• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python naive_bayes.MultinomialNB类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.naive_bayes.MultinomialNB的典型用法代码示例。如果您正苦于以下问题:Python MultinomialNB类的具体用法?Python MultinomialNB怎么用?Python MultinomialNB使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了MultinomialNB类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: train

    def train(self):
        '''
        ## -- How to predict -- ##
            query = "blah blah"
            q = list2vec(hashit(q)) 
            clf2 = joblib.load('nb')
            print(clf2.predict(q)) # <--- returns type id
        '''

        limit = self.comment_limit
        sqls = ["SELECT body FROM comment JOIN entity ON comment.eid = entity.eid WHERE entity.tid=1 ORDER BY time DESC LIMIT " + str(limit),
            "SELECT body FROM comment JOIN entity ON comment.eid = entity.eid WHERE entity.tid=2 ORDER BY time DESC LIMIT " + str(limit),
            "SELECT body FROM comment JOIN entity ON comment.eid = entity.eid WHERE entity.tid=3 ORDER BY time DESC LIMIT " + str(limit)]

        print "training model"
        comments = self.sql2list(sqls)
        x, y = self.featureMatrix(comments)
        X = list2Vec(x)
        Y = list2Vec(y)

        q = "Let's talk about food."
        q_vec = list2Vec(hashit(q))

        ## Precicting
        print "Classifying"
        clf = MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
        clf.fit(X, Y)
        joblib.dump(clf, self.path, compress=9)
开发者ID:WangWenjun559,项目名称:Weiss,代码行数:28,代码来源:typeTrain.py


示例2: MultinomialNBClassify_Proba

def MultinomialNBClassify_Proba(enrollment_id, trainData, trainLabel, testData):
    nbClf = MultinomialNB() # default alpha=1.0, Laplace smoothing
    # settinf alpha < 1 is called Lidstone smoothing
    nbClf.fit(trainData, ravel(trainLabel))
    testLabel = nbClf.predict_proba(testData)[:,1]
    saveResult(enrollment_id, testLabel, 'Proba_sklearn_MultinomialNB_alpha=0.1_Result.csv')
    return testLabel
开发者ID:ElvisKwok,项目名称:code,代码行数:7,代码来源:test.py


示例3: crossValidate

def crossValidate(X_dataset,y):
#cross validate model
    num_folds = 5
    kfold = cross_validation.StratifiedKFold(y, n_folds=num_folds, shuffle=True)

   # kfold=KFold(X.shape[0],n_folds=10, shuffle=True)
    avg_accuracy=0
    avg_precision=0
    avg_recall=0
    print "----------- cross_validation k=5"
    for train,test in kfold:
        Xtrain,Xtest,ytrain,ytest=X_dataset[train],X_dataset[test],y[train],y[test]
        
#        clf=LinearSVC()
        clf=MultinomialNB(alpha=0.1)
#        clf=LDA()
        clf.fit(Xtrain.toarray(),ytrain)
        ypred=clf.predict(Xtest.toarray())
        accuracy=metrics.accuracy_score(ytest,ypred)              
#        print "accuracy = ", accuracy
        avg_accuracy+=accuracy
        precision = metrics.precision_score(ytest,ypred)
#        print("precision:   %0.3f" % precision)
        avg_precision+=precision
        recall = metrics.recall_score(ytest,ypred)
#        print("recall:   %0.3f" % recall)
        avg_recall+=recall
        
    print "Average accuracy : " , (avg_accuracy/num_folds)
    print "Average precision : " , (avg_precision/num_folds)
    print "Average recall : " , (avg_recall/num_folds)        
开发者ID:ananya11,项目名称:CS5614_projects,代码行数:31,代码来源:CrossValidation.py


示例4: naive_bayes

def naive_bayes():
    nb = MultinomialNB()
    nb.fit(X_train, train_data.danger)
    nb_pred = nb.predict(X_test)
    nb_score = nb.score(X_test, y_test)
    precision, recall, _, _ = precision_recall_fscore_support(y_test, nb_pred)
    return precision, recall, str(nb_score)
开发者ID:ilyaaltshteyn,项目名称:danger_tweets,代码行数:7,代码来源:classify4.py


示例5: classify_reviews

def classify_reviews():
	import featurizer
	import gen_training_data
	import numpy as np
	from sklearn.naive_bayes import MultinomialNB
	from sklearn.linear_model import SGDClassifier

	data = gen_training_data.gen_data();
	stemmed_data = featurizer.stem(data);
	tfidf= featurizer.tfidf(data);
	clf = MultinomialNB().fit(tfidf['train_tfidf'], data['training_labels']);
	predicted = clf.predict(tfidf['test_tfidf']);
	num_wrong = 0;
	tot = 0;
	for expected, guessed in zip(data['testing_labels'], predicted):
		if(expected-guessed != 0):	
			num_wrong += 1;

	print("num_wrong: %d",num_wrong)

	sgd_clf = SGDClassifier(loss='hinge', penalty='l2', alpha=1e-3, n_iter=5, random_state=42);
	_ = sgd_clf.fit(tfidf['train_tfidf'], data['training_labels']);
	sgd_pred = sgd_clf.predict(tfidf['test_tfidf']);
	print np.mean(sgd_pred == data['testing_labels']);

	stem_tfidf = featurizer.tfidf(stemmed_data);
	_ = sgd_clf.fit(stem_tfidf['train_tfidf'], data['training_labels']);
	sgd_stem_prd = sgd_clf.predict(stem_tfidf['test_tfidf']);
	print np.mean(sgd_stem_prd==data['testing_labels']);
开发者ID:JT17,项目名称:445Project,代码行数:29,代码来源:classifier.py


示例6: run_naivebayes_evaluation

	def run_naivebayes_evaluation(self, inputdata, outputdata, k):
		""" Fit Naive Bayes Classification on train set with cross validation. 
		Run Naive Bayes Classificaiton on test set. Return results
		"""

		###print "** Fitting Naive Bayes classifier.."

		# Cross validation
		cv = cross_validation.KFold(inputdata.shape[0], n_folds=k, indices=True)
		cv_naivebayes = []
		f1_scores = []
		for traincv, testcv in cv:

			clf_cv = MultinomialNB()
			clf_cv.fit(inputdata[traincv], outputdata[traincv])

			y_pred_cv = clf_cv.predict(inputdata[testcv])

			f1 = metrics.f1_score(outputdata[testcv], y_pred_cv, pos_label=0)
			f1_scores.append(f1)

		
		#TODO: NEEDED? self.classifier = clf_cv
		print "score average: %s" + str(np.mean(f1_scores))

		average_score =np.mean(f1_scores)
		tuples = (average_score, f1_scores)

		return (tuples, 'N.A.', 'N.A.')
开发者ID:sagieske,项目名称:scriptie,代码行数:29,代码来源:start_nb.py


示例7: train

def train(good_sources, bad_sources,method,naive_bayes=None,keywords=list()):
    #train the algorithm
    good_samples = find_keywords(' '.join([entry[method] for entry in good_sources]))
    bad_samples = find_keywords(' '.join([entry[method] for entry in bad_sources]))


    #if we have an exists knowledge base to append this new information to, do so
    if naive_bayes:
        new_kws = set(good_samples+bad_samples)
        print('Using old keywords as well')
        print("# old keywords = {}\n # new keywords = {}".format(len(keywords),len(new_kws)))
        new_kws = set(good_samples+bad_samples).difference(keywords)
        print("# fresh keywords = {}\n".format(len(new_kws)))

        #make some call to naive_bayes.partial_fssit in here
        X = np.concatenate((naive_bayes.feature_count_, np.zeros((naive_bayes.feature_count_.shape[0],len(new_kws)))),1)
        all_kw = keywords + list(new_kws)

    else:
        print('Only using keywords from this content set')
        all_kw = list(set(good_samples+bad_samples))
        X = np.zeros((2,len(all_kw)))

    for j,kw in enumerate(all_kw):
        X[0,j] += good_samples.count(kw)
        X[1,j] += bad_samples.count(kw)

    y = ['good','bad']

    naive_bayes = MultinomialNB()
    naive_bayes.fit(X,y)

    return naive_bayes, all_kw
开发者ID:pfdamasceno,项目名称:shakespeare,代码行数:33,代码来源:shakespeare.py


示例8: main

def main():
    print('Reading in data file...')
    data = pd.read_csv(path + 'Sentiment Analysis Dataset.csv',
                       usecols=['Sentiment', 'SentimentText'], error_bad_lines=False)

    print('Pre-processing tweet text...')
    corpus = data['SentimentText']
    vectorizer = TfidfVectorizer(decode_error='replace', strip_accents='unicode',
                                 stop_words='english', tokenizer=tokenize)
    X = vectorizer.fit_transform(corpus.values)
    y = data['Sentiment'].values

    print('Training sentiment classification model...')
    classifier = MultinomialNB()
    classifier.fit(X, y)

    print('Training word2vec model...')
    corpus = corpus.map(lambda x: tokenize(x))
    word2vec = Word2Vec(corpus.tolist(), size=100, window=4, min_count=10, workers=4)
    word2vec.init_sims(replace=True)

    print('Fitting PCA transform...')
    word_vectors = [word2vec[word] for word in word2vec.vocab]
    pca = PCA(n_components=2)
    pca.fit(word_vectors)

    print('Saving artifacts to disk...')
    joblib.dump(vectorizer, path + 'vectorizer.pkl')
    joblib.dump(classifier, path + 'classifier.pkl')
    joblib.dump(pca, path + 'pca.pkl')
    word2vec.save(path + 'word2vec.pkl')

    print('Process complete.')
开发者ID:jdwittenauer,项目名称:twitter-viz-demo,代码行数:33,代码来源:build_models.py


示例9: text_classifly_twang

def text_classifly_twang(dataset_dir_name, fs_method, fs_num):
    print 'Loading dataset, 80% for training, 20% for testing...'
    movie_reviews = load_files(dataset_dir_name)  
    doc_str_list_train, doc_str_list_test, doc_class_list_train, doc_class_list_test = train_test_split(movie_reviews.data, movie_reviews.target, test_size = 0.2, random_state = 0)
    
    print 'Feature selection...'
    print 'fs method:' + fs_method, 'fs num:' + str(fs_num)
    vectorizer = CountVectorizer(binary = True)   
    word_tokenizer = vectorizer.build_tokenizer()
    doc_terms_list_train = [word_tokenizer(doc_str) for doc_str in doc_str_list_train]
    term_set_fs = feature_selection.feature_selection(doc_terms_list_train, doc_class_list_train, fs_method)[:fs_num]
    
    print 'Building VSM model...'
    term_dict = dict(zip(term_set_fs, range(len(term_set_fs))))
    vectorizer.fixed_vocabulary = True
    vectorizer.vocabulary_ = term_dict
    doc_train_vec = vectorizer.fit_transform(doc_str_list_train)
    doc_test_vec= vectorizer.transform(doc_str_list_test)
    
    clf = MultinomialNB().fit(doc_train_vec, doc_class_list_train)  #调用MultinomialNB分类
    doc_test_predicted = clf.predict(doc_test_vec)
    
    acc = np.mean(doc_test_predicted == doc_class_list_test)  
    print 'Accuracy: ', acc
    
    return acc
开发者ID:ZHAOTING,项目名称:WebDataMining_Kaggle,代码行数:26,代码来源:feature_selection_test.py


示例10: naive_classify_unknown

def naive_classify_unknown(X_train, y_train, vectorizer):
    client = pymongo.MongoClient("localhost", 27017)
    db = client.tweets
    clf = MultinomialNB()
    clf.fit(X_train, y_train)
    test_users = db.tweets.distinct('user.screen_name')
    classify_users(clf, vectorizer, test_users, load_users(db, test_users))
开发者ID:vojnovski,项目名称:mktweets,代码行数:7,代码来源:train.py


示例11: __init__

class NaiveBayes:
	def __init__(self):
		self.clf = MultinomialNB()
		self.pattern ='(?u)\\b[A-Za-z]{3,}'
		self.tfidf = TfidfVectorizer(sublinear_tf=False, use_idf=True, smooth_idf=True, stop_words='english', token_pattern=self.pattern, ngram_range=(2,2))

	def train(self,fileName):
		print "Naive Bayes classifier is being trained"
		table = pandas.read_table(fileName, sep="\t", names=["cat", "message"])
		X_train = self.tfidf.fit_transform(table.message)
		Y_train = []
		for item in table.cat:
			Y_train.append(int(item)) 
		self.clf.fit(X_train, Y_train)
		self.clf.fit(X_train, Y_train)
		print "Naive Bayes classifier has been trained"

	def classify(self,cFileName, rFileName):
		table = pandas.read_table(cFileName, names=["message"])
		X_test = self.tfidf.transform(table.message)
		print "Data have been classified"
		with open(rFileName,'w') as f:
			for item in self.clf.predict(X_test).astype(str):
				f.write(item+'\n')

	def validate(self,fileName):
		table = pandas.read_table(fileName, sep="\t", names=["cat", "message"])
		X_validate = self.tfidf.transform(table.message)
		Y_validated = self.clf.predict(X_validate).astype(str)
		totalNum = len(table.cat)
		errorCount = 0
		for i in range(0,totalNum):
			if int(table.cat[i])!=int(Y_validated[i]):
				errorCount += 1
		print "Data have been validated! Precision={}".format((totalNum-errorCount)/float(totalNum))
开发者ID:richelite,项目名称:classify,代码行数:35,代码来源:lib.py


示例12: bcluster

def bcluster(corpus_path, cluster_fn):
    folds = KFold(article_count, n_folds=10, shuffle=True)

    results = []

    for i, (train_idx, test_idx) in enumerate(folds):
        logging.info("Running fold %d" % i)
        vect = BrownClusterVectorizer(cluster_fn)
        x_train = vect.fit_transform(ArticleSequence(corpus_path, indices=train_idx))

        bin = LabelEncoder()
        y_train = bin.fit_transform(GroupSequence(corpus_path, indices=train_idx))

        x_test = vect.transform(ArticleSequence(corpus_path, indices=test_idx))
        y_test = bin.transform(GroupSequence(corpus_path, indices=test_idx))

        model = MultinomialNB()
        model.fit(x_train, y_train)
        pred = model.predict(x_test)

        score = accuracy_score(y_test, pred)
        logging.info("Completed fold %d with score %.04f" % (i, score))
        results.append(score)

    return results
开发者ID:andrely,项目名称:sublexical-features,代码行数:25,代码来源:newsgroups.py


示例13: plain_word_counts

def plain_word_counts(corpus_path):
    folds = KFold(article_count, n_folds=10, shuffle=True)

    results = []

    for i, (train_idx, test_idx) in enumerate(folds):
        logging.info("Running fold %d" % i)
        vect = CountVectorizer(max_features=1000, decode_error='ignore', strip_accents='unicode')
        x_train = vect.fit_transform(ArticleSequence(corpus_path, indices=train_idx))

        bin = LabelEncoder()
        y_train = bin.fit_transform(GroupSequence(corpus_path, indices=train_idx))

        x_test = vect.transform(ArticleSequence(corpus_path, indices=test_idx))
        y_test = bin.transform(GroupSequence(corpus_path, indices=test_idx))

        model = MultinomialNB()
        model.fit(x_train, y_train)
        pred = model.predict(x_test)

        score = accuracy_score(y_test, pred)
        logging.info("Completed fold %d with score %.04f" % (i, score))
        results.append(score)

    return results
开发者ID:andrely,项目名称:sublexical-features,代码行数:25,代码来源:newsgroups.py


示例14: find_best_vectorizor

def find_best_vectorizor(vectorizer, grid):
  dg = DataGatherer()
  y_test = dg.validate_target
  y_train = dg.labeled_target

  nb = MultinomialNB()
  header_printed = False
  best_params = None
  best_score = -1
  for param in IterGrid(grid):
    if not header_printed:
      print(str(",".join(param.keys())) + ",Score")
    header_printed = True
    vectorizer.set_params(**param)
    X_train = vectorizer.fit_transform(dg.labeled_data)    
    X_test = vectorizer.transform(dg.validate_data)
    nb.fit(X_train, y_train)
    score = nb.score(X_test, y_test)
    if score > best_score:
      best_score = score
      best_params = param
    print(str(",".join(map(str, param.values()))) + "," + str(score))
  print("")
  print("Best params: " + str(best_params))
  print("Best score: " + str(best_score))
开发者ID:Web5design,项目名称:big-data,代码行数:25,代码来源:naive_bayes_optimizer.py


示例15: __init__

class Sentiment:
    def __init__(self):
        self.stop_words = stopwords.words() + list(string.punctuation)
        self.tfid = TfidfVectorizer()
        self.clf = MultinomialNB()

        # score: 0.7225
        # self.clf = SVC()

    # create pipelines
    # clean the input
    def fit(self, X, Y):
        self.X = X
        self.Y = Y
        # give the subset of dataset to be trained
        l = 0
        h = 4000
        words = [word_tokenize(x.decode("utf-8").lower()) for x in X[l:h]]
        processed_words = [" ".join(w for w in s if w not in self.stop_words) for s in words]
        X_train = self.tfid.fit_transform(processed_words)
        Y_train = Y[l:h]
        self.clf.fit(X_train, Y_train)
        print "Classes: ", self.clf.classes_
        print "Score: ", self.clf.score(X_train, Y_train)

    def predict(self, X_inp):
        word_list = " ".join(w for w in word_tokenize(X_inp.decode("utf-8").lower()) if w not in self.stop_words)
        X_test = self.tfid.transform([word_list])
        return self.clf.predict(X_test)
开发者ID:abijith-kp,项目名称:DataMining_NLP_AI,代码行数:29,代码来源:sentiment.py


示例16: MultinomialNBClassify

def MultinomialNBClassify(trainData, trainLabel, testData):
    nbClf = MultinomialNB(alpha=0.1) # default alpha=1.0, Laplace smoothing
    # settinf alpha < 1 is called Lidstone smoothing
    nbClf.fit(trainData, ravel(trainLabel))
    testLabel = nbClf.predict(testData)
    saveResult(testLabel, 'sklearn_MultinomialNB_alpha=0.1_Result.csv')
    return testLabel
开发者ID:ElvisKwok,项目名称:code,代码行数:7,代码来源:digit_recognizer.py


示例17: string_selection

def string_selection():
    # get data
    vectorizer = CountVectorizer(decode_error='ignore')
    ch2 = SelectKBest(chi2, k=100)

    # get data
    train_data, permission_list = db_tool.get_new_train_data()
    x_train, x_test, y_train, y_test = cross_validation.train_test_split(train_data['string-data'],
                                                                         train_data['target'], test_size=0.2,
                                                                         random_state=1)

    # feature extraction
    x_train = vectorizer.fit_transform(x_train)
    feature_names = vectorizer.get_feature_names()

    x_train = ch2.fit_transform(x_train, y_train)
    feature_names = [feature_names[i] for i in ch2.get_support(indices=True)]
    print(ch2.scores_)
    print(ch2.get_support(indices=True))
    print(feature_names)
    x_test = vectorizer.transform(x_test)
    x_test = ch2.transform(x_test)

    # # build the model
    model = MultinomialNB().fit(x_train, y_train)
    #
    # # valid the model
    predicted = model.predict(x_test)
    print (metrics.accuracy_score(y_test, predicted))
开发者ID:psuedoelastic,项目名称:android_malware_detection,代码行数:29,代码来源:mine_apk_category.py


示例18: train_chunk

def train_chunk(X, Y, Xe, Ye):
	#clf = KNeighborsClassifier(n_neighbors=5).fit(X, Y)
	#clf = GaussianNB().fit(X, Y)
	clf = MultinomialNB().fit(X, Y)
	Yd = clf.predict(Xe)

	return stats(Ye, Yd)
开发者ID:BigBull90,项目名称:anon,代码行数:7,代码来源:wordLen.py


示例19: __init__

class TrainNaiveBayes:

    def __init__(self, all_features, neu_labels):
        """
        Trains a classifier using Naive Bayes
        """
        self._num_features = len(all_features.values()[0])

        self._X = numpy.zeros((1, self._num_features))          # Feature matrix
        self._Y = numpy.array([0])                        # Label vector
        for user_id in neu_labels.keys():
            self._X = numpy.append(self._X, [all_features[user_id]], axis=0)
            self._Y = numpy.append(self._Y, [neu_labels[user_id]])
        self._X = numpy.delete(self._X, 0, 0)           # Delete the first row (contains all 0s)
        self._Y = numpy.delete(self._Y, 0)

        print "Using MultinomialNB"
        self._model = MultinomialNB()
        print cross_validation.cross_val_score(self._model, self._X, self._Y, cv=10, scoring='f1')

        self._model.fit(self._X, self._Y)

    def predict(self, features):
        A = numpy.zeros((1, self._num_features))
        for user_id in features.keys():
            A = numpy.append(A, [features[user_id]], axis=0)
        A = numpy.delete(A, 0, 0)
        return self._model.predict(A)
开发者ID:artir,项目名称:cl2_project,代码行数:28,代码来源:train_naive_bayes.py


示例20: train

    def train(self, data):
        nb = MultinomialNB()

        launches = map(lambda x: x['application'], data)
        instances = map(lambda i: {'lu1': launches[i-1]}, xrange(1, len(launches)))
        X = self.vectorizer.fit_transform(instances).toarray()
        y = launches[1:]
        self.lu1_predictor = nb.fit(X, y)

        instances = map(lambda i: {'lu2': launches[i-2]}, xrange(2, len(launches)))
        X = self.vectorizer.fit_transform(instances).toarray()
        y = launches[2:]
        self.lu2_predictor = nb.fit(X, y)

        # tune mu
        max_hr = 0
        best_mu = 0
        for mu in map(lambda x: x/10.0, xrange(11)):
            self.mu = mu
            predictions = map(lambda i: self.predict({'lu1': launches[i-1], 'lu2': launches[i-2]}), \
                xrange(2, len(launches)))
            hr, mrr = self.test(launches[2:], predictions)
            if hr > max_hr:
                max_hr = hr
                best_mu = mu
        self.mu = best_mu
开发者ID:nodestory,项目名称:ApeicServer,代码行数:26,代码来源:lu_predictor.py



注:本文中的sklearn.naive_bayes.MultinomialNB类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python neighbors.kneighbors_graph函数代码示例发布时间:2022-05-27
下一篇:
Python naive_bayes.GaussianNB类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap