• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python ball_tree.BallTree类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.neighbors.ball_tree.BallTree的典型用法代码示例。如果您正苦于以下问题:Python BallTree类的具体用法?Python BallTree怎么用?Python BallTree使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了BallTree类的18个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_ball_tree_pickle

def test_ball_tree_pickle():
    rng = check_random_state(0)
    X = rng.random_sample((10, 3))

    bt1 = BallTree(X, leaf_size=1)
    # Test if BallTree with callable metric is picklable
    bt1_pyfunc = BallTree(X, metric=dist_func, leaf_size=1, p=2)

    ind1, dist1 = bt1.query(X)
    ind1_pyfunc, dist1_pyfunc = bt1_pyfunc.query(X)

    def check_pickle_protocol(protocol):
        s = pickle.dumps(bt1, protocol=protocol)
        bt2 = pickle.loads(s)

        s_pyfunc = pickle.dumps(bt1_pyfunc, protocol=protocol)
        bt2_pyfunc = pickle.loads(s_pyfunc)

        ind2, dist2 = bt2.query(X)
        ind2_pyfunc, dist2_pyfunc = bt2_pyfunc.query(X)

        assert_array_almost_equal(ind1, ind2)
        assert_array_almost_equal(dist1, dist2)

        assert_array_almost_equal(ind1_pyfunc, ind2_pyfunc)
        assert_array_almost_equal(dist1_pyfunc, dist2_pyfunc)

        assert isinstance(bt2, BallTree)

    for protocol in (0, 1, 2):
        check_pickle_protocol(protocol)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:31,代码来源:test_ball_tree.py


示例2: similar_products2

def similar_products2(deep_f):
	qs = Product.objects.all()
	df=read_frame(qs)
	df['idx'] = range(1, len(df) + 1)
	feature_list=[]
	asin_list=[]

	for prod in qs:
		feature_list.append(prod.get_features())
		asin_list.append(prod.asin)
	
		
	nparray = np.asarray(feature_list)
	#print nparray
	tree = BallTree(nparray)              
	dist, ind = tree.query(deep_f, k=5)
	print ind
	index = ind[0]
	recom = index[0:]
	recommended_asins =[];
	
	for i in recom:
		recommended_asins.append(asin_list[i])
	recommended_prods = Product.objects.filter(asin__in = recommended_asins)
	return recommended_prods

#    image_train = graphlab.SFrame(data=df)
#    cur_prod = image_train[18:19]
#    print cur_prod
#    print image_train
#    knn_model = graphlab.nearest_neighbors.create(image_train, features = ['features'],label = 'asin',distance = 'levenshtein',method = 'ball_tree')
#    knn_model.save('my_knn')
#    #knn_model= graphlab.load_model('my_knn')
#    #print knn_model.query(cur_prod)
#    #knn_model = graphlab.nearest_neighbors.create(image_train, features = ['features'],label = 'keywords')
开发者ID:vatsalchanana,项目名称:image-search,代码行数:35,代码来源:views.py


示例3: test_ball_tree_pickle

def test_ball_tree_pickle():
    np.random.seed(0)
    X = np.random.random((10, 3))

    bt1 = BallTree(X, leaf_size=1)
    # Test if BallTree with callable metric is picklable
    bt1_pyfunc = BallTree(X, metric=dist_func, leaf_size=1, p=2)

    ind1, dist1 = bt1.query(X)
    ind1_pyfunc, dist1_pyfunc = bt1_pyfunc.query(X)

    def check_pickle_protocol(protocol):
        s = pickle.dumps(bt1, protocol=protocol)
        bt2 = pickle.loads(s)

        s_pyfunc = pickle.dumps(bt1_pyfunc, protocol=protocol)
        bt2_pyfunc = pickle.loads(s_pyfunc)

        ind2, dist2 = bt2.query(X)
        ind2_pyfunc, dist2_pyfunc = bt2_pyfunc.query(X)

        assert_array_almost_equal(ind1, ind2)
        assert_array_almost_equal(dist1, dist2)

        assert_array_almost_equal(ind1_pyfunc, ind2_pyfunc)
        assert_array_almost_equal(dist1_pyfunc, dist2_pyfunc)

    for protocol in (0, 1, 2):
        yield check_pickle_protocol, protocol
开发者ID:Afey,项目名称:scikit-learn,代码行数:29,代码来源:test_ball_tree.py


示例4: similar_products

def similar_products(product):
	qs = Product.objects.all()
	df=read_frame(qs)
	df['idx'] = range(1, len(df) + 1)
	feature_list=[]
	asin_list=[]
	product_index = 0
	inn=0
	for prod in qs:
		feature_list.append(prod.get_features())
		asin_list.append(prod.asin)
		if prod.asin == product.asin:
			product_index = inn
		inn+=1
		
	nparray = np.asarray(feature_list)
	#print nparray
	tree = BallTree(nparray)              
	dist, ind = tree.query(nparray[product_index], k=5)
	print ind
	index = ind[0]
	recom = index[1:]
	recommended_asins =[];
	
	for i in recom:
		recommended_asins.append(asin_list[i])
	recommended_prods = Product.objects.filter(asin__in = recommended_asins)
	return recommended_prods
开发者ID:vatsalchanana,项目名称:image-search,代码行数:28,代码来源:views.py


示例5: check_neighbors

    def check_neighbors(dualtree, breadth_first, k, metric, kwargs):
        bt = BallTree(X, leaf_size=1, metric=metric, **kwargs)
        dist1, ind1 = bt.query(Y, k, dualtree=dualtree, breadth_first=breadth_first)
        dist2, ind2 = brute_force_neighbors(X, Y, k, metric, **kwargs)

        # don't check indices here: if there are any duplicate distances,
        # the indices may not match.  Distances should not have this problem.
        assert_array_almost_equal(dist1, dist2)
开发者ID:albertotb,项目名称:scikit-learn,代码行数:8,代码来源:test_ball_tree.py


示例6: test_query_haversine

def test_query_haversine():
    rng = check_random_state(0)
    X = 2 * np.pi * rng.random_sample((40, 2))
    bt = BallTree(X, leaf_size=1, metric='haversine')
    dist1, ind1 = bt.query(X, k=5)
    dist2, ind2 = brute_force_neighbors(X, X, k=5, metric='haversine')

    assert_array_almost_equal(dist1, dist2)
    assert_array_almost_equal(ind1, ind2)
开发者ID:BranYang,项目名称:scikit-learn,代码行数:9,代码来源:test_ball_tree.py


示例7: test_query_haversine

def test_query_haversine():
    np.random.seed(0)
    X = 2 * np.pi * np.random.random((40, 2))
    bt = BallTree(X, leaf_size=1, metric='haversine')
    dist1, ind1 = bt.query(X, k=5)
    dist2, ind2 = brute_force_neighbors(X, X, k=5, metric='haversine')

    assert_array_almost_equal(dist1, dist2)
    assert_array_almost_equal(ind1, ind2)
开发者ID:Afey,项目名称:scikit-learn,代码行数:9,代码来源:test_ball_tree.py


示例8: test_ball_tree_kde

def test_ball_tree_kde(kernel, h, rtol, atol, breadth_first, n_samples=100,
                       n_features=3):
    rng = np.random.RandomState(0)
    X = rng.random_sample((n_samples, n_features))
    Y = rng.random_sample((n_samples, n_features))
    bt = BallTree(X, leaf_size=10)

    dens_true = compute_kernel_slow(Y, X, kernel, h)

    dens = bt.kernel_density(Y, h, atol=atol, rtol=rtol,
                             kernel=kernel,
                             breadth_first=breadth_first)
    assert_allclose(dens, dens_true,
                    atol=atol, rtol=max(rtol, 1e-7))
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:14,代码来源:test_ball_tree.py


示例9: test_gaussian_kde

def test_gaussian_kde(n_samples=1000):
    # Compare gaussian KDE results to scipy.stats.gaussian_kde
    from scipy.stats import gaussian_kde
    rng = check_random_state(0)
    x_in = rng.normal(0, 1, n_samples)
    x_out = np.linspace(-5, 5, 30)

    for h in [0.01, 0.1, 1]:
        bt = BallTree(x_in[:, None])
        gkde = gaussian_kde(x_in, bw_method=h / np.std(x_in))

        dens_bt = bt.kernel_density(x_out[:, None], h) / n_samples
        dens_gkde = gkde.evaluate(x_out)

        assert_array_almost_equal(dens_bt, dens_gkde, decimal=3)
开发者ID:BranYang,项目名称:scikit-learn,代码行数:15,代码来源:test_ball_tree.py


示例10: test_ball_tree_query

def test_ball_tree_query(metric, k, dualtree, breadth_first):
    rng = check_random_state(0)
    X = rng.random_sample((40, DIMENSION))
    Y = rng.random_sample((10, DIMENSION))

    kwargs = METRICS[metric]

    bt = BallTree(X, leaf_size=1, metric=metric, **kwargs)
    dist1, ind1 = bt.query(Y, k, dualtree=dualtree,
                           breadth_first=breadth_first)
    dist2, ind2 = brute_force_neighbors(X, Y, k, metric, **kwargs)

    # don't check indices here: if there are any duplicate distances,
    # the indices may not match.  Distances should not have this problem.
    assert_array_almost_equal(dist1, dist2)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:15,代码来源:test_ball_tree.py


示例11: test_ball_tree_query_metrics

def test_ball_tree_query_metrics(metric):
    rng = check_random_state(0)
    if metric in BOOLEAN_METRICS:
        X = rng.random_sample((40, 10)).round(0)
        Y = rng.random_sample((10, 10)).round(0)
    elif metric in DISCRETE_METRICS:
        X = (4 * rng.random_sample((40, 10))).round(0)
        Y = (4 * rng.random_sample((10, 10))).round(0)

    k = 5

    bt = BallTree(X, leaf_size=1, metric=metric)
    dist1, ind1 = bt.query(Y, k)
    dist2, ind2 = brute_force_neighbors(X, Y, k, metric)
    assert_array_almost_equal(dist1, dist2)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:15,代码来源:test_ball_tree.py


示例12: test_ball_tree_pickle

def test_ball_tree_pickle():
    import pickle
    np.random.seed(0)
    X = np.random.random((10, 3))
    bt1 = BallTree(X, leaf_size=1)
    ind1, dist1 = bt1.query(X)

    def check_pickle_protocol(protocol):
        s = pickle.dumps(bt1, protocol=protocol)
        bt2 = pickle.loads(s)
        ind2, dist2 = bt2.query(X)
        assert_allclose(ind1, ind2)
        assert_allclose(dist1, dist2)

    for protocol in (0, 1, 2):
        yield check_pickle_protocol, protocol
开发者ID:kinnskogr,项目名称:scikit-learn,代码行数:16,代码来源:test_ball_tree.py


示例13: test_ball_tree_query_radius

def test_ball_tree_query_radius(n_samples=100, n_features=10):
    np.random.seed(0)
    X = 2 * np.random.random(size=(n_samples, n_features)) - 1
    query_pt = np.zeros(n_features, dtype=float)

    eps = 1E-15  # roundoff error can cause test to fail
    bt = BallTree(X, leaf_size=5)
    rad = np.sqrt(((X - query_pt) ** 2).sum(1))

    for r in np.linspace(rad[0], rad[-1], 100):
        ind = bt.query_radius(query_pt, r + eps)[0]
        i = np.where(rad <= r + eps)[0]

        ind.sort()
        i.sort()

        assert_array_almost_equal(i, ind)
开发者ID:Afey,项目名称:scikit-learn,代码行数:17,代码来源:test_ball_tree.py


示例14: test_gaussian_kde

def test_gaussian_kde(n_samples=1000):
    """Compare gaussian KDE results to scipy.stats.gaussian_kde"""
    from scipy.stats import gaussian_kde
    np.random.seed(0)
    x_in = np.random.normal(0, 1, n_samples)
    x_out = np.linspace(-5, 5, 30)

    for h in [0.01, 0.1, 1]:
        bt = BallTree(x_in[:, None])
        try:
            gkde = gaussian_kde(x_in, bw_method=h / np.std(x_in))
        except TypeError:
            raise SkipTest("Old version of scipy, doesn't accept explicit bandwidth.")

        dens_bt = bt.kernel_density(x_out[:, None], h) / n_samples
        dens_gkde = gkde.evaluate(x_out)

        assert_array_almost_equal(dens_bt, dens_gkde, decimal=3)
开发者ID:99plus2,项目名称:scikit-learn,代码行数:18,代码来源:test_ball_tree.py


示例15: test_ball_tree_query_radius_distance

def test_ball_tree_query_radius_distance(n_samples=100, n_features=10):
    np.random.seed(0)
    X = 2 * np.random.random(size=(n_samples, n_features)) - 1
    query_pt = np.zeros(n_features, dtype=float)

    eps = 1E-15  # roundoff error can cause test to fail
    bt = BallTree(X, leaf_size=5)
    rad = np.sqrt(((X - query_pt) ** 2).sum(1))

    for r in np.linspace(rad[0], rad[-1], 100):
        ind, dist = bt.query_radius(query_pt, r + eps, return_distance=True)

        ind = ind[0]
        dist = dist[0]

        d = np.sqrt(((query_pt - X[ind]) ** 2).sum(1))

        assert_array_almost_equal(d, dist)
开发者ID:Afey,项目名称:scikit-learn,代码行数:18,代码来源:test_ball_tree.py


示例16: test_gaussian_kde

def test_gaussian_kde(n_samples=1000):
    """Compare gaussian KDE results to scipy.stats.gaussian_kde"""
    from scipy.stats import gaussian_kde
    np.random.seed(0)
    x_in = np.random.normal(0, 1, n_samples)
    x_out = np.linspace(-5, 5, 30)

    for h in [0.01, 0.1, 1]:
        bt = BallTree(x_in[:, None])
        try:
            gkde = gaussian_kde(x_in, bw_method=h / np.std(x_in))
        except TypeError:
            # older versions of scipy don't accept explicit bandwidth
            raise SkipTest

        dens_bt = bt.kernel_density(x_out[:, None], h) / n_samples
        dens_gkde = gkde.evaluate(x_out)

        assert_allclose(dens_bt, dens_gkde, rtol=1E-3, atol=1E-3)
开发者ID:kinnskogr,项目名称:scikit-learn,代码行数:19,代码来源:test_ball_tree.py


示例17: _nonlocalmeans_clustered

def _nonlocalmeans_clustered(img, n_small=5, n_components=9, n_neighbors=30, h=10):

    Nw = (2 * n_small + 1) ** 2
    h2 = h * h
    n_rows, n_cols = img.shape

    # precompute the coordinate difference for the big patch
    small_rows, small_cols = np.indices(((2 * n_small + 1), (2 * n_small + 1))) - n_small

    # put all patches so we can cluster them
    n_padded = np.pad(img, n_small, mode='reflect')
    patches = np.zeros((n_rows * n_cols, Nw))

    n = 0
    for r in range(n_small, n_small + n_rows):
        for c in range(n_small, n_small + n_cols):
            window = n_padded[r + small_rows, c + small_cols].flatten()
            patches[n, :] = window
            n += 1

    transformed = PCA(n_components=n_components).fit_transform(patches)
    # index the patches into a tree
    tree = BallTree(transformed, leaf_size=2)

    print("Denoising")
    new_img = np.zeros_like(img)
    for r in range(n_rows):
        for c in range(n_cols):
            idx = r * n_cols + c
            dist, ind = tree.query(transformed[idx], k=n_neighbors)
            ridx = np.array([(int(i / n_cols), int(i % n_cols)) for i in ind[0, 1:]])
            colors = img[ridx[:, 0], ridx[:, 1]]
            w = np.exp(-dist[0, 1:] / h2)
            new_img[r, c] = np.sum(w * colors) / np.sum(w)

    return new_img
开发者ID:dsvision,项目名称:nlm,代码行数:36,代码来源:nlm.py


示例18: check_neighbors

 def check_neighbors(metric):
     bt = BallTree(X, leaf_size=1, metric=metric)
     dist1, ind1 = bt.query(Y, k)
     dist2, ind2 = brute_force_neighbors(X, Y, k, metric)
     assert_array_almost_equal(dist1, dist2)
开发者ID:Afey,项目名称:scikit-learn,代码行数:5,代码来源:test_ball_tree.py



注:本文中的sklearn.neighbors.ball_tree.BallTree类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python classification.KNeighborsClassifier类代码示例发布时间:2022-05-27
下一篇:
Python neighbors.NearestNeighbors类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap