本文整理汇总了Python中sklearn.neighbors.NearestCentroid类的典型用法代码示例。如果您正苦于以下问题:Python NearestCentroid类的具体用法?Python NearestCentroid怎么用?Python NearestCentroid使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了NearestCentroid类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: train_with
def train_with(self, training_data_list, answers):
#put data in right format
training_data = self.get_sparse_matrix(training_data_list)
if training_data is not False:
#make model
if self.model_name == "random_forest":
forest = RandomForestClassifier(n_estimators=100)
self.model = forest.fit(training_data.todense(), answers)
elif self.model_name == "centroid_prediction":
clf = NearestCentroid()
self.model = clf.fit(training_data, answers)
elif self.model_name == "linearSVC":
SVC = LinearSVC()
self.model = SVC.fit(training_data.todense(), answers)
elif self.model_name == "nearest_neighbor":
near = KNeighborsClassifier()
self.model = near.fit(training_data.todense(), answers)
elif self.model_name == "decision_tree":
clf = tree.DecisionTreeClassifier()
self.model = clf.fit(training_data.todense(), answers)
elif self.model_name == "svc":
clf = svm.SVC()
self.model = clf.fit(training_data, answers)
开发者ID:wongstein,项目名称:thesis,代码行数:25,代码来源:classification.py
示例2: NC
def NC(data_train, data_train_vectors, data_test_vectors, **kwargs):
# Implementing classification model- using NearestCentroid
clf_nc = NearestCentroid()
clf_nc.fit(data_train_vectors, data_train.target)
y_pred = clf_nc.predict(data_test_vectors)
return y_pred
开发者ID:RaoUmer,项目名称:docs_classification,代码行数:7,代码来源:ml_docs_classification_2.py
示例3: nearest_centroid_classifier
def nearest_centroid_classifier(X_train, categories, X_test, test_categories):
from sklearn.neighbors import NearestCentroid
clf = NearestCentroid().fit(X_train, categories)
y_roccio_predicted = clf.predict(X_test)
print "\n Here is the classification report for NearestCentroid classifier:"
print metrics.classification_report(test_categories, y_roccio_predicted)
to_latex(test_categories, y_roccio_predicted)
开发者ID:LewkowskiArkadiusz,项目名称:magistrerka_app,代码行数:7,代码来源:main.py
示例4: test_shrinkage_threshold_decoded_y
def test_shrinkage_threshold_decoded_y():
clf = NearestCentroid(shrink_threshold=0.01)
y_ind = np.asarray(y)
y_ind[y_ind == -1] = 0
clf.fit(X, y_ind)
centroid_encoded = clf.centroids_
clf.fit(X, y)
assert_array_equal(centroid_encoded, clf.centroids_)
开发者ID:1TTT9,项目名称:scikit-learn,代码行数:8,代码来源:test_nearest_centroid.py
示例5: test_manhattan_metric
def test_manhattan_metric():
# Test the manhattan metric.
clf = NearestCentroid(metric='manhattan')
clf.fit(X, y)
dense_centroid = clf.centroids_
clf.fit(X_csr, y)
assert_array_equal(clf.centroids_, dense_centroid)
assert_array_equal(dense_centroid, [[-1, -1], [1, 1]])
开发者ID:1TTT9,项目名称:scikit-learn,代码行数:9,代码来源:test_nearest_centroid.py
示例6: test_iris_shrinkage
def test_iris_shrinkage():
# Check consistency on dataset iris, when using shrinkage.
for metric in ('euclidean', 'cosine'):
for shrink_threshold in [None, 0.1, 0.5]:
clf = NearestCentroid(metric=metric,
shrink_threshold=shrink_threshold)
clf = clf.fit(iris.data, iris.target)
score = np.mean(clf.predict(iris.data) == iris.target)
assert score > 0.8, "Failed with score = " + str(score)
开发者ID:1TTT9,项目名称:scikit-learn,代码行数:9,代码来源:test_nearest_centroid.py
示例7: nearest_centroid_classifier
def nearest_centroid_classifier(X_train, X_test, y_train, y_test):
from sklearn.neighbors import NearestCentroid
clf = NearestCentroid().fit(X_train, y_train)
evaluate_cross_validation(clf,X_train, y_train, 5)
y_roccio_predicted = clf.predict(X_test)
print "\n Here is the classification report for NearestCentroid classifier:"
print metrics.classification_report(y_test, y_roccio_predicted)
开发者ID:LewkowskiArkadiusz,项目名称:artykul,代码行数:10,代码来源:main.py
示例8: test_shrinkage_correct
def test_shrinkage_correct():
# Ensure that the shrinking is correct.
# The expected result is calculated by R (pamr),
# which is implemented by the author of the original paper.
# (One need to modify the code to output the new centroid in pamr.predict)
X = np.array([[0, 1], [1, 0], [1, 1], [2, 0], [6, 8]])
y = np.array([1, 1, 2, 2, 2])
clf = NearestCentroid(shrink_threshold=0.1)
clf.fit(X, y)
expected_result = np.array([[0.7787310, 0.8545292], [2.814179, 2.763647]])
np.testing.assert_array_almost_equal(clf.centroids_, expected_result)
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:12,代码来源:test_nearest_centroid.py
示例9: test_pickle
def test_pickle():
import pickle
# classification
obj = NearestCentroid()
obj.fit(iris.data, iris.target)
score = obj.score(iris.data, iris.target)
s = pickle.dumps(obj)
obj2 = pickle.loads(s)
assert_equal(type(obj2), obj.__class__)
score2 = obj2.score(iris.data, iris.target)
assert_array_equal(score, score2,
"Failed to generate same score"
" after pickling (classification).")
开发者ID:1TTT9,项目名称:scikit-learn,代码行数:15,代码来源:test_nearest_centroid.py
示例10: NCClassifier
class NCClassifier(Classifier):
"""Rocchio classifier"""
def __init__(self, shrink=None):
self.cl = NearestCentroid(shrink_threshold=shrink)
self.shrink = shrink
def retrain(self, vectorFeature, vectorTarget):
if self.shrink != None:
self.cl.fit([v.toarray()[0] for v in vectorFeature], vectorTarget)
else:
super(NCClassifier, self).retrain(vectorFeature, vectorTarget)
def classify(self, vectorizedTest):
if self.shrink != None:
return self.cl.predict(vectorizedTest.toarray()[0])[0]
else:
return super(NCClassifier, self).classify(vectorizedTest)
开发者ID:giacbrd,项目名称:CipCipPy,代码行数:17,代码来源:__init__.py
示例11: nearestNeighbour
def nearestNeighbour():
import numpy as np
import pylab as pl
from matplotlib.colors import ListedColormap
from sklearn import datasets
from sklearn.neighbors import NearestCentroid
n_neighbors = 15
# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could
# avoid this ugly slicing by using a two-dim dataset
y = iris.target
h = .02 # step size in the mesh
# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])
for shrinkage in [None, 0.1]:
# we create an instance of Neighbours Classifier and fit the data.
clf = NearestCentroid(shrink_threshold=shrinkage)
clf.fit(X, y)
y_pred = clf.predict(X)
print shrinkage, np.mean(y == y_pred)
# Plot the decision boundary. For that, we will asign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
pl.figure()
pl.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot also the training points
pl.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
pl.title("3-Class classification (shrink_threshold=%r)"
% shrinkage)
pl.axis('tight')
开发者ID:anirudhvenkats,项目名称:clowdflows,代码行数:45,代码来源:test.py
示例12: create_and_train_model
def create_and_train_model(engine):
cmd = "SELECT review_rating, review_text FROM bf_reviews"
bfdf = pd.read_sql_query(cmd, engine)
bfdfl = bfdf[bfdf['review_text'].str.len() > 300].copy()
train_data = bfdfl['review_text'].values[:1000]
y_train = bfdfl['review_rating'].values[:1000]
t0 = time()
vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,
stop_words='english')
X_train = vectorizer.fit_transform(train_data)
duration = time() - t0
print('vectorized in {:.2f} seconds.'.format(duration))
print(X_train.shape)
clf = NearestCentroid()
clf.fit(X_train, y_train)
return clf, vectorizer
开发者ID:mattgiguere,项目名称:doglodge,代码行数:18,代码来源:retrieve_best_hotels2.py
示例13: BinBasedCluster
class BinBasedCluster(BaseEstimator):
def __init__(self, bins=[0, 0.5, 1] + range(5, 36)):
self.bins = bins
def fit(self, X, y):
biny = self.bin_data(y)
self.pred = NearestCentroid().fit(X, biny)
return self
def predict(self, X):
return self.pred.predict(X)
def score(self, X, y, is_raw=True):
clusters = self.pred.predict(X)
if is_raw:
return adjusted_rand_score(self.bin_data(y), clusters)
else:
return adjusted_rand_score(y, clusters)
def bin_data(self, y):
return np.digitize(y, self.bins)
def make_vern_points(self, X, y):
sel = SelectKBest(score_func=normalized_mutual_info_score_scorefunc)
sdata = sel.fit_transform(X, y)
print X.shape, sdata.shape
pca = PCA(n_components=2)
pca_trans = pca.fit_transform(sdata)
biny = self.bin_data(y)
pred = NearestCentroid().fit(pca_trans, biny)
x_min, x_max = pca_trans[:, 0].min() - 1, pca_trans[:, 0].max() + 1
y_min, y_max = pca_trans[:, 1].min() - 1, pca_trans[:, 1].max() + 1
xx, yy = np.meshgrid(np.linspace(x_min, x_max, 50), np.linspace(y_min, y_max, 50))
Z = pred.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
return pca_trans, biny, xx, yy, Z
开发者ID:JudoWill,项目名称:PySeqUtils,代码行数:44,代码来源:SeqSklearn.py
示例14: make_vern_points
def make_vern_points(self, X, y):
sel = SelectKBest(score_func=normalized_mutual_info_score_scorefunc)
sdata = sel.fit_transform(X, y)
print X.shape, sdata.shape
pca = PCA(n_components=2)
pca_trans = pca.fit_transform(sdata)
biny = self.bin_data(y)
pred = NearestCentroid().fit(pca_trans, biny)
x_min, x_max = pca_trans[:, 0].min() - 1, pca_trans[:, 0].max() + 1
y_min, y_max = pca_trans[:, 1].min() - 1, pca_trans[:, 1].max() + 1
xx, yy = np.meshgrid(np.linspace(x_min, x_max, 50), np.linspace(y_min, y_max, 50))
Z = pred.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
return pca_trans, biny, xx, yy, Z
开发者ID:JudoWill,项目名称:PySeqUtils,代码行数:20,代码来源:SeqSklearn.py
示例15: test_predict_translated_data
def test_predict_translated_data():
# Test that NearestCentroid gives same results on translated data
rng = np.random.RandomState(0)
X = rng.rand(50, 50)
y = rng.randint(0, 3, 50)
noise = rng.rand(50)
clf = NearestCentroid(shrink_threshold=0.1)
clf.fit(X, y)
y_init = clf.predict(X)
clf = NearestCentroid(shrink_threshold=0.1)
X_noise = X + noise
clf.fit(X_noise, y)
y_translate = clf.predict(X_noise)
assert_array_equal(y_init, y_translate)
开发者ID:1TTT9,项目名称:scikit-learn,代码行数:15,代码来源:test_nearest_centroid.py
示例16: test_precomputed
def test_precomputed():
clf = NearestCentroid(metric='precomputed')
with assert_raises(ValueError) as context:
clf.fit(X, y)
assert_equal(ValueError, type(context.exception))
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:5,代码来源:test_nearest_centroid.py
示例17: get_results
#.........这里部分代码省略.........
#if 'area' in feature_names:
print (feature_names)
print ("\n")
#-------
nmf = decomposition.NMF(n_components=3, init='random',random_state=0).fit(tfidf.todense())
topic_list=[]
l= int(len(feature_names)/5)
#print l
for topic_idx, topic in enumerate(nmf.components_):
topic_list.append(topic.argsort()[:-l-1:-1])
#print("Topic #%d:" % topic_idx)
#print (topic)
#print "Hello----"
#print topic_list
train_target=[]
for arr in v.toarray():
train_target.append(calculate_Topic(arr,topic_list))
#print train_target
#clf = MultinomialNB()
#clf2= LinearSVC()
#clf1=NearestCentroid()
#clf.fit(tfidf.todense(),train_target)
#clf1.fit(tfidf.todense(),train_target)
#clf2.fit(tfidf.todense(),train_target)
#print (clf.predict(X_test))
#print (clf1.predict(X_test))
#print (clf2.predict(X_test))
#print "Hello"
ch2 = SelectKBest(chi2, k=l*2)
X_train = ch2.fit_transform(tfidf.todense(), train_target)
cs= ch2.scores_.argsort()[::-1]
cs_featurenames=[]
cs=cs[:l*2]
for x in cs:
cs_featurenames.append(feature_names[x])
print (cs_featurenames)
print "\n"
nmf1 = decomposition.NMF(n_components=3, init='random',random_state=0).fit(X_train)
topic_list=[]
l= int(len(feature_names)/5)
#print l
for topic_idx, topic in enumerate(nmf1.components_):
z=topic.argsort()[:-l-1:-1]
topic_list.append(z)
print("Topic #%d:---------------------------------------" % topic_idx)
for y in z:
print cs_featurenames[y]
#print (topic)
#print "Hello----"
#print topic_list
train_target=[]
for arr in X_train:
train_target.append(calculate_Topic(arr,topic_list))
#---------
#print "hello"
#print train_target
#print ch2.get_feature_names()
#print X_train
#print train_target
#print "=--------------"
#print ta
#print X_test
train_count=[0]*4
#print train_target
for x in train_target:
train_count[x]=train_count[x]+1
#print "hello"
#print train_count
clf = MultinomialNB()
clf2= LinearSVC()
clf1=NearestCentroid()
clf.fit(X_train,train_target)
clf1.fit(X_train,train_target)
clf2.fit(X_train,train_target)
dic={}
hotels=read_hotels(city,dic)
temp=[]
for each in hotels:
temp.append(calculate(vectorizer,transformer,train_count,ch2,each,clf,clf1,clf2,positive,negative,train_set))
res=[]
temp1=numpy.array(temp).argsort()[::-1]
#print temp1
print "Top %d recommendations are as follows[in the FORMAT Index,(Hotel name,Location),Score]:\n" %no
for g in temp1[:no]:
print g,dic[g],temp[g]
res.append(dic[g])
return res
开发者ID:Sandy4321,项目名称:hotel_recommender_system,代码行数:101,代码来源:tfidf.py
示例18: test_iris
def test_iris():
# Check consistency on dataset iris.
for metric in ('euclidean', 'cosine'):
clf = NearestCentroid(metric=metric).fit(iris.data, iris.target)
score = np.mean(clf.predict(iris.data) == iris.target)
assert score > 0.9, "Failed with score = " + str(score)
开发者ID:1TTT9,项目名称:scikit-learn,代码行数:6,代码来源:test_nearest_centroid.py
示例19: test_precomputed
def test_precomputed():
clf = NearestCentroid(metric="precomputed")
clf.fit(X, y)
S = pairwise_distances(T, clf.centroids_)
assert_array_equal(clf.predict(S), true_result)
开发者ID:1TTT9,项目名称:scikit-learn,代码行数:5,代码来源:test_nearest_centroid.py
示例20: test_classification_toy
def test_classification_toy():
# Check classification on a toy dataset, including sparse versions.
clf = NearestCentroid()
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
# Same test, but with a sparse matrix to fit and test.
clf = NearestCentroid()
clf.fit(X_csr, y)
assert_array_equal(clf.predict(T_csr), true_result)
# Fit with sparse, test with non-sparse
clf = NearestCentroid()
clf.fit(X_csr, y)
assert_array_equal(clf.predict(T), true_result)
# Fit with non-sparse, test with sparse
clf = NearestCentroid()
clf.fit(X, y)
assert_array_equal(clf.predict(T_csr), true_result)
# Fit and predict with non-CSR sparse matrices
clf = NearestCentroid()
clf.fit(X_csr.tocoo(), y)
assert_array_equal(clf.predict(T_csr.tolil()), true_result)
开发者ID:1TTT9,项目名称:scikit-learn,代码行数:25,代码来源:test_nearest_centroid.py
注:本文中的sklearn.neighbors.NearestCentroid类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论