• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python pipeline._name_estimators函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.pipeline._name_estimators函数的典型用法代码示例。如果您正苦于以下问题:Python _name_estimators函数的具体用法?Python _name_estimators怎么用?Python _name_estimators使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了_name_estimators函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: fit

    def fit(self, X, y):
        """Learn weight coefficients from training data for each classifier.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples and
            n_features is the number of features.

        y : array-like, shape = [n_samples]
            Target values.

        Returns
        -------
        self : object

        """
        if isinstance(y, np.ndarray) and len(y.shape) > 1 and y.shape[1] > 1:
            raise NotImplementedError('Multilabel and multi-output'
                                      ' classification is not supported.')

        if self.voting not in ('soft', 'hard'):
            raise ValueError("Voting must be 'soft' or 'hard'; got (voting=%r)"
                             % self.voting)

        if self.weights and len(self.weights) != len(self.clfs):
            raise ValueError('Number of classifiers and weights must be equal'
                             '; got %d weights, %d clfs'
                             % (len(self.weights), len(self.clfs)))

        self.le_ = LabelEncoder()
        self.le_.fit(y)
        self.classes_ = self.le_.classes_
        self.clfs_ = [clone(clf) for clf in self.clfs]

        if self.verbose > 0:
            print("Fitting %d classifiers..." % (len(self.clfs)))

        for clf in self.clfs_:

            if self.verbose > 0:
                i = self.clfs_.index(clf) + 1
                print("Fitting clf%d: %s (%d/%d)" %
                      (i, _name_estimators((clf,))[0][0], i, len(self.clfs_)))

            if self.verbose > 2:
                if hasattr(clf, 'verbose'):
                    clf.set_params(verbose=self.verbose - 2)

            if self.verbose > 1:
                print(_name_estimators((clf,))[0][1])

            clf.fit(X, self.le_.transform(y))
        return self
开发者ID:beingzy,项目名称:mlxtend,代码行数:54,代码来源:ensemble_vote.py


示例2: __init__

	def __init__(self, classifiers, vote='classlabel',
				weights=None):
		self.classifiers = classifiers
		self.named_classifiers = {key: value for key, value in
									_name_estimators(classifiers)}
		self.vote = vote
		self.weights = weights
开发者ID:prakharchoudhary,项目名称:fun_with_python,代码行数:7,代码来源:majority_voting.py


示例3: __init__

    def __init__(self, clfs, voting='hard', weights=None, verbose=0):

        self.clfs = clfs
        self.named_clfs = {key: value for key, value in _name_estimators(clfs)}
        self.voting = voting
        self.weights = weights
        self.verbose = verbose
开发者ID:beingzy,项目名称:mlxtend,代码行数:7,代码来源:ensemble_vote.py


示例4: __init__

 def __init__(self, clfs, voting='hard', weights=None):
     """
         voting: if 'hard', uses predicted class labels for majority rule voting
                 if 'soft', predicts the class label based on the argmax of the sums of the predicted probalities
     """
     self.clfs = clfs
     self.named_clfs = {key:value for key, value in _name_estimators(clfs)}
     self.voting = voting
     self.weights = weights
开发者ID:ijustloveses,项目名称:kaggle_learning,代码行数:9,代码来源:weighted_blend_model.py


示例5: __init__

 def __init__(self, clfs, voting, weights=None, threshold=None):
     self.clfs = clfs
     self.named_clfs = {key:value for key,value in _name_estimators(clfs)}
     self.voting=voting
     if voting is 'weighted':
         self.combiner=WeightedVote(weights=weights, threshold=threshold)
     elif voting is 'majority':
         self.combiner=MajorityVote()
     else:
         raise AttributeError('Unrecognized voting method')
开发者ID:Yashg19,项目名称:enrique,代码行数:10,代码来源:ensemblematcher.py


示例6: make_pipeline

def make_pipeline(*steps):
    """Construct a Pipeline from the given estimators.

    This is a shorthand for the Pipeline constructor; it does not require, and
    does not permit, naming the estimators. Instead, their names will be set
    to the lowercase of their types automatically.

    Returns
    -------
    p : Pipeline
    """
    return Pipeline(pipeline._name_estimators(steps))
开发者ID:glemaitre,项目名称:imbalanced-learn,代码行数:12,代码来源:pipeline.py


示例7: make_pipeline

def make_pipeline(*steps, **kwargs):
    """Construct a Pipeline from the given estimators.

    This is a shorthand for the Pipeline constructor; it does not require, and
    does not permit, naming the estimators. Instead, their names will be set
    to the lowercase of their types automatically.

    Parameters
    ----------
    *steps : list of estimators.

    memory : None, str or object with the joblib.Memory interface, optional
        Used to cache the fitted transformers of the pipeline. By default,
        no caching is performed. If a string is given, it is the path to
        the caching directory. Enabling caching triggers a clone of
        the transformers before fitting. Therefore, the transformer
        instance given to the pipeline cannot be inspected
        directly. Use the attribute ``named_steps`` or ``steps`` to
        inspect estimators within the pipeline. Caching the
        transformers is advantageous when fitting is time consuming.

    Returns
    -------
    p : Pipeline

    See also
    --------
    imblearn.pipeline.Pipeline : Class for creating a pipeline of
        transforms with a final estimator.

    Examples
    --------
    >>> from sklearn.naive_bayes import GaussianNB
    >>> from sklearn.preprocessing import StandardScaler
    >>> make_pipeline(StandardScaler(), GaussianNB(priors=None))
    ...     # doctest: +NORMALIZE_WHITESPACE
    Pipeline(memory=None,
             steps=[('standardscaler',
                     StandardScaler(copy=True, with_mean=True, with_std=True)),
                    ('gaussiannb',
                     GaussianNB(priors=None, var_smoothing=1e-09))])
    """
    memory = kwargs.pop('memory', None)
    if kwargs:
        raise TypeError('Unknown keyword arguments: "{}"'
                        .format(list(kwargs.keys())[0]))
    return Pipeline(pipeline._name_estimators(steps), memory=memory)
开发者ID:scikit-learn-contrib,项目名称:imbalanced-learn,代码行数:47,代码来源:pipeline.py


示例8: make_sparkunion

def make_sparkunion(*transformers):
    """Construct a FeatureUnion from the given transformers.
    This is a shorthand for the FeatureUnion constructor; it does not require,
    and does not permit, naming the transformers. Instead, they will be given
    names automatically based on their types. It also does not allow weighting.
    Examples
    --------
    >>> from sklearn.decomposition import PCA, TruncatedSVD
    >>> make_union(PCA(), TruncatedSVD())    # doctest: +NORMALIZE_WHITESPACE
    FeatureUnion(n_jobs=1,
                 transformer_list=[('pca', PCA(copy=True, n_components=None,
                                               whiten=False)),
                                   ('truncatedsvd',
                                    TruncatedSVD(algorithm='randomized',
                                                 n_components=2, n_iter=5,
                                                 random_state=None, tol=0.0))],
                 transformer_weights=None)
    Returns
    -------
    f : FeatureUnion
    """
    return SparkFeatureUnion(_name_estimators(transformers))
开发者ID:HendryLi,项目名称:sparkit-learn,代码行数:22,代码来源:pipeline.py


示例9: make_transformer_pipeline

def make_transformer_pipeline(*steps):
    """Construct a TransformerPipeline from the given estimators.
    """
    return TransformerPipeline(_name_estimators(steps))
开发者ID:bmweiner,项目名称:sklearn-pandas,代码行数:4,代码来源:pipeline.py


示例10: make_dataframe_pipeline

def make_dataframe_pipeline(steps):
    """Construct a DataFramePipeline from the given estimators."""
    return DataFramePipeline(_name_estimators(steps))
开发者ID:asford,项目名称:sklearn-pandas,代码行数:3,代码来源:dataframe_pipeline.py


示例11: make_alpha_pipeline

def make_alpha_pipeline(*steps):
    return AlphaPipeline(_name_estimators(steps))
开发者ID:digideskio,项目名称:alphaware,代码行数:2,代码来源:pipeline.py


示例12: __init__

 def __init__(self, classifiers):
     self.classifiers = classifiers
     self.named_classifiers = {key: value for key, value in _name_estimators(classifiers)}
开发者ID:nlinc1905,项目名称:Ensemble-Models-Majority-Vote-FWLS,代码行数:3,代码来源:sls_logistic_reg_classifier.py


示例13: transform

    def transform(self, X, y=None):
        xform_data = self.transform_.transform(X, y)
        return np.append(X, xform_data, axis=1)


class LogExpPipeline(Pipeline):
    def fit(self, X, y):
        super(LogExpPipeline, self).fit(X, y)

    def predict(self, X):
        return super(LogExpPipeline, self).predict(X)

#
# Model/pipeline with scaling,pca,svm
# knn
knn_pipe = LogExpPipeline(_name_estimators([RobustScaler(),
                                            KNeighborsClassifier(n_neighbors = 15, metric = 'cityblock')]))
#
svm_pipe = LogExpPipeline(_name_estimators([RobustScaler(),
                                            SVC(kernel='rbf', C=14)]))

# results = cross_val_score(svm_pipe, train, y_train, cv=5, scoring='r2')
# print("SVM score: %.4f (%.4f)" % (results.mean(), results.std()))
# exit()


#
# XGBoost model
#
xgb_model = xgb.XGBClassifier(max_depth=4, learning_rate=0.0045, subsample=0.921,nthread=6,
                                     objective='multi:softmax', n_estimators=500)
开发者ID:xiaofeifei1800,项目名称:Kaggle_Bimbo,代码行数:31,代码来源:stack_class.py


示例14: __init__

    def __init__(self, clfs, voting="hard", weights=None):

        self.clfs = clfs
        self.named_clfs = {key: value for key, value in _name_estimators(clfs)}
        self.voting = voting
        self.weights = weights
开发者ID:h3nj3,项目名称:crowdflower-search,代码行数:6,代码来源:ensemble2.py


示例15: transform

    def transform(self, X, y=None):
        xform_data = self.transform_.transform(X, y)
        return np.append(X, xform_data, axis=1)


class LogExpPipeline(Pipeline):
    def fit(self, X, y):
        super(LogExpPipeline, self).fit(X, np.log1p(y))

    def predict(self, X):
        return np.expm1(super(LogExpPipeline, self).predict(X))

#
# Model/pipeline with scaling,pca,svm
# knn
knn_pipe = LogExpPipeline(_name_estimators([RobustScaler(),
                                            KNeighborsRegressor(n_neighbors = 15, metric = 'cityblock')]))
#
svm_pipe = LogExpPipeline(_name_estimators([RobustScaler(),
                                            SVR(kernel='rbf', C=30, epsilon=0.05)]))

# results = cross_val_score(svm_pipe, train, y_train, cv=5, scoring='r2')
# print("SVM score: %.4f (%.4f)" % (results.mean(), results.std()))
# exit()

#
# Model/pipeline with scaling,pca,ElasticNet
#
en = ElasticNet(alpha=0.01, l1_ratio=0.9)

#
# XGBoost model
开发者ID:xiaofeifei1800,项目名称:Kaggle_Bimbo,代码行数:32,代码来源:stack_SVM_EN_XG_RF.py



注:本文中的sklearn.pipeline._name_estimators函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python pipeline.make_pipeline函数代码示例发布时间:2022-05-27
下一篇:
Python neural_network.MLPRegressor类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap