ha='right',
                     va='bottom')
    plt.show()
开发者ID:GwangReGi,项目名称:Gwang,代码行数:28,代码来源:plotPractice.py


示例12: visualization

def visualization(result, word_dict):
	tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
	plot_only = 500

	low_dim_embs = tsne.fit_transform(result[0:500])
	labels = [ word_dict[i] for i in range(500) ]
	plot_with_labels(low_dim_embs, labels)
开发者ID:huozi07,项目名称:DeepLearningForNLPNotes,代码行数:7,代码来源:util.py


示例13: plotly_js_viz

def plotly_js_viz(word_2_vec_model):
    tsne_model=TSNE(n_components=2,random_state=5)
    data=tsne_model.fit_transform(word_2_vec_model.syn0)
    xd=list(data[:,0])
    yd=list(data[:,1])
    names_our=word_2_vec_model.index2word
    plot([Scatter(x=xd,y=yd,mode="markers",text=names_our)])
开发者ID:ronygregory,项目名称:nips-data-analysis,代码行数:7,代码来源:DM_finding_similar_authors.py


示例14: PlotTSNE

def PlotTSNE (data, labels):										#Takes the data and the labels
	# Visualize the results on TSNE reduced data

	print "BUSY IN TSNE"

	model = TSNE(n_components=2, random_state=0)
	reduced_data = model.fit_transform(data)

	print "DATA REDUCED"

	# Plot the decision boundary. For that, we will assign a color to each
	x_min, x_max = reduced_data[:, 0].min(), reduced_data[:, 0].max()
	y_min, y_max = reduced_data[:, 1].min(), reduced_data[:, 1].max()
	
	plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2)
	
	#Adds labels to the plot
	for label, x, y in zip(labels, reduced_data[:, 0], reduced_data[:, 1]):
	    plt.annotate(
	        label, 
	        xy = (x, y), xytext = (-20, 20),
	        textcoords = 'offset points', ha = 'right', va = 'bottom',
	        bbox = dict(boxstyle = 'round,pad=0.5', fc = 'green', alpha = 0.5),
	        arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'))

	plt.title('TSNE Plot')
	plt.xlim(x_min, x_max)
	plt.ylim(y_min, y_max)
	plt.xticks(())
	plt.yticks(())
	plt.show()
开发者ID:nishantrai18,项目名称:cs671project,代码行数:31,代码来源:get_senses.py


示例15: labtest_TSNE

def labtest_TSNE(PID):
    data = [patients[pid]['tests'] for pid in PID]
    X = pp.scale(data)
    tsne = TSNE(n_components=2, perplexity=30.0, learning_rate=1000.0, n_iter=1000, n_iter_without_progress=30, min_grad_norm=1e-07, angle=0.5)
    pos = tsne.fit(X).embedding_
    
    return pos
开发者ID:Blaver,项目名称:MyWorkingPlatform,代码行数:7,代码来源:API.py


示例16: apply_tSNE30

def apply_tSNE30(proj_data, proj_weights=None):
    model = TSNE(n_components=2, perplexity=30.0, metric="euclidean",
                 learning_rate=100, early_exaggeration=4.0,
                 random_state=RANDOM_SEED);
    norm_data = normalize_columns(proj_data);
    result = model.fit_transform(norm_data.T);
    return result;
开发者ID:shakea02,项目名称:FastProject,代码行数:7,代码来源:Projections.py


示例17: plot_mean_activation_and_stuff

    def plot_mean_activation_and_stuff(some_probs, Y, do_tsne=False):
        pyplot.clf()
        probs = numpy.float32(some_probs)
        xv = numpy.arange(probs.shape[1])#probs.var(axis=0)
        yv = probs.mean(axis=0)
        pyplot.axis([-0.1, probs.shape[1],0,1])
        for k in range(probs.shape[1]):
            pyplot.plot(xv[k]*numpy.ones(probs.shape[0]),probs[:,k],'o',ms=4.,
                        markeredgecolor=(1, 0, 0, 0.01),
                        markerfacecolor=(1, 0, 0, 0.01),)
        pyplot.plot(xv,yv, 'bo')
        pyplot.show(block=False)
        if do_video:
            pyplot.savefig(video.stdin, format='jpeg')
            video.stdin.flush()
        pyplot.savefig('epoch_probs.png')

        if not do_tsne: return
        try:
            from sklearn.manifold import TSNE
            tsne = TSNE(random_state=0)
            ps = tsne.fit_transform(numpy.float64(probs[:400]))
            pyplot.clf()
            Y = numpy.int32(Y)[:400]
            for i,c,s in zip(range(10),list('bgrcmyk')+[(.4,.3,.9),(.9,.4,.3),(.3,.9,.4)],'ov'*5):
                sub = ps[Y == i]
                pyplot.plot(sub[:,0], sub[:,1], s,color=c,ms=3,mec=c)
            pyplot.show(block=False)
            pyplot.savefig('probs_embed.png')
        except ImportError:
            print "cant do tsne"
开发者ID:yiiwood,项目名称:condnet,代码行数:31,代码来源:policyDropout.py


示例18: performDimensionalityReduction

def performDimensionalityReduction(context_vector, n_component, perplexity):
    '''
        Applies TSNE on the feature vector of each of the word instances and creates
        one model for each word type
    '''
    feature_vector_data = defaultdict(dict)
    word_type_model     = {}
    
    for word_type, word_type_data in context_vector.iteritems():
        feature_vector_word_type = OrderedDict()
        
        #Reading in all the feature vectors for the given word type
        for data_type, instance_details in word_type_data.iteritems():
            for instance, context_details in instance_details.iteritems():
                
                #Training data with have the sense id's while test data will have ['<UNKNOWN>']
                senses = context_details.get('Sense')
                for sense in senses:
                    feature_vector_word_type[(instance, sense, data_type)] = context_details["Feature_Vector"]
        
        #Applying TSNE on all the feature vectors
        feature_vector_array = np.array(feature_vector_word_type.values())
        model = TSNE(n_components=n_component, random_state=0, perplexity=perplexity, metric="cosine")
        model.fit(feature_vector_array)
        
        #Storing the model since it will be needed to fit the test data
        word_type_model[word_type] = model
        
        #Converting to a structure of {WordType: {(instanceID, senseID): FeatureVector ... }}
        for i in range(len(feature_vector_word_type)):
            feature_vector_data[word_type][feature_vector_word_type.keys()[i]] = list(model.embedding_[i])

    return feature_vector_word_type, word_type_model
开发者ID:gkeswani92,项目名称:Word-Sense-Disambiguation,代码行数:33,代码来源:Validation.py


示例19: main

def main():
    embedding = WordEmbedding(embeddingpath(default_embeddingconfig))


    for old, new in spelling_changes:
        print(old, '--', new)
        print(embedding.nearest_words([old]))
        print()

    print()
    war, ist = tense_changes[0]
    tensediff = embedding[ist] - embedding[war]
    for past, present in tense_changes[1 : ]:
        print(past, '+ tensediff:', *embedding.nearest_words([embedding[past] + tensediff]))
        print('Should be:', present)
        print()

    # word_diffs = [embedding[new] - embedding[old] for (old, new) in word_changes]

    spelling_diffs = [embedding[new] - embedding[old] for (old, new) in spelling_changes[10 : 20]]
    tense_diffs = [embedding[present] - embedding[past] for (past, present) in tense_changes]

    def metric(u, v):
        return max(distance.cosine(u, v), 0)

    while True:
        try:
            model = TSNE(n_components=2, metric=metric)
            reduced = model.fit_transform(spelling_diffs + tense_diffs)
            print(reduced)
            return
        except Exception:
            pass
开发者ID:mbid,项目名称:ml-lecture-2015-project,代码行数:33,代码来源:embeddingproperties.py


示例20: topic_dimen_reduce

def topic_dimen_reduce(words, word2vec):
    dictionary, matrix = terms_analysis.get_words_matrix(words, word2vec)
    pca = PCA(n_components=50)
    pca_matrix = pca.fit_transform(matrix)
    tsne = TSNE(n_components=2)
    t_matrix = tsne.fit_transform(pca_matrix)
    return dictionary, t_matrix
开发者ID:hxiaofeng,项目名称:HTopicModel,代码行数:7,代码来源:dimen_reduce.py



注:本文中的sklearn.manifold.TSNE类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python _utils._binary_search_perplexity函数代码示例发布时间:2022-05-27
下一篇:
Python manifold.MDS类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap