本文整理汇总了Python中sklearn.metrics.precision_recall_fscore_support函数的典型用法代码示例。如果您正苦于以下问题:Python precision_recall_fscore_support函数的具体用法?Python precision_recall_fscore_support怎么用?Python precision_recall_fscore_support使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了precision_recall_fscore_support函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: main
def main():
do_it = 1
# get data
global g_train, g_train_label, g_test, g_test_label, g_feature_name
g_train, g_train_label, g_test, g_test_label, g_feature_name = load_features_and_labels()
# do
if do_it == 0:
forest = cudaTreeRandomForestClassifier(n_estimators=50, verbose=True, bootstrap=False)
forest.fit(np.asarray(g_train), np.asarray(g_train_label), bfs_threshold=4196)
predictions = forest.predict(np.asarray(g_test))
print precision_recall_fscore_support(g_test_label, predictions, average='micro')
# do
if do_it == 0:
forest = hybridForestRandomForestClassifier(n_estimators=50,
n_gpus=2,
n_jobs=6,
bootstrap=False,
cpu_classifier=WiseRF)
forest.fit(np.asarray(g_train), np.asarray(g_train_label), bfs_threshold=4196)
predictions = forest.predict(np.asarray(g_test))
print precision_recall_fscore_support(g_test_label, predictions, average='micro')
开发者ID:SpikingNeurons,项目名称:WriterIdentification,代码行数:25,代码来源:gpu_cuda.py
示例2: evaluate_mutiple
def evaluate_mutiple(ground_truth, prediction, find_max=False, f_beta = 1.0, avg_method=None):
"""
:param ground_truth: 1-d array, e.g. gt: [1, 1, 2, 2, 3]
:param prediction: 1-d array, e.g. prediction: [1, 1, 2, 2, 4]
:return: recall, precision, f-value
"""
prediction_indices = prediction
if find_max or len(prediction.shape) == 2:
prediction_indices = find_max_indices(prediction)
# Find Precision & Recall & F-value
precision, recall, f_value, support = None, None, None, None
if len(prediction.shape) == 2:
M = prediction.shape[1]
precision, recall, f_value, support \
= precision_recall_fscore_support(ground_truth,
prediction_indices,
beta=f_beta,
pos_label=M,
average=avg_method)
else:
precision, recall, f_value, support \
= precision_recall_fscore_support(ground_truth,
prediction_indices,
beta=f_beta,
average=avg_method)
return precision, recall, f_value
开发者ID:corsy,项目名称:evaluators,代码行数:31,代码来源:precision_recall_evaluator.py
示例3: learnCART
def learnCART(self):
train_input_data = self.loadData(self.train_file)
target = [x[1] for x in train_input_data]
target = target[1:]
features = [x[2:] for x in train_input_data]
features = features[1:]
# feature selection
#features_new = self.doFeatureSelection(features,target)
model = self.classify(features,target)
test_input_data = self.loadData(self.test_file)
actualOutput = [x[1] for x in test_input_data]
actualOutput = actualOutput[1:]
features = [x[2:] for x in test_input_data]
features = features[1:]
predictedOutput = model.predict(features)
#print predictedOutput
#print actualOutput
self.computeAccuracy(predictedOutput,actualOutput)
print "Precision recall Fscore support metrics for CART "
print precision_recall_fscore_support(actualOutput,predictedOutput)
print "\nconfusion matrix\n"
print confusion_matrix(actualOutput,predictedOutput)
self.printDTRules(model)
X= []
Y=[]
for a in predictedOutput:
X.append(int(a))
for a in actualOutput:
Y.append(int(a))
self.plotROC(Y,X)
result = zip(Y,X)
self.write_To_File(result,"cart-predictions.csv")
开发者ID:satheeshravir,项目名称:mlproject,代码行数:34,代码来源:CartDecisionTreeAlgorithm.py
示例4: compare_dummy
def compare_dummy(self):
""" Compares classifier to dummy classifiers"""
#print "\nDetailed classification report:\n"
#print "The model is trained on the full development set.\n"
#print "The scores are computed on the full evaluation set.\n"
X_train = self.train_vectors
y_train = self.train_tweetclasses
X_test = self.test_vectors
y_test = self.test_tweetclasses
dummy = DummyClassifier(strategy='most_frequent',random_state=0)
dummy.fit(X_train, y_train)
y_true, y_preddum = y_test, dummy.predict(X_test)
tuples = precision_recall_fscore_support(y_true, y_preddum)
dummy1 = DummyClassifier(strategy='stratified',random_state=0)
dummy1.fit(X_train, y_train)
y_true, y_preddum1 = y_test, dummy1.predict(X_test)
tuples1 = precision_recall_fscore_support(y_true, y_preddum1)
dummy2 = DummyClassifier(strategy='uniform',random_state=0)
dummy2.fit(X_train, y_train)
y_true, y_preddum2 = y_test, dummy2.predict(X_test)
tuples2 = precision_recall_fscore_support(y_true, y_preddum2)
return (tuples, tuples1,tuples2)
开发者ID:sagieske,项目名称:scriptie,代码行数:27,代码来源:classification.py
示例5: compute_precision_recall_accuracy_thresholded_v3
def compute_precision_recall_accuracy_thresholded_v3(threshold=0.5, sim_column=4):
"""
starting from 0 the sims (for supp-v2) are:
soundex
nysiis
metaphone
:param threshold:
:param sim_column:
:return:
"""
tab_strings, tab_values, ground_truth = read_in_sim_data_as_table()
y_true = list()
y_pred = list()
num_pos = 0
output_pos = 0
for i in range(len(tab_values)):
y_true.append(ground_truth[i])
if ground_truth[i] == 1:
num_pos += 1
if tab_values[i][sim_column] >= threshold:
y_pred.append(1)
output_pos += 1
else:
y_pred.append(0)
# precision, recall, thresholds = precision_recall_curve(np.array(y_true), np.array(y_pred))
print 'printing precision, recall, fscore, support:',
print precision_recall_fscore_support(np.array(y_true), np.array(y_pred), average='binary')
print 'accuracy score: ', accuracy_score(np.array(y_true), np.array(y_pred))
# print precision
# print recall
print 'number of positives output: ',
print num_pos
print 'number of positives in ground truth: ',
print output_pos
开发者ID:mayankkejriwal,项目名称:pycharm-projects-ubuntu,代码行数:34,代码来源:name-matching-analysis.py
示例6: compute_precision_recall_accuracy_thresholded_v2
def compute_precision_recall_accuracy_thresholded_v2(threshold=0.5, sim_column=4):
"""
starting from 0 the sims (for supp-v2) are:
tri_gram_jaccard_similarity
jaro_winkler_similarity
levenshtein_similarity
needleman_wunsch_similarity
metaphone_similarity
:param threshold:
:param sim_column:
:return:
"""
tab_strings, tab_values, ground_truth = read_in_sim_data_as_table()
y_true = list()
y_pred = list()
num_pos = 0
output_pos = 0
for i in range(len(tab_values)):
y_true.append(ground_truth[i])
if ground_truth[i] == 1:
num_pos += 1
if tab_values[i][sim_column] >= threshold:
y_pred.append(1)
output_pos += 1
else:
y_pred.append(0)
# precision, recall, thresholds = precision_recall_curve(np.array(y_true), np.array(y_pred))
print precision_recall_fscore_support(np.array(y_true), np.array(y_pred), average='binary')
print 'accuracy score: ',accuracy_score(np.array(y_true), np.array(y_pred))
# print precision
# print recall
print num_pos
print output_pos
开发者ID:mayankkejriwal,项目名称:pycharm-projects-ubuntu,代码行数:33,代码来源:name-matching-analysis.py
示例7: compare_dummy_classification
def compare_dummy_classification(self):
""" Compares classifier to dummy classifiers. Return results (resultscores_tuple, N.A., N.A.)"""
X_train = self.train_vectors
y_train = self.train_tweetclasses
X_test = self.test_vectors
y_test = self.test_tweetclasses
dummy_results = []
dummy = DummyClassifier(strategy="most_frequent", random_state=0)
dummy.fit(X_train, y_train)
y_true, y_preddum = y_test, dummy.predict(X_test)
tuples = precision_recall_fscore_support(y_true, y_preddum)
dummy1 = DummyClassifier(strategy="stratified", random_state=0)
dummy1.fit(X_train, y_train)
y_true, y_preddum1 = y_test, dummy1.predict(X_test)
tuples1 = precision_recall_fscore_support(y_true, y_preddum1)
dummy2 = DummyClassifier(strategy="uniform", random_state=0)
dummy2.fit(X_train, y_train)
y_true, y_preddum2 = y_test, dummy2.predict(X_test)
tuples2 = precision_recall_fscore_support(y_true, y_preddum2)
resulttuple = ("dummy freq", "N.A.", "N.A.", "N.A.", "N.A.", tuples)
resulttuple1 = ("dummy strat", "N.A.", "N.A.", "N.A.", "N.A.", tuples1)
resulttuple2 = ("dummy uni", "N.A.", "N.A.", "N.A.", "N.A.", tuples2)
dummy_results.append(resulttuple)
dummy_results.append(resulttuple1)
dummy_results.append(resulttuple2)
return dummy_results
开发者ID:sagieske,项目名称:scriptie,代码行数:33,代码来源:classification2.py
示例8: test_precision_recall_f1_score_with_an_empty_prediction
def test_precision_recall_f1_score_with_an_empty_prediction():
y_true = np.array([[0, 1, 0, 0], [1, 0, 0, 0], [0, 1, 1, 0]])
y_pred = np.array([[0, 0, 0, 0], [0, 0, 0, 1], [0, 1, 1, 0]])
# true_pos = [ 0. 1. 1. 0.]
# false_pos = [ 0. 0. 0. 1.]
# false_neg = [ 1. 1. 0. 0.]
p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
average=None)
assert_array_almost_equal(p, [0.0, 1.0, 1.0, 0.0], 2)
assert_array_almost_equal(r, [0.0, 0.5, 1.0, 0.0], 2)
assert_array_almost_equal(f, [0.0, 1 / 1.5, 1, 0.0], 2)
assert_array_almost_equal(s, [1, 2, 1, 0], 2)
f2 = fbeta_score(y_true, y_pred, beta=2, average=None)
support = s
assert_array_almost_equal(f2, [0, 0.55, 1, 0], 2)
p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
average="macro")
assert_almost_equal(p, 0.5)
assert_almost_equal(r, 1.5 / 4)
assert_almost_equal(f, 2.5 / (4 * 1.5))
assert_equal(s, None)
assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
average="macro"),
np.mean(f2))
p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
average="micro")
assert_almost_equal(p, 2 / 3)
assert_almost_equal(r, 0.5)
assert_almost_equal(f, 2 / 3 / (2 / 3 + 0.5))
assert_equal(s, None)
assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
average="micro"),
(1 + 4) * p * r / (4 * p + r))
p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
average="weighted")
assert_almost_equal(p, 3 / 4)
assert_almost_equal(r, 0.5)
assert_almost_equal(f, (2 / 1.5 + 1) / 4)
assert_equal(s, None)
assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
average="weighted"),
np.average(f2, weights=support))
p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
average="samples")
# |h(x_i) inter y_i | = [0, 0, 2]
# |y_i| = [1, 1, 2]
# |h(x_i)| = [0, 1, 2]
assert_almost_equal(p, 1 / 3)
assert_almost_equal(r, 1 / 3)
assert_almost_equal(f, 1 / 3)
assert_equal(s, None)
assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
average="samples"),
0.333, 2)
开发者ID:chrisburr,项目名称:scikit-learn,代码行数:60,代码来源:test_classification.py
示例9: _update_metrics
def _update_metrics(self, y_true, y_pred,
onco_prob, tsg_prob):
# record which genes were predicted what
self.driver_gene_pred = pd.Series(y_pred, self.y.index)
self.driver_gene_score = pd.Series(onco_prob+tsg_prob, self.y.index)
# evaluate performance
prec, recall, fscore, support = metrics.precision_recall_fscore_support(y_true, y_pred,
average='macro')
cancer_gene_pred = ((onco_prob + tsg_prob)>.5).astype(int)
self.cancer_gene_count[self.num_pred] = np.sum(cancer_gene_pred)
self.precision[self.num_pred] = prec
self.recall[self.num_pred] = recall
self.f1_score[self.num_pred] = fscore
# compute Precision-Recall curve metrics
driver_prob = onco_prob + tsg_prob
driver_true = (y_true > 0).astype(int)
p, r, thresh = metrics.precision_recall_curve(driver_true, driver_prob)
p, r, thresh = p[::-1], r[::-1], thresh[::-1] # reverse order of results
thresh = np.insert(thresh, 0, 1.0)
self.driver_precision_array[self.num_pred, :] = interp(self.driver_recall_array, r, p)
self.driver_threshold_array[self.num_pred, :] = interp(self.driver_recall_array, r, thresh)
# calculate prediction summary statistics
prec, recall, fscore, support = metrics.precision_recall_fscore_support(driver_true, cancer_gene_pred)
self.driver_precision[self.num_pred] = prec[1]
self.driver_recall[self.num_pred] = recall[1]
# save driver metrics
fpr, tpr, thresholds = metrics.roc_curve(driver_true, driver_prob)
self.driver_tpr_array[self.num_pred, :] = interp(self.driver_fpr_array, fpr, tpr)
开发者ID:KarchinLab,项目名称:2020plus,代码行数:32,代码来源:generic_classifier.py
示例10: test
def test(self, a_trees, a_segments):
"""Estimate performance of segmenter model.
Args:
a_trees (list): BitPar trees
a_segments (list): corresponding gold segments for trees
Returns:
2-tuple: macro and micro-averaged F-scores
"""
if self.model is None:
return (0, 0)
segments = [self.model.predict(self.featgen(itree))[0]
for itree in a_trees]
a_segments = [str(s) for s in a_segments]
_, _, macro_f1, _ = precision_recall_fscore_support(a_segments,
segments,
average='macro',
warn_for=())
_, _, micro_f1, _ = precision_recall_fscore_support(a_segments,
segments,
average='micro',
warn_for=())
return (macro_f1, micro_f1)
开发者ID:WladimirSidorenko,项目名称:DiscourseSegmenter,代码行数:25,代码来源:bparsegmenter.py
示例11: main
def main():
model_file = '../../paper/data/srwe_model/wiki_small.w2v.model'
nytimes_file = '../gen_data/nytimes/news_corpus'
model = load_w2v_model(model_file, logging, nparray=True)
corpus_vec, corpus_label = load_nytimes(nytimes_file, model)
labels = list(set(corpus_label))
X_train, X_test, y_train, y_test = train_test_split(corpus_vec, corpus_label, test_size=0.2, random_state=42)
logging.info('train size: %d, test size:%d' % (len(y_train), len(y_test)))
clfs = {}
for label in labels:
clfs[label] = train(label, X_train, X_test, y_train, y_test)
y_pred = []
for each in X_test:
pred_res = []
for label in clfs:
pred_res.append((clfs[label].predict_proba(each.reshape(1, -1))[0][1], label))
sorted_pred = sorted(pred_res, key=lambda x: x[0], reverse=True)
y_pred.append(sorted_pred[0][1])
precision, recall, f_score, support, present_labels = precision_recall_fscore_support(y_test, y_pred)
for l, p, r, f in zip(present_labels, precision, recall, f_score):
print '%s\t%.4lf\t%.4lf\t%.4lf' % (l, p, r, f)
precision, recall, f_score, support, present_labels = precision_recall_fscore_support(y_test, y_pred, average='macro')
print 'Macro\t%.4lf\t%.4lf\t%.4lf' % (precision, recall, f_score)
precision, recall, f_score, support, present_labels = precision_recall_fscore_support(y_test, y_pred, average='micro')
print 'Micro\t%.4lf\t%.4lf\t%.4lf' % (precision, recall, f_score)
开发者ID:zbhno37,项目名称:srwe,代码行数:27,代码来源:text_classification.py
示例12: clf_metrics
def clf_metrics(p_train, p_test, y_train, y_test):
""" Compute metrics on classifier predictions
Parameters
----------
p_train : np.array [n_samples]
predicted probabilities for training set
p_test : np.array [n_samples]
predicted probabilities for testing set
y_train : np.array [n_samples]
Training labels.
y_test : np.array [n_samples]
Testing labels.
Returns
-------
clf_scores : dict
classifier scores for training set
"""
y_pred_train = 1*(p_train >= 0.5)
y_pred_test = 1*(p_test >= 0.5)
train_scores = {}
test_scores = {}
train_scores['accuracy'] = metrics.accuracy_score(y_train, y_pred_train)
test_scores['accuracy'] = metrics.accuracy_score(y_test, y_pred_test)
train_scores['mcc'] = metrics.matthews_corrcoef(y_train, y_pred_train)
test_scores['mcc'] = metrics.matthews_corrcoef(y_test, y_pred_test)
(p, r, f, s) = metrics.precision_recall_fscore_support(y_train,
y_pred_train)
train_scores['precision'] = p
train_scores['recall'] = r
train_scores['f1'] = f
train_scores['support'] = s
(p, r, f, s) = metrics.precision_recall_fscore_support(y_test,
y_pred_test)
test_scores['precision'] = p
test_scores['recall'] = r
test_scores['f1'] = f
test_scores['support'] = s
train_scores['confusion matrix'] = \
metrics.confusion_matrix(y_train, y_pred_train, labels=[0, 1])
test_scores['confusion matrix'] = \
metrics.confusion_matrix(y_test, y_pred_test, labels=[0, 1])
train_scores['auc score'] = \
metrics.roc_auc_score(y_train, p_train + 1, average='weighted')
test_scores['auc score'] = \
metrics.roc_auc_score(y_test, p_test + 1, average='weighted')
clf_scores = {'train': train_scores, 'test': test_scores}
return clf_scores
开发者ID:EQ4,项目名称:contour_classification,代码行数:58,代码来源:clf_utils.py
示例13: melodiness_metrics
def melodiness_metrics(m_train, m_test, y_train, y_test):
""" Compute metrics on melodiness score
Parameters
----------
m_train : np.array [n_samples]
melodiness scores for training set
m_test : np.array [n_samples]
melodiness scores for testing set
y_train : np.array [n_samples]
Training labels.
y_test : np.array [n_samples]
Testing labels.
Returns
-------
melodiness_scores : dict
melodiness scores for training set
"""
m_bin_train = 1*(m_train >= 1)
m_bin_test = 1*(m_test >= 1)
train_scores = {}
test_scores = {}
train_scores['accuracy'] = metrics.accuracy_score(y_train, m_bin_train)
test_scores['accuracy'] = metrics.accuracy_score(y_test, m_bin_test)
train_scores['mcc'] = metrics.matthews_corrcoef(y_train, m_bin_train)
test_scores['mcc'] = metrics.matthews_corrcoef(y_test, m_bin_test)
(p, r, f, s) = metrics.precision_recall_fscore_support(y_train,
m_bin_train)
train_scores['precision'] = p
train_scores['recall'] = r
train_scores['f1'] = f
train_scores['support'] = s
(p, r, f, s) = metrics.precision_recall_fscore_support(y_test,
m_bin_test)
test_scores['precision'] = p
test_scores['recall'] = r
test_scores['f1'] = f
test_scores['support'] = s
train_scores['confusion matrix'] = \
metrics.confusion_matrix(y_train, m_bin_train, labels=[0, 1])
test_scores['confusion matrix'] = \
metrics.confusion_matrix(y_test, m_bin_test, labels=[0, 1])
train_scores['auc score'] = \
metrics.roc_auc_score(y_train, m_train + 1, average='weighted')
test_scores['auc score'] = \
metrics.roc_auc_score(y_test, m_test + 1, average='weighted')
melodiness_scores = {'train': train_scores, 'test': test_scores}
return melodiness_scores
开发者ID:EQ4,项目名称:contour_classification,代码行数:58,代码来源:mv_gaussian.py
示例14: metric
def metric(self,tag,rank):
precision,recall,fbeta,support = precision_recall_fscore_support(self.purchase,tag)
print "precision of purchase:",precision
print "recall of purchase:",recall
PAN,a,b,c = precision_recall_fscore_support(self.rating,rank)
print "P @ N :",PAN
开发者ID:chsu16,项目名称:recommender-system,代码行数:9,代码来源:ranking.py
示例15: eval_models
def eval_models(stream1, stream2, predictor1, predictor2):
source1 = multiplex_streams([stream1, stream2], [0.5, 0.5], 1000)
source2 = multiplex_streams([stream1, stream2], [0.1, 0.9], 1000)
for source in source1, source2:
data = source.next()
y_est1 = predictor1(data['x']).values()[0].argmax(axis=1)
y_est2 = predictor2(data['x']).values()[0].argmax(axis=1)
print metrics.precision_recall_fscore_support(data['y'], y_est1)
print metrics.precision_recall_fscore_support(data['y'], y_est2)
开发者ID:agangzz,项目名称:dl4mir,代码行数:9,代码来源:sample_bias.py
示例16: get_scores
def get_scores(y_pred, y_true):
scores = precision_recall_fscore_support(y_true=y_true, y_pred=y_pred, labels=[0,1])
average = precision_recall_fscore_support(y_true=y_true,
y_pred=y_pred,
average="macro",
pos_label=None,
labels=[0, 1])
return scores, average
开发者ID:TatsuyukiIju,项目名称:data_projection,代码行数:9,代码来源:test.py
示例17: NBgauss
def NBgauss(x_train,y_train,x_test,y_test):
####Naive Bayes (Gaussian likelihood)
clf = GaussianNB()
clf.fit(x_train,y_train)
predict_y = clf.predict(x_test)
auc_score=metrics.roc_auc_score(y_test,predict_y)
print 'GaussianNB auc_score=',auc_score
print metrics.precision_recall_fscore_support(y_test,predict_y)
return auc_score
开发者ID:SpongeGourd,项目名称:python,代码行数:9,代码来源:majia.py
示例18: AdaBoost
def AdaBoost(x_train,y_train,x_test,y_test):
#####AdaBoostClassifier
clf = AdaBoostClassifier()
clf.fit(x_train,y_train)
predict_y = clf.predict(x_test)
auc_score=metrics.roc_auc_score(y_test,predict_y)
print 'AdaBoost auc_score=',auc_score
print metrics.precision_recall_fscore_support(y_test,predict_y)
return auc_score
开发者ID:SpongeGourd,项目名称:python,代码行数:9,代码来源:majia.py
示例19: RF
def RF(x_train,y_train,x_test,y_test):
#####RF
clf = RandomForestClassifier()
clf.fit(x_train,y_train)
predict_y = clf.predict(x_test)
auc_score=metrics.roc_auc_score(y_test,predict_y)
print 'RF auc_score=',auc_score
print metrics.precision_recall_fscore_support(y_test,predict_y)
return auc_score
开发者ID:SpongeGourd,项目名称:python,代码行数:9,代码来源:majia.py
示例20: GBDT
def GBDT(x_train,y_train,x_test,y_test):
#####GBDT
clf = GradientBoostingClassifier()
clf.fit(x_train,y_train)
predict_y = clf.predict(x_test)
auc_score=metrics.roc_auc_score(y_test,predict_y)
print 'GBDT auc_score=',auc_score
print metrics.precision_recall_fscore_support(y_test,predict_y)
return auc_score
开发者ID:SpongeGourd,项目名称:python,代码行数:9,代码来源:majia.py
注:本文中的sklearn.metrics.precision_recall_fscore_support函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论