• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python multiclass.OneVsOneClassifier类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.multiclass.OneVsOneClassifier的典型用法代码示例。如果您正苦于以下问题:Python OneVsOneClassifier类的具体用法?Python OneVsOneClassifier怎么用?Python OneVsOneClassifier使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了OneVsOneClassifier类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: gen_svc

def gen_svc(train_model):
    '''Given a training model, generates the SVM (and DictVectorizer) for it

    Args: 
        train_model: a training model object. should have 2 attributes:
        feature_lists, a map from POS tag to a dictionary of features
        (the ones used in the ith decision), and action_lists, a map from
        POS tag to the action (Shift, Left, Right) chosen for the ith decision
    Returns: dictionary mapping POS tag to a vectorizer, SVM tuple
    Raises: None
    '''
    models = {}
    for pos_tag in train_model.feature_lists:
        vec = DictVectorizer()
        feature_mat = vec.fit_transform(train_model.feature_lists[pos_tag])
        trained_svc = OneVsOneClassifier(LinearSVC())
        try:
            trained_svc.fit(feature_mat, np.array(train_model.action_lists[pos_tag]))
        except ValueError:
            # occasionally we get the same action for everything with a
            # particular POS, which raises an error. so in that case we just
            # use a custom class that always predicts the same action
            trained_svc = AlwaysPredict(train_model.feature_lists[pos_tag][0])
        models[pos_tag] = (vec, trained_svc)
    return models
开发者ID:lurke,项目名称:DependencyParsing,代码行数:25,代码来源:master.py


示例2: svm_training

def svm_training(train_X,train_Y,kernel):
	if kernel == False:
		clf = OneVsOneClassifier(svm.LinearSVC(random_state=0))
	else:
		clf = OneVsOneClassifier(svm.SVC(kernel='rbf'))
	clf.fit(train_X,train_Y)
	return clf
开发者ID:akhilbatra898,项目名称:SentimentAnalysisOfTwitter,代码行数:7,代码来源:unigramSVM.py


示例3: svm_classification

def svm_classification(genres, features_type):
	training_set_features = tf.read_features_from_files("../../music/training", genres, features_type)
	testing_set_features = tf.read_features_from_files("../../music/testing", genres, features_type)

	X = []
	y = []
	for feature in training_set_features:
		(mean, cov_mat, genre_name) = feature
		X.append(mean.tolist())
		y.append(tf.get_genre_ID(genre_name))

	training_data = np.array(X)
	training_class = np.array(y)

	X = []
	y = []
	for feature in testing_set_features:
		(mean, cov_mat, genre_name) = feature
		X.append(mean.tolist())
		y.append(tf.get_genre_ID(genre_name))

	testing_data = np.array(X)
	testing_class = np.array(y)


	clf = OneVsOneClassifier(SVC(kernel='linear'))
	result_class = np.array(clf.fit(training_data, training_class).predict(testing_data))

	rt.print_accuracy(list(testing_class), list(result_class), genres, features_type, "svm")
	rt.write_accuracy_to_file("../../music/", list(testing_class), list(result_class), genres, features_type, "svm")
开发者ID:vladimir-paramuzov,项目名称:MGC-Project,代码行数:30,代码来源:svc.py


示例4: train_classifier

def train_classifier(clf,X_train,y_train,X_test,y_test):
	clf = OneVsOneClassifier(clf)
	clf.fit(X_train, y_train)
	train_time = time() - t0
	print("train time: %0.3fs" % train_time)
	t0 = time()
	return clf
开发者ID:AvinashKalivarapu,项目名称:SentimentAnalysisOfTwitter,代码行数:7,代码来源:svm_classifier.py


示例5: test_ovo_ties

def test_ovo_ties():
    # test that ties are broken using the decision function, not defaulting to
    # the smallest label
    X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]])
    y = np.array([2, 0, 1, 2])
    multi_clf = OneVsOneClassifier(Perceptron())
    ovo_prediction = multi_clf.fit(X, y).predict(X)

    # recalculate votes to make sure we have a tie
    predictions = np.vstack([clf.predict(X) for clf in multi_clf.estimators_])
    scores = np.vstack([clf.decision_function(X)
                        for clf in multi_clf.estimators_])
    # classifiers are in order 0-1, 0-2, 1-2
    # aggregate votes:
    votes = np.zeros((4, 3))
    votes[np.arange(4), predictions[0]] += 1
    votes[np.arange(4), 2 * predictions[1]] += 1
    votes[np.arange(4), 1 + predictions[2]] += 1
    # for the first point, there is one vote per class
    assert_array_equal(votes[0, :], 1)
    # for the rest, there is no tie and the prediction is the argmax
    assert_array_equal(np.argmax(votes[1:], axis=1), ovo_prediction[1:])
    # for the tie, the prediction is the class with the highest score
    assert_equal(ovo_prediction[0], 0)
    # in the zero-one classifier, the score for 0 is greater than the score for
    # one.
    assert_greater(scores[0][0], scores[0][1])
    # score for one is greater than score for zero
    assert_greater(scores[2, 0] - scores[0, 0], scores[0, 0] + scores[1, 0])
    # score for one is greater than score for two
    assert_greater(scores[2, 0] - scores[0, 0], -scores[1, 0] - scores[2, 0])
开发者ID:jaguila,项目名称:cert,代码行数:31,代码来源:test_multiclass.py


示例6: test_ovo_fit_on_list

def test_ovo_fit_on_list():
    # Test that OneVsOne fitting works with a list of targets and yields the
    # same output as predict from an array
    ovo = OneVsOneClassifier(LinearSVC(random_state=0))
    prediction_from_array = ovo.fit(iris.data, iris.target).predict(iris.data)
    prediction_from_list = ovo.fit(iris.data,
                                   list(iris.target)).predict(iris.data)
    assert_array_equal(prediction_from_array, prediction_from_list)
开发者ID:Anuragch,项目名称:scikit-learn,代码行数:8,代码来源:test_multiclass.py


示例7: test_ovo_string_y

def test_ovo_string_y():
    # Test that the OvO doesn't mess up the encoding of string labels
    X = np.eye(4)
    y = np.array(['a', 'b', 'c', 'd'])

    ovo = OneVsOneClassifier(LinearSVC())
    ovo.fit(X, y)
    assert_array_equal(y, ovo.predict(X))
开发者ID:Anuragch,项目名称:scikit-learn,代码行数:8,代码来源:test_multiclass.py


示例8: gen_svc

def gen_svc(train_model):
    '''Given a training model, generates the SVM (and DictVectorizer) for it'''
    vec = DictVectorizer()
    feature_mat = vec.fit_transform(train_model.feature_list)
    # for some reason just SVC() seems to always suggest "Shift"
    trained_svc = OneVsOneClassifier(LinearSVC())
    trained_svc.fit(feature_mat, np.array(train_model.action_list))
    return vec, trained_svc
开发者ID:lurke,项目名称:DependencyParsing,代码行数:8,代码来源:nate.py


示例9: test_ovo_string_y

def test_ovo_string_y():
    "Test that the OvO doesn't screw the encoding of string labels"
    X = np.eye(4)
    y = np.array(['a', 'b', 'c', 'd'])

    svc = LinearSVC()
    ovo = OneVsOneClassifier(svc)
    ovo.fit(X, y)
    assert_array_equal(y, ovo.predict(X))
开发者ID:jaguila,项目名称:cert,代码行数:9,代码来源:test_multiclass.py


示例10: __init__

 def __init__(self, estimator, n_jobs=-1, n_neighbors=18, radius=1.0,
              algorithm='auto', leaf_size=30, metric='minkowski',
              p=2, threshold=0.2, metric_params=None):
     OneVsOneClassifier.__init__(self, estimator, n_jobs)
     self.nbrs = NearestNeighbors(n_neighbors=n_neighbors, radius=radius, algorithm=algorithm,
                                  leaf_size=leaf_size, metric=metric, p=p,
                                  metric_params=metric_params, n_jobs=n_jobs)
     self.n_neighbors = n_neighbors
     self.threshold = threshold
     self._fit_y = None
开发者ID:piotrchmiel,项目名称:ziwm_hypertension,代码行数:10,代码来源:dynamic_OvO.py


示例11: test_ovo_fit_predict

def test_ovo_fit_predict():
    # A classifier which implements decision_function.
    ovo = OneVsOneClassifier(LinearSVC())
    pred = ovo.fit(iris.data, iris.target).predict(iris.data)
    assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2)

    # A classifier which implements predict_proba.
    ovo = OneVsOneClassifier(MultinomialNB())
    pred = ovo.fit(iris.data, iris.target).predict(iris.data)
    assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2)
开发者ID:yikuizhai,项目名称:scikit-learn,代码行数:10,代码来源:test_multiclass.py


示例12: OneVsOne

def OneVsOne(inputs_train, inputs_valid, target_train, target_valid):
	name = "Multiclass One Vs One"
	clf = OneVsOneClassifier(LinearSVC(random_state=0))
	clf.fit(inputs_train, np.ravel(target_train))
	prediction = clf.predict(inputs_valid)
	correct = np.count_nonzero(np.ravel(target_valid) == prediction)
	total = target_valid.shape[0]
	correctRate = (float(correct)/total)*100

	return name, correctRate
开发者ID:Nivekul,项目名称:facialexpressionprediction,代码行数:10,代码来源:ovo.py


示例13: test_ovo_ties2

def test_ovo_ties2():
    # test that ties can not only be won by the first two labels
    X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]])
    y_ref = np.array([2, 0, 1, 2])

    # cycle through labels so that each label wins once
    for i in range(3):
        y = (y_ref + i) % 3
        multi_clf = OneVsOneClassifier(Perceptron())
        ovo_prediction = multi_clf.fit(X, y).predict(X)
        assert_equal(ovo_prediction[0], i % 3)
开发者ID:jaguila,项目名称:cert,代码行数:11,代码来源:test_multiclass.py


示例14: fit

    def fit(self, X, y):
        """Fit Gaussian process classification model

        Parameters
        ----------
        X : array-like, shape = (n_samples, n_features)
            Training data

        y : array-like, shape = (n_samples,)
            Target values, must be binary

        Returns
        -------
        self : returns an instance of self.
        """
        X, y = check_X_y(X, y, multi_output=False)

        self.base_estimator_ = _BinaryGaussianProcessClassifierLaplace(
            self.kernel, self.optimizer, self.n_restarts_optimizer,
            self.max_iter_predict, self.warm_start, self.copy_X_train,
            self.random_state)

        self.classes_ = np.unique(y)
        self.n_classes_ = self.classes_.size
        if self.n_classes_ == 1:
            raise ValueError("GaussianProcessClassifier requires 2 or more "
                             "distinct classes; got %d class (only class %s "
                             "is present)"
                             % (self.n_classes_, self.classes_[0]))
        if self.n_classes_ > 2:
            if self.multi_class == "one_vs_rest":
                self.base_estimator_ = \
                    OneVsRestClassifier(self.base_estimator_,
                                        n_jobs=self.n_jobs)
            elif self.multi_class == "one_vs_one":
                self.base_estimator_ = \
                    OneVsOneClassifier(self.base_estimator_,
                                       n_jobs=self.n_jobs)
            else:
                raise ValueError("Unknown multi-class mode %s"
                                 % self.multi_class)

        self.base_estimator_.fit(X, y)

        if self.n_classes_ > 2:
            self.log_marginal_likelihood_value_ = np.mean(
                [estimator.log_marginal_likelihood()
                 for estimator in self.base_estimator_.estimators_])
        else:
            self.log_marginal_likelihood_value_ = \
                self.base_estimator_.log_marginal_likelihood()

        return self
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:53,代码来源:gpc.py


示例15: svm

def svm(X,Y):
    X_train = np.array([x for i, x in enumerate(X) if i % 7 != 0], dtype = np.uint8)
    y_train = np.array([z for i, z in enumerate(Y) if i % 7 != 0], dtype = np.uint8)
    X_test  = np.array([x for i, x in enumerate(X) if i % 10 == 0], dtype = np.uint8)
    y_test  = np.array([z for i, z in enumerate(Y) if i % 10 == 0], dtype = np.uint8)

    clf = OneVsOneClassifier(LinearSVC(random_state=0))
    clf.fit(X_train, y_train)
    y_predicted = rf.predict(X_test)

    results = [prediction == truth for prediction, truth in zip(y_predicted, y_test)]
    accuracy = float(results.count(True)) / float(len(results))
    print accuracy
开发者ID:Aphaniteja,项目名称:Computational-Sustainability,代码行数:13,代码来源:svm.py


示例16: test_multicluster

    def test_multicluster(self):
        c = BinaryTiloClassifier(PinchRatioCutStrategy(),
                                 similarity.Gaussian())
        ##c = BinaryTiloClassifier(similarity.KNN())
        ##mcc = OneVsRestClassifier(c)
        mcc = OneVsOneClassifier(c)
        data = self.three_class_pts
        classes = self.three_class_labels

        peturbed_data = data + 0.01 * np.random.random(data.shape)
        fitted = mcc.fit(peturbed_data, classes)
        guesses = fitted.predict(peturbed_data)
        assert_array_equal(guesses, classes)
开发者ID:rsbowman,项目名称:sklearn-prc,代码行数:13,代码来源:tests.py


示例17: test_pairwise_indices

def test_pairwise_indices():
    clf_precomputed = svm.SVC(kernel="precomputed")
    X, y = iris.data, iris.target

    ovr_false = OneVsOneClassifier(clf_precomputed)
    linear_kernel = np.dot(X, X.T)
    ovr_false.fit(linear_kernel, y)

    n_estimators = len(ovr_false.estimators_)
    precomputed_indices = ovr_false.pairwise_indices_

    for idx in precomputed_indices:
        assert_equal(idx.shape[0] * n_estimators / (n_estimators - 1), linear_kernel.shape[0])
开发者ID:dsquareindia,项目名称:scikit-learn,代码行数:13,代码来源:test_multiclass.py


示例18: fit

class ClassifierOvOAsFeatures:
    """
    A transformation that esentially implement a form of dimensionality
    reduction.
    This class uses a fast SGDClassifier configured like a linear SVM to produce
    a vector of decision functions separating target classes in a
    one-versus-rest fashion.
    It's useful to reduce the dimension bag-of-words feature-set into features
    that are richer in information.
    """
    def fit(self, X, y):
        """
        `X` is expected to be an array-like or a sparse matrix.
        `y` is expected to be an array-like containing the classes to learn.
        """
        self.classifier = OneVsOneClassifier(SGDClassifier(),n_jobs=-1).fit(X,numpy.array(y))
        return self

    def transform(self, X, y=None):
        """
        `X` is expected to be an array-like or a sparse matrix.
        It returns a dense matrix of shape (n_samples, m_features) where
            m_features = (n_classes * (n_classes - 1)) / 2
        """
        return self.classifier.decision_function(X)
开发者ID:EspenAlbert,项目名称:sentimentAnalysisMovieReviews,代码行数:25,代码来源:transformations.py


示例19: multiclassSVC

def multiclassSVC(classifier, sz=2000):

    mnsize = sz
    df = hw6u.load_mnist_features(mnsize)
    data = utils.pandas_to_data(df)
    k = 10
    all_folds = hw3u.partition_folds(data, k)
    kf_train, kf_test = dl.get_train_and_test(all_folds, 0)
    y, X = hw4u.split_truth_from_data(kf_train, replace_zeros=False)
    y, X = np.asarray(y), np.asarray(X)
    y_test, X_test = hw4u.split_truth_from_data(kf_test, replace_zeros=False)
    y_test, X_test = np.asarray(y_test), np.asarray(X_test)
    print 'Beginning analysis: {}'.format(X.shape)
    #clf = OneVsRestClassifier(classifier, n_jobs=4).fit(X, y)
    clf = OneVsOneClassifier(classifier).fit(X, y)
    #clf = OutputCodeClassifier(LinearSVC(random_state=0), code_size=10, random_state=0).fit(np.asarray(X), y)
    y_pred = clf.predict(X)
    print 'train acc: {} test acc: {}'.format(accuracy_score(fix_y(y_pred), fix_y(y)), accuracy_score(fix_y(y_test), fix_y(clf.predict(X_test))))
    print 'train acc: {} test acc: {}'.format(accuracy_score(fix_y(clf.predict(X)), fix_y(y)), accuracy_score(fix_y(y_test), fix_y(clf.predict(X_test))))
开发者ID:alliemacleay,项目名称:MachineLearning_CS6140,代码行数:19,代码来源:hw6.py


示例20: trainOneVsOne2

def trainOneVsOne2( histograms ):

    xAll = convertToSvmFormatFeature(histograms)
    scaleParam = computeScaleParameters(xAll)
    scaleFeatureData(xAll,scaleParam)

    xAll = np.array(xAll)

    yAll = [ x['label'] for x in histograms ]
    yAll = np.array(yAll)

    # svm = OneVsOneClassifier(LinearSVC(random_state=0,dual=svm_conf['dual'],C=svm_conf['C']))
    gammaBase = 1.0/kmeans_conf['K']
    # svm = OneVsOneClassifier(sklearn.svm.SVC(C=100, gamma=10*gammaBase,kernel='rbf'))
    svm = OneVsOneClassifier(sklearn.svm.SVC(C=1000, gamma=gammaBase,kernel='sigmoid'))
    svm.fit(xAll,yAll)

    out = {'scaleParam':scaleParam,'svm':svm}
    return out
开发者ID:lessthanoptimal,项目名称:bow,代码行数:19,代码来源:classifySiftSvmOneVsOne.py



注:本文中的sklearn.multiclass.OneVsOneClassifier类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python multiclass.OneVsRestClassifier类代码示例发布时间:2022-05-27
下一篇:
Python model_selection.StratifiedShuffleSplit类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap