本文整理汇总了Python中sklearn.neural_network.MLPClassifier类的典型用法代码示例。如果您正苦于以下问题:Python MLPClassifier类的具体用法?Python MLPClassifier怎么用?Python MLPClassifier使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了MLPClassifier类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self, methodname='linear regression', trainingpart=0.9, ):
"""
类初始化函数。
:param self: 类变量本身
:param method='linear regression': model类别,可以为'linear regression', 'svc', 'neural netword'
:param trainingPart=0.9: 训练集占整体的比例,默认为0.9
"""
if trainingpart <= 0 or trainingpart >=1:
raise Exception("Training Part is belong to (0, 1)")
# 设置model
if methodname == 'linear regression':
self.model = LinearRegression()
elif methodname == 'svc':
self.model = SVC()
print 'Warning: your\'s y data\'s type need to be int!'
elif methodname == 'neural netword':
self.model = MLPClassifier()
print 'Warning: your\'s y data\'s type need to be int!'
else:
methodname = 'linear regression'
self.model = LinearRegression()
# 设置其他属性
self.trainingpart = trainingpart
self.methodname = methodname
self.X = None
self.y = None
self.train_X = None
self.test_X = None
self.train_y = None
self.test_y = None
开发者ID:WQ-huziang,项目名称:WQ-Testcode,代码行数:30,代码来源:modelEngineer.py
示例2: test_partial_fit_classes_error
def test_partial_fit_classes_error():
# Tests that passing different classes to partial_fit raises an error
X = [[3, 2]]
y = [0]
clf = MLPClassifier(solver='sgd')
clf.partial_fit(X, y, classes=[0, 1])
assert_raises(ValueError, clf.partial_fit, X, y, classes=[1, 2])
开发者ID:aniryou,项目名称:scikit-learn,代码行数:7,代码来源:test_mlp.py
示例3: init_Q
def init_Q():
# make some dummy training set
board = init_board()
board_vec = board2vec(board)
X = np.array([board_vec])
y = [(BOARD_SIZE-1)**2]
board_vec = np.invert(board_vec)
X = np.append(X,np.array([board_vec]),axis=0)
y.append(0)
edges = get_potential_moves(board) # all the edges, since the board is empty
for edge in edges:
i = edge2ind(edge)
board_vec[i] = False
X = np.append(X,np.array([board_vec]),axis=0)
y.append(check_surrounding_squares(board,edge,0))
board_vec[i] = True
Q = MLPClassifier(warm_start=True,
hidden_layer_sizes=(BOARD_SIZE,10*BOARD_SIZE,BOARD_SIZE),
tol = 1e-10,
)
# Q = DecisionTreeRegressor()
# shf = range(len(y))
# for j in xrange(100):
# random.shuffle(shf)
# Xshf = [X[i] for i in shf]
# yshf = [y[i] for i in shf]
triedy = range((BOARD_SIZE-1)**2+1)
Q.partial_fit(np.repeat(X,100,axis=0),np.repeat(y,100,axis=0),classes=triedy)
print(Q.predict(X))
return(Q)
开发者ID:matus-stehlik,项目名称:Dots_and_boxes,代码行数:35,代码来源:train1.py
示例4: test_gradient
def test_gradient():
# Test gradient.
# This makes sure that the activation functions and their derivatives
# are correct. The numerical and analytical computation of the gradient
# should be close.
for n_labels in [2, 3]:
n_samples = 5
n_features = 10
X = np.random.random((n_samples, n_features))
y = 1 + np.mod(np.arange(n_samples) + 1, n_labels)
Y = LabelBinarizer().fit_transform(y)
for activation in ACTIVATION_TYPES:
mlp = MLPClassifier(activation=activation, hidden_layer_sizes=10,
solver='lbfgs', alpha=1e-5,
learning_rate_init=0.2, max_iter=1,
random_state=1)
mlp.fit(X, y)
theta = np.hstack([l.ravel() for l in mlp.coefs_ +
mlp.intercepts_])
layer_units = ([X.shape[1]] + [mlp.hidden_layer_sizes] +
[mlp.n_outputs_])
activations = []
deltas = []
coef_grads = []
intercept_grads = []
activations.append(X)
for i in range(mlp.n_layers_ - 1):
activations.append(np.empty((X.shape[0],
layer_units[i + 1])))
deltas.append(np.empty((X.shape[0],
layer_units[i + 1])))
fan_in = layer_units[i]
fan_out = layer_units[i + 1]
coef_grads.append(np.empty((fan_in, fan_out)))
intercept_grads.append(np.empty(fan_out))
# analytically compute the gradients
def loss_grad_fun(t):
return mlp._loss_grad_lbfgs(t, X, Y, activations, deltas,
coef_grads, intercept_grads)
[value, grad] = loss_grad_fun(theta)
numgrad = np.zeros(np.size(theta))
n = np.size(theta, 0)
E = np.eye(n)
epsilon = 1e-5
# numerically compute the gradients
for i in range(n):
dtheta = E[:, i] * epsilon
numgrad[i] = ((loss_grad_fun(theta + dtheta)[0] -
loss_grad_fun(theta - dtheta)[0]) /
(epsilon * 2.0))
assert_almost_equal(numgrad, grad)
开发者ID:aniryou,项目名称:scikit-learn,代码行数:60,代码来源:test_mlp.py
示例5: main
def main():
enc = OneHotEncoder(n_values=[7,7,7,7,7,7])
conn = sqlite3.connect('server.db')
cursor = conn.cursor()
all_ = pandas.read_sql_query('SELECT layers.burger, labels.output, layers.layer0, layers.layer1, layers.layer2, layers.layer3, layers.layer4, layers.layer5 FROM layers,labels WHERE layers.burger = labels.burger', conn, index_col='burger')
X = all_.drop(['output'], axis=1)
y = all_['output']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)
clf = MLPClassifier(solver='adam', activation='relu',
verbose=False,
max_iter=10000,
tol=1e-9,
random_state=1)
X_train_categoricals = X_train[column_names]
tX_train_categoricals = enc.fit_transform(X_train_categoricals)
clf.fit(tX_train_categoricals, y_train.as_matrix().astype(int))
X_test_categoricals = X_test[column_names]
tX_test_categoricals = enc.fit_transform(X_test_categoricals)
prediction = clf.predict(tX_test_categoricals)
print(classification_report(y_test, prediction))
print_eval(y_test, prediction)
开发者ID:google,项目名称:makerfaire-2016,代码行数:30,代码来源:simplemodel.py
示例6: train_on_source
def train_on_source(X,Y):
print "Start Learning Net on source"
clf = MLPClassifier( algorithm = 'l-bfgs',
alpha = 1e-5,
hidden_layer_sizes = (500,2),
random_state = 1,
warm_start = 1,
max_iter = 400)
clf.fit(X,Y)
#new_loss = 0
#old_loss = 10000
#for step in range(200):
# clf.fit(X,Y)
# new_loss = clf.loss_
# # stop training, if improvement is small
# improvement = abs(new_loss - old_loss)
# print "Step:", step, "Loss:", new_loss, "Improvement:", improvement
# if improvement < 1.e-5:
# print "Training converged!"
# break
# old_loss = new_loss
print "Pretrained CLF on Source with num_iter:", clf.n_iter_
return clf
开发者ID:constantinpape,项目名称:stuff_master,代码行数:26,代码来源:transfer_learning_nn.py
示例7: NeuralLearner
class NeuralLearner(Learner.Learner):
def __init__(self, FeatureMask):
super(NeuralLearner, self).__init__(FeatureMask)
self.expected = FeatureMask.LabelsForAllPoints
#self.model = MLPClassifier(algorithm='sgd', hidden_layer_sizes=(64,32))
self.model = MLPClassifier(algorithm = 'sgd',
learning_rate = 'constant',
momentum = .9,
nesterovs_momentum = True,
learning_rate_init = 0.2)
def FitAndPredict(self, mask):
return self.Predict(self.Fit(mask))
def SetupInputActivations(self, FeatureMask):
arr = np.hstack([FeatureMask.ForceStd.reshape(-1,1),
FeatureMask.ForceMinMax.reshape(-1,1),
FeatureMask.CannyFilter.reshape(-1,1)])
expected = FeatureMask.LabelsForAllPoints
return arr, expected
def Fit(self, mask):
arr, expected = self.SetupInputActivations(mask)
self.model.fit(arr, expected)
def Predict(self, mask):
arr, expected = self.SetupInputActivations(mask)
return self.model.predict(arr).reshape(-1,1)
开发者ID:prheenan,项目名称:csci5502mining,代码行数:27,代码来源:NeuralLearner.py
示例8: create
def create(self):
csvPath = self.sourceCsvFile
dataset = np.loadtxt( csvPath, dtype='int', delimiter=",", skiprows=1,converters={ \
4: convertCell, \
5: convertCell, \
6: convertCell, \
7: convertCell, \
8: convertCell, \
9: convertCell, \
10: convertCell, \
11: convertCell, \
12: convertCell, \
13: convertCell, \
14: convertCell, \
15: convertCell \
} )
non_cat_data = dataset[:, [0,1,2] ]
cat_data = dataset[:, [4,5,6,7,8,9,10,11,12,13,14,15] ]
output_data = dataset[:, 3]
enc = preprocessing.OneHotEncoder()
enc.fit(cat_data)
cat_out = enc.transform(cat_data).toarray()
merge_data = np.concatenate((non_cat_data,cat_data),axis=1)
d(merge_data[0])
clf = MLPClassifier(algorithm='l-bfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1)
#clf = tree.DecisionTreeClassifier()
clf = clf.fit(merge_data, output_data)
s = pickle.dumps(clf)
dtFileName = "%s\\save.pkl"%self.outDir
dtFile = open( dtFileName, 'w' )
print dtFileName
dtFile.write( s );
dtFile.close()
choicesFile = open( "%s\\choices.pkl"%self.outDir, 'w' )
s = pickle.dumps(choiceArr)
choicesFile.write( s );
choicesFile.close()
sample_inputs = []
for i in range( 100 ):
sample_inputs.append( merge_data[i*500] )
file = open( "%s\\sampleInputs.pkl"%self.outDir, 'w' )
file.write( pickle.dumps(sample_inputs) )
file.close()
file = open( "%s\\def.txt"%self.outDir, 'w' )
file.write( "input file: %s\n"%self.sourceCsvFile )
file.close()
print dataset[722]
print merge_data[722]
print output_data[722]
print clf.predict( sample_inputs )
开发者ID:Shadhopson,项目名称:Friendship-for-Life,代码行数:60,代码来源:DecisionTreeDecisionMaker.py
示例9: BCISignal
class BCISignal():
def __init__(self, fs, bands, ch_names, states_labels, indexes):
self.states_labels = states_labels
self.bands = bands
self.prefilter = FilterSequence([ButterFilter((0.5, 45), fs, len(ch_names))])
self.csp_pools = [SpatialDecompositionPool(ch_names, fs, bands, 'csp', indexes) for _label in states_labels]
self.csp_transformer = None
self.var_detector = InstantaneousVarianceFilter(len(bands)*len(indexes)*len(states_labels), n_taps=fs//2)
self.classifier = MLPClassifier(hidden_layer_sizes=(), early_stopping=True, verbose=True)
#self.classifier = RandomForestClassifier(max_depth=3, min_samples_leaf=100)
def fit(self, X, y=None):
X = self.prefilter.apply(X)
for csp_pool, label in zip(self.csp_pools, self.states_labels):
csp_pool.fit(X, y == label)
self.csp_transformer = FilterStack([pool.get_filter_stack() for pool in self.csp_pools])
X = self.csp_transformer.apply(X)
X = self.var_detector.apply(X)
self.classifier.fit(X, y)
print('Fit accuracy {}'.format(sum(self.classifier.predict(X) == y)/len(y)))
def apply(self, chunk: np.ndarray):
chunk = self.prefilter.apply(chunk)
chunk = self.csp_transformer.apply(chunk)
chunk = self.var_detector.apply(chunk)
predicted_labels = self.classifier.predict(chunk)
return predicted_labels
开发者ID:nikolaims,项目名称:nfb,代码行数:27,代码来源:test_bci_model.py
示例10: mlp_cv_architecture
def mlp_cv_architecture(X,Y):
kfold = KFold(X.shape[0], n_folds = 10)
architectures = ( (500,2), (400,2), (400,100,2), (400,200,2), (400,100,50,2), (400,200,50,2) )
res_dict = {}
for architecture in architectures:
mlp = MLPClassifier( algorithm = 'sgd',
learning_rate = 'adaptive',
hidden_layer_sizes = architecture,
random_state = 1)
train_times = []
train_accuracy = []
test_accuracy = []
for train, test in kfold:
t_tr = time.time()
mlp.fit( X[train], Y[train] )
train_times.append( time.time() - t_tr )
acc_train = np.sum( np.equal( mlp.predict( X[train]), Y[train] ) ) / float(X[train].shape[0])
acc_test = np.sum( np.equal( mlp.predict( X[test]), Y[test] ) ) / float(X[test].shape[0])
train_accuracy.append( acc_train )
test_accuracy.append( acc_test )
res_dict[str(architecture)] = (np.mean(train_accuracy), np.std(train_accuracy),
np.mean(test_accuracy), np.std(test_accuracy),
np.mean(train_times), np.std(train_times))
with open('./../results/res_nncv_architecture.pkl', 'w') as f:
pickle.dump(res_dict,f)
开发者ID:constantinpape,项目名称:stuff_master,代码行数:32,代码来源:sklearn_perceptron.py
示例11: train
def train():
utl.print_title('Getting data...')
X, Tc, X_test, Tc_test = dpp.getdata_arnold()
#X, Tc, X_test, Tc_test = dpp.getdata_mnist()
utl.print_title('Preparing data...')
X, X_test = dpp.scale_data(X, X_test)
T = dpp.one_hot_encode(Tc)
T_test = dpp.one_hot_encode(Tc_test)
utl.print_title('Sanity checks...')
print('Shape X:', X.shape)
print('Shape Tc:', Tc.shape)
print('Shape T:', T.shape)
print('Shape X_test:', X_test.shape)
print('Shape Tc_test:', Tc_test.shape)
print('Shape T_test:', T_test.shape)
utl.print_title('Training the network...')
classifier = MLPClassifier(solver='adam', learning_rate_init=1e-3, hidden_layer_sizes=(100), verbose=True, max_iter=200)
classifier.fit(X, T)
train_score, Pc = get_results(classifier, X, T)
test_score, Pc_test = get_results(classifier, X_test, T_test)
utl.print_title('Results:')
print('Classification counts train (target): ', np.bincount(Tc.reshape(-1)))
print('Classification counts train (prediction): ', np.bincount(Pc))
print('\nClassification counts test (target): ', np.bincount(Tc_test.reshape(-1)))
print('Classification counts test (prediction): ', np.bincount(Pc_test))
print('\nTrain score: ', train_score)
print('Test score: ', test_score)
开发者ID:RobertCram,项目名称:machine-learning,代码行数:34,代码来源:sklearn_playground.py
示例12: mlp_train
def mlp_train(self,x_train,y_train):
scaler = StandardScaler()
scaler.fit(x_train)
x_train = scaler.transform(x_train)
clf = MLPClassifier(max_iter=500,alpha=1e-5,hidden_layer_sizes=(40,100,80),warm_start=True,random_state=0)
clf.fit(x_train,y_train)
return clf
开发者ID:bobboo,项目名称:smart_indicator,代码行数:8,代码来源:create_model.py
示例13: fitMLPs
def fitMLPs(trainIndexes, datasets):
classifiers = []
for (x,y) in datasets:
cl = MLPClassifier(algorithm='l-bfgs', alpha=1e-4, hidden_layer_sizes=(76, 30), random_state=1, momentum=0.8)
data, target = listToData(trainIndexes, x, y)
cl.fit(data, target)
classifiers.append(cl)
return classifiers
开发者ID:migueldsw,项目名称:ml-msc,代码行数:8,代码来源:multipleclassifier.py
示例14: train
def train(classes, y_samples, feature_dict, classes_dict):
# Using dev version of slearn, 1.9
from sklearn.neural_network import MLPClassifier
clf = MLPClassifier(algorithm='l-bfgs', alpha=1e-5, hidden_layer_sizes=(50, 25), random_state=1, verbose=True)
clf.fit(y_samples, classes)
return clf
开发者ID:SmartText,项目名称:ConceptNet-Interface,代码行数:8,代码来源:ann.py
示例15: main
def main():
iris = datasets.load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target)
classifier = MLPClassifier(max_iter=1000)
classifier.fit(X_train, y_train)
s = classifier.score(X_test, y_test)
print(s)
开发者ID:terasakisatoshi,项目名称:PythonCode,代码行数:8,代码来源:hello_sklearn.py
示例16: test_tolerance
def test_tolerance():
# Test tolerance.
# It should force the solver to exit the loop when it converges.
X = [[3, 2], [1, 6]]
y = [1, 0]
clf = MLPClassifier(tol=0.5, max_iter=3000, solver='sgd')
clf.fit(X, y)
assert_greater(clf.max_iter, clf.n_iter_)
开发者ID:aniryou,项目名称:scikit-learn,代码行数:8,代码来源:test_mlp.py
示例17: test_adaptive_learning_rate
def test_adaptive_learning_rate():
X = [[3, 2], [1, 6]]
y = [1, 0]
clf = MLPClassifier(tol=0.5, max_iter=3000, solver='sgd',
learning_rate='adaptive')
clf.fit(X, y)
assert_greater(clf.max_iter, clf.n_iter_)
assert_greater(1e-6, clf._optimizer.learning_rate)
开发者ID:aniryou,项目名称:scikit-learn,代码行数:8,代码来源:test_mlp.py
示例18: mlpTest
def mlpTest(self):
mlp = MLPClassifier(hidden_layer_sizes=(100, 100), max_iter=1000, alpha=1e-4,
solver ='sgd', verbose=10, tol=1e-4, random_state=1)
mlp.fit(self.X_train,self.Y_train)
predicted = mlp.predict(self.X_test)
print("Classification report for classifier %s:\n%s\n"
% (mlp, metrics.classification_report(self.Y_test, predicted)))
print("Confusion matrix:\n%s"
% metrics.confusion_matrix(self.Y_test, predicted))
开发者ID:meatybobby,项目名称:LearningCaptcha,代码行数:9,代码来源:trainer.py
示例19: do_mlp
def do_mlp(x_train, x_test, y_train, y_test):
clf = MLPClassifier(solver='lbfgs',
alpha=1e-5,
hidden_layer_sizes = (10, 4),
random_state = 1)
clf.fit(x_train, y_train)
y_pred = clf.predict(x_test)
print(classification_report(y_test, y_pred))
开发者ID:Emersonxuelinux,项目名称:2book,代码行数:9,代码来源:malware.py
示例20: main
def main():
np.random.seed(RANDOM_STATE)
pd.set_option('display.width', 0)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
data = pd.read_csv('data/train.csv')
#test_data = pd.read_csv('data/test.csv')
records = []
#n = 42000*0.8
n = 10000
X, y = extract_data(data, n)
activation = 'tanh'
param_dict = {'batch_size': [100, 200], 'momentum': [0.9, 0.99 ], 'learning_rate_init':[0.001, 0.01, 0.1]}
#param_dict = {'batch_size': [200], 'momentum': [0.9], 'learning_rate_init':[0.1]}
for param in ParameterGrid(param_dict):
nn = MLPClassifier(algorithm='sgd',
tol=float('-inf'),
warm_start = True,
max_iter=1,
hidden_layer_sizes = [200],
random_state=RANDOM_STATE)
#nn_params = {'algorithm': 'sgd', 'tol': float
nn_params = nn.get_params()
nn_params.update(param)
nn.set_params(**nn_params)
#nn = MLPClassifier(**nn_params)
time_limits = list(range(1, 60, 60))
try:
evaluation_list = trainer_by_time(X, y, time_limits, nn)
except:
evaluation_list = [{}]
for i in range(len(evaluation_list)):
evaluation = evaluation_list[i]
record = {}
record['n'] = n
record['time limit'] = time_limits[i]
record.update(evaluation)
record.update(param)
records.append(record)
df = pd.DataFrame(records)
cols = list(df.columns)
keys = evaluation_list[0].keys()
cols = [item for item in cols if item not in keys]
cols += keys
df = df.reindex(columns=cols)
now = datetime.datetime.now()
result_file = open('result.txt', 'a')
print(now,file=result_file)
print(df)
print(df,file=result_file)
开发者ID:luc14,项目名称:hyperparameters,代码行数:57,代码来源:digits.py
注:本文中的sklearn.neural_network.MLPClassifier类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论